Efficient Length Doubling From Tweakable Block Ciphers Yu Long Chen¹ Atul Luykx² Bart Preneel¹ Bart Mennink³ imec-COSIC, KU Leuven Visa Research Digital Security Group, Radboud University, Nijmegen March 6, 2018 block cipher: fixed-input-length (FIL) - block cipher: fixed-input-length (FIL) - apply block cipher iteratively C_2 C_{l-1} C_{l} fractional data \Longrightarrow padding fractional data \Longrightarrow padding M_1 M_2 \cdots M_{l-1} M_l^* 10^* #### fractional data ⇒ padding #### fractional data ⇒ padding ciphertext expansion: |C| > |M| - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - ciphertext stealing: - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - ciphertext stealing: - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - ciphertext stealing: - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - ciphertext stealing: - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - ciphertext stealing: - 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB - ciphertext stealing: condition: C_i's need to be decrypted independently ## Length doublers - ▶ $|M_1| = |C_1| = n =$ block size - ▶ $|M_2| = |C_2| \in [0, n-1]$ #### **XLS** ## Ristenpart and Rogaway (2007) - ϵ -good mixing function - broken by Nandi in 2014 #### DE #### Nandi (2009) four cryptographic primitive calls #### **HEM** #### Zhang (2012) - five cryptographic primitive calls - ightharpoonup ϵ -good mixing function #### State of the art | length
doubler | security
(log ₂) | key
length | cryptographic primitive calls | mixing
function | |-------------------|---------------------------------|---------------|-------------------------------|--------------------| | XLS | n/2 | 2 <i>n</i> | 3 BC | ϵ -good | | DE | n/2 | 5 <i>n</i> | 4 hash+BC | - | | HEM | n/2 | 3 <i>n</i> | 4 hash+BC | ϵ -good | - at least 4 cryptographic primitive calls needed? - **beyond** $2^{n/2}$ security? scheme for integral length messages length doubler tweakable block cipher simple mixing function ## Tweakable block ciphers - extension of conventional block cipher - ightharpoonup different tweak $T \longrightarrow$ independent permutation ## Tweakable block ciphers - extension of conventional block cipher - ightharpoonup different tweak $T \longrightarrow$ independent permutation #### examples - ► LRW, CRYPTO 2002 - XEX, ASIACRYPT 2004 - TWEAKEY, ASIACRYPT 2014 - SKINNY, CRYPTO 2016 ## Pure mixing functions - ϵ -good mixing functions: smaller ϵ is better - ϵ -good mixing functions \Longrightarrow pure mixing functions - ightharpoonup easier to construct than ϵ -good mixing functions ## Pure mixing functions - ϵ -good mixing functions: smaller ϵ is better - ϵ -good mixing functions \Longrightarrow pure mixing functions - easier to construct than ϵ -good mixing functions simplest example (not ϵ -good) ## Security definition adversary \mathcal{A} ▶ adversary A makes q queries to oracle (\mathcal{E}_K or ρ) ## Security definition adversary A - ▶ adversary A makes q queries to oracle (\mathcal{E}_K or ρ) - 2 tweakable block cipher calls - pure mixing function - decryption function similar to encryption function - 2 tweakable block cipher calls - pure mixing function - decryption function similar to encryption function - 2 tweakable block cipher calls - pure mixing function - decryption function similar to encryption function - 2 tweakable block cipher calls - pure mixing function - decryption function similar to encryption function - 2 tweakable block cipher calls - pure mixing function - decryption function similar to encryption function 2^{n/2} security ## Security analysis security lower bound: $2^{n/2}$ security lower bound: $2^{n/2}$ Patarin's H-coefficient Technique $$\frac{Pr(X_{\mathcal{O}} = \tau)}{Pr(X_{\mathcal{P}} = \tau)} \ge 1 - \epsilon$$ $$\mathsf{Adv}(\mathcal{A}) \leq \epsilon + \mathsf{Pr}(X_{\mathcal{P}} \in \mathcal{T}_{\mathrm{bad}})$$ security lower bound: $2^{n/2}$ Patarin's H-coefficient Technique $$\frac{Pr(X_{\mathcal{O}} = \tau)}{Pr(X_{\mathcal{P}} = \tau)} \ge 1 - \epsilon$$ $$\mathsf{Adv}(\mathcal{A}) \leq \epsilon + \mathit{Pr}(X_{\mathcal{P}} \in \mathcal{T}_{\mathrm{bad}})$$ ▶ our case: $Pr(X_{\mathcal{P}} \in \mathcal{T}_{bad}) = 0$ and $\epsilon = q^2/2^n$ # Comparison | length
doubler | security
(log ₂) | key
length | cryptographic primitive calls | mixing function | |-------------------|---------------------------------|---------------|-------------------------------|------------------| | XLS | n/2 | 2 <i>n</i> | 3 BC | ϵ -good | | DE | n/2 | 5 <i>n</i> | 4 hash+BC | - | | HEM | <i>n</i> /2 | 3 <i>n</i> | 4 hash+BC | ϵ -good | | LDT | n/2 | 2 <i>n</i> | 2 TBC | pure | #### Scheme for arbitrary data combine AE scheme for integral data + LDT #### Scheme for arbitrary data combine AE scheme for integral data + LDT ### Scheme for arbitrary data combine AE scheme for integral data + LDT 2^{n/2} security #### Conclusion #### new results - birthday bound length doubler - 2 tweakable block cipher calls + pure mixing function - AE scheme for arbitrary length data #### Conclusion #### new results - birthday bound length doubler - 2 tweakable block cipher calls + pure mixing function - AE scheme for arbitrary length data #### further research - beyond birthday bound? - multiple round? - other optimizations? #### Conclusion #### new results - birthday bound length doubler - 2 tweakable block cipher calls + pure mixing function - AE scheme for arbitrary length data #### further research - beyond birthday bound? - multiple round? - other optimizations? # Thank you for your attention!