Efficient Length Doubling From Tweakable Block Ciphers

Yu Long Chen¹

Atul Luykx²
Bart Preneel¹

Bart Mennink³

imec-COSIC, KU Leuven

Visa Research

Digital Security Group, Radboud University, Nijmegen

March 6, 2018

block cipher: fixed-input-length (FIL)

- block cipher: fixed-input-length (FIL)
- apply block cipher iteratively

 C_2

 C_{l-1}

 C_{l}

fractional data \Longrightarrow padding

fractional data \Longrightarrow padding

 M_1 M_2 \cdots M_{l-1} M_l^* 10^*

fractional data ⇒ padding

fractional data ⇒ padding

ciphertext expansion: |C| > |M|

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB
- ciphertext stealing:

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB
- ciphertext stealing:

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB
- ciphertext stealing:

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB
- ciphertext stealing:

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB
- ciphertext stealing:

- 2. non-generic methods: EME, TET, HEH, HCTR, HCH, XCB
- ciphertext stealing:

condition: C_i's need to be decrypted independently

Length doublers

- ▶ $|M_1| = |C_1| = n =$ block size
- ▶ $|M_2| = |C_2| \in [0, n-1]$

XLS

Ristenpart and Rogaway (2007)

- ϵ -good mixing function
- broken by Nandi in 2014

DE

Nandi (2009)

four cryptographic primitive calls

HEM

Zhang (2012)

- five cryptographic primitive calls
- ightharpoonup ϵ -good mixing function

State of the art

length doubler	security (log ₂)	key length	cryptographic primitive calls	mixing function
XLS	n/2	2 <i>n</i>	3 BC	ϵ -good
DE	n/2	5 <i>n</i>	4 hash+BC	-
HEM	n/2	3 <i>n</i>	4 hash+BC	ϵ -good

- at least 4 cryptographic primitive calls needed?
- **beyond** $2^{n/2}$ security?

scheme for integral length messages

length doubler

tweakable block cipher

simple mixing function

Tweakable block ciphers

- extension of conventional block cipher
- ightharpoonup different tweak $T \longrightarrow$ independent permutation

Tweakable block ciphers

- extension of conventional block cipher
- ightharpoonup different tweak $T \longrightarrow$ independent permutation

examples

- ► LRW, CRYPTO 2002
- XEX, ASIACRYPT 2004
- TWEAKEY, ASIACRYPT 2014
- SKINNY, CRYPTO 2016

Pure mixing functions

- ϵ -good mixing functions: smaller ϵ is better
- ϵ -good mixing functions \Longrightarrow pure mixing functions
- ightharpoonup easier to construct than ϵ -good mixing functions

Pure mixing functions

- ϵ -good mixing functions: smaller ϵ is better
- ϵ -good mixing functions \Longrightarrow pure mixing functions
- easier to construct than ϵ -good mixing functions simplest example (not ϵ -good)

Security definition

adversary \mathcal{A}

▶ adversary A makes q queries to oracle (\mathcal{E}_K or ρ)

Security definition

adversary A

- ▶ adversary A makes q queries to oracle (\mathcal{E}_K or ρ)

- 2 tweakable block cipher calls
- pure mixing function
- decryption function similar to encryption function

- 2 tweakable block cipher calls
- pure mixing function
- decryption function similar to encryption function

- 2 tweakable block cipher calls
- pure mixing function
- decryption function similar to encryption function

- 2 tweakable block cipher calls
- pure mixing function
- decryption function similar to encryption function

- 2 tweakable block cipher calls
- pure mixing function
- decryption function similar to encryption function

2^{n/2} security

Security analysis

security lower bound: $2^{n/2}$

security lower bound: $2^{n/2}$

Patarin's H-coefficient Technique

$$\frac{Pr(X_{\mathcal{O}} = \tau)}{Pr(X_{\mathcal{P}} = \tau)} \ge 1 - \epsilon$$

$$\mathsf{Adv}(\mathcal{A}) \leq \epsilon + \mathsf{Pr}(X_{\mathcal{P}} \in \mathcal{T}_{\mathrm{bad}})$$

security lower bound: $2^{n/2}$

Patarin's H-coefficient Technique

$$\frac{Pr(X_{\mathcal{O}} = \tau)}{Pr(X_{\mathcal{P}} = \tau)} \ge 1 - \epsilon$$

$$\mathsf{Adv}(\mathcal{A}) \leq \epsilon + \mathit{Pr}(X_{\mathcal{P}} \in \mathcal{T}_{\mathrm{bad}})$$

▶ our case: $Pr(X_{\mathcal{P}} \in \mathcal{T}_{bad}) = 0$ and $\epsilon = q^2/2^n$

Comparison

length doubler	security (log ₂)	key length	cryptographic primitive calls	mixing function
XLS	n/2	2 <i>n</i>	3 BC	ϵ -good
DE	n/2	5 <i>n</i>	4 hash+BC	-
HEM	<i>n</i> /2	3 <i>n</i>	4 hash+BC	ϵ -good
LDT	n/2	2 <i>n</i>	2 TBC	pure

Scheme for arbitrary data

combine AE scheme for integral data + LDT

Scheme for arbitrary data

combine AE scheme for integral data + LDT

Scheme for arbitrary data

combine AE scheme for integral data + LDT

2^{n/2} security

Conclusion

new results

- birthday bound length doubler
- 2 tweakable block cipher calls + pure mixing function
- AE scheme for arbitrary length data

Conclusion

new results

- birthday bound length doubler
- 2 tweakable block cipher calls + pure mixing function
- AE scheme for arbitrary length data

further research

- beyond birthday bound?
- multiple round?
- other optimizations?

Conclusion

new results

- birthday bound length doubler
- 2 tweakable block cipher calls + pure mixing function
- AE scheme for arbitrary length data

further research

- beyond birthday bound?
- multiple round?
- other optimizations?

Thank you for your attention!