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Abstract. We present a length doubler, LDT, that turns an n-bit tweakable block
cipher into an efficient and secure cipher that can encrypt any bit string of length
[n..2n − 1]. The LDT mode is simple, uses only two cryptographic primitive calls
(while prior work needs at least four), and is a strong length-preserving pseudoran-
dom permutation if the underlying tweakable block ciphers are strong tweakable
pseudorandom permutations. We demonstrate that LDT can be used to neatly turn
an authenticated encryption scheme for integral data into a mode for arbitrary-length
data.
Keywords: length doubler · LDT · tweakable block ciphers · authenticated encryption

1 Introduction
One of the most important building blocks in cryptography are block ciphers—deterministic
functions that encrypt bit strings of length n into bit strings of the same length. Many
applications, however, deal with arbitrary-length messages, hence block ciphers on their
own are not sufficient. Variable-input-length (VIL) encryption is achieved by evaluating a
block cipher iteratively in a mode of operation. Basic solutions such as CBC mode can
only encrypt messages of size a multiple of n. To handle messages whose size is not a
multiple of n bits, one can, and often does [ABL+13,ABD+16,MV04,KR11], pad the data
to an integral number of n-bit blocks.

Padding is, in many cases, an undesirable solution: message length is typically not
preserved, which means the resulting ciphertext will always be larger or equal to the
original plaintext. This makes the solution unsuitable for disk encryption (where the
size of ciphertext and plaintext must remain the same as the sector size of the disk) and
low-bandwidth network protocols (as an increase in ciphertext length results in more data
to be transmitted).

Many solutions for turning a block cipher into a VIL cipher have appeared over the last
years, such as EME [Hal04], TET [Hal07], HEH [Sar07], HCTR [WFW05], HCH [CS06],
and XCB [MF07], but none of the above methods is generic, as these algorithms do not
specify methods of extending existing encryption schemes to handle fractional message
data. A more general method of using a block cipher mode of operation without ciphertext
expansion is through ciphertext stealing [Dae95]. However, it only works on modes of
operation where each ciphertext block can be decrypted independently of each other. For
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instance, applying ciphertext stealing to the tweakable online cipher TC3 [RZ11] is not
possible.

An elegant way of achieving arbitrary length encryption generically is by using length
doublers, as introduced by Ristenpart and Rogaway [RR07]. At a high level, a length
doubler is a deterministic length-preserving bijection E : K × M → M where M =
{0, 1}[n..2n−1] and n is the block size of the underlying primitive. Length-preserving VIL
encryption can then be achieved by gluing a VIL encryption scheme for integral data
blocks with the doubler. Length doublers are suitable solutions for various authenticated
encryption schemes that treat integral and fractional data separately. The CAESAR
submission AES-COPA [ABL+13,ABL+15] used the XLS length doubler [RR07] to process
arbitrary length messages, but a later attack by Nandi on XLS [Nan14] rendered the
solution in the COPA mode insecure [Nan15]. Besides broken XLS, there are other
constructions of length doublers such as DE by Nandi [Nan09] and HEM by Zhang [Zha12].
However, both constructions make use of four cryptographic primitive calls.

1.1 Our Construction
We introduce the length doubler LDT, short for length-doubling with tweakable block
ciphers. It makes two calls to a tweakable block cipher with block size n bits, and can
handle messages of size n+ s bits, with s ∈ [0..n− 1]. The mode consists of three layers:
in the first layer, the tweakable block cipher is evaluated on the first n bits of the message,
with the remaining s bits functioning as tweak. In the second layer, the updated state
is mixed using a mixing function. Then, the tweakable block cipher is evaluated for the
second time on the updated state. LDT uses ideas of XLS and HEM, in particular the
usage of a mix function. As with XLS and HEM, the construction is described generically,
allowing any choice of primitives. LDT is depicted in Figure 1 and a formal description is
given in Section 3. Note that, by construction, the decryption function of LDT is very
similar to the encryption function, and can be easily implemented using the encryption
circuit.

In Section 4, we prove that LDT is a secure length-preserving pseudorandom permu-
tation. More specifically, if the underlying tweakable block cipher is secure, we prove
security of LDT up to the birthday bound q2/2n. The proof is performed using Patarin’s
H-coefficient technique [Pat91,Pat08]. As we demonstrate in Section 5, the bound is tight.
In more detail, a distinguisher that makes queries with large s can distinguish the scheme
from random in approximately 2n−s/2 queries, giving birthday bound security for s = n−1.
It may be possible that our scheme is beyond birthday bound secure if a tighter upper
bound (rather than n− 1) on s is imposed.

In Section 6 we present a generic construction that uses LDT to turn an authenticated
encryption scheme that can only handle integral data into a scheme that can handle data
of arbitrary size greater than n bits. We prove that the combined construction inherits the
security of the original construction, up to the security of LDT and up to the probability of
accidental collisions at the point where LDT is glued to the original scheme. The generic
construction is comparable to how AES-COPA [ABL+13,ABL+15] used XLS, but it is
more general and it is provided with a formal proof.

1.2 Comparison
The first length doubler in literature was XLS by Ristenpart and Rogaway [RR07], but
it did not achieve the claimed security level as pointed out by Nandi [Nan14]. Other
constructions are DE by Nandi [Nan09] and HEM by Zhang [Zha12], both of which are
proven secure up to the birthday bound. Cook, Yung, and Keromytis [CYK04b,CYK04a]
introduced the “elastic block cipher”, which solves essentially the same length-doubling
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problem. However, in contrast to DE, HEM, and LDT, Cook et al.’s construction does not
allow for a reductionist security argument to an underlying, well-analyzed, primitive.

LDT is closely related to HEM, but differs in several aspects. Most importantly, HEM
consists of four “rounds” (and minor precomputations), two block cipher calls sandwiched
by two universal hash function calls, whereas LDT consists only of two tweakable block
cipher calls. A tweakable block cipher can be constructed from a (conventional) block cipher
and a universal hash function (see Liskov et al. [LRW02]), but other solutions—including
dedicated designs—exist, making LDT more generic and easier to interpret.

Another improvement over HEM is that HEM uses an ε-good mixing function (just
like XLS), a mathematical function where ε is an upper bound on the probability that the
mixing function is bad (see Appendix A for details). For LDT’s security, we do not need
such a strongly restricted function, and we use what we call a pure mixing function (see
Section 2.4): a simpler mathematical primitive of which the quality is not bound by some
probability measure. In particular, whereas XLS and HEM required ε to be small, any
1-good mixing function suffices for LDT.

A more detailed comparison of LDT with DE and HEM (and XLS for completeness)
is given in Table 1. It shows that LDT compares favorably, most importantly in the
key size and the number of cryptographic primitive calls. This, concretely, means that
LDT is the most efficient solution if one uses a dedicated tweakable block cipher such
as SKINNY [BJK+16], as long as two tweakable block cipher evaluations are cheaper
than two universal hash function evaluations plus either two block cipher evaluations (in
HEM) or one block cipher evaluation and one weak pseudorandom function evaluation (in
DE). Minor efficiency gains are achieved in the mixing function. In particular, the mixing
function that we suggest for LDT, mix(A,B) = (B,A), suffices for our construction but
not for HEM, as it is only 1-good. Note that for this swap function, the structure of
LDT for larger s is similar to SmallBlock [MI11] with the top and bottom universal hash
functions omitted.

Table 1: Comparison of LDT with existing length doublers. Below we equate universal
hash function calls with block cipher and tweakable block cipher calls as a heuristic for
efficiency, however the relative efficiency of each of these primitive calls depends on the
implementation.

length
doubler

security
(log2)

key
length

cryptographic
primitive calls

mixing
function note

XLS n/2 2n 3 ε-good [RR07], broken in [Nan14]
DE n/2 5n 4 - [Nan09]
HEM n/2 3n 4 ε-good [Zha12]
LDT n/2 2n 2 pure Section 3

2 Preliminaries
We denote by ({0, 1}n)+ the set of strings whose length is a positive multiple of n bits. For
two bit strings X,Y ∈ {0, 1}∗, we let X‖Y or XY be their concatenation and X ⊕ Y their
bitwise exclusive or. We denote by |X| the length of the string X. By bXcs we denote the
s most significant bits of X. For a natural number n, we denote by {0, 1}n the set of bit
strings of size n. For natural numbers m ≤ n we define {0, 1}[m..n] =

⋃
m≤i≤n{0, 1}i. For

some value Z, we denote by z ← Z the assignment of Z to the variable z. For some finite
set S, we denote by s $←− S the uniformly random selection of s from S. Given a function
π : {0, 1}n → {0, 1}n′ , let bπcm : {0, 1}n → {0, 1}m be the function which removes the
leftmost n′−m bits from the output of π. We denote by Func(n,m) the set of all functions
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from {0, 1}n to {0, 1}m.
For a natural number n and X ∈ {0, 1}[0..n−1], we define a padding function

pad(X) = X‖10n−|X|−1 .

As the function is injective, we can consider its inverse unpad that on input of a string of
length n removes the rightmost string 10∗ and outputs the remainder. We denote by 〈t〉n
the encoding of a value t ∈ {0, . . . , 2n − 1} as an n-bit string.

2.1 Tweakable Block Ciphers
For k, t, n ∈ N, a tweakable block cipher is a function Ẽ : {0, 1}k×{0, 1}t×{0, 1}n → {0, 1}n
such that for fixed key K ∈ {0, 1}k and tweak T ∈ {0, 1}t, ẼK(T, ·) = Ẽ(K,T, ·) is a
permutation on {0, 1}n. We denote its inverse (for fixed key and tweak) by Ẽ−1

K (T, ·) =
Ẽ−1(K,T, ·). The key is usually a secret parameter; the tweak is a public parameter, and
Ẽ−1
K should behave independently for different tweaks.
Denote by Perm(n) the set of all permutations on {0, 1}n. Denote by P̃erm(t, n) the

set of all functions π̃ : {0, 1}t × {0, 1}n → {0, 1}n such that π̃(T, ·) is in Perm(n) for all
T ∈ {0, 1}t. The security of a tweakable block cipher Ẽ is measured by considering a
distinguisher D that is given two-sided access to either ẼK for secret key K $←− {0, 1}k,
or a random tweakable permutation π̃ $←− P̃erm(t, n), and its goal is to determine which
oracle it is given access to:

Advs̃prp
Ẽ

(D) =
∣∣∣Pr
[
K

$←− {0, 1}k : DẼK ,Ẽ
−1
K = 1

]
−

Pr
[
π̃

$←− P̃erm(t, n) : Dπ̃,π̃
−1

= 1
]∣∣∣ . (1)

2.2 Length Doublers
For k, n ∈ N, a length doubler is a function E : {0, 1}k × {0, 1}[n..2n−1] → {0, 1}[n..2n−1]

such that for fixed key K ∈ {0, 1}k, EK(·) = E(K, ·) is a length preserving invertible
function on {0, 1}[n..2n−1]. We denote its inverse (for fixed key) by E−1

K (·) = E−1(K, ·).
Note that E should behave like a random permutation for every length input m ∈

[n..2n−1]. Formally, denote by VPerm([n..2n−1]) the set of all functions ρ that are length-
preserving and invertible. Note that a randomly drawn function ρ $←− Vperm([n..2n− 1])
is equivalent to n random permutations ρi

$←− Perm(i) for i = n, . . . , 2n− 1 as

ρ(M) = ρ|M |(M) . (2)

The security of a length doubler E is measured by considering a distinguisher D that is given
two-sided access to either EK for secret key K $←− {0, 1}k, or a random length-preserving
permutation ρ $←− VPerm([n..2n− 1]), and its goal is to determine which oracle it is given
access to:

Advvsprp
E (D) =

∣∣∣Pr
[
K

$←− {0, 1}k : DEK ,E
−1
K = 1

]
−

Pr
[
ρ

$←− VPerm([n..2n− 1]) : Dρ,ρ
−1

= 1
]∣∣∣ . (3)

2.3 H-Coefficient Technique
Our proof will rely on the H-coefficient technique by Patarin [Pat91,Pat08], but we will
follow the modernization of Chen and Steinberger [CS14].
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Consider two oracles O and P , and any distinguisher D that has query access to either
of these oracles. The distinguisher’s goal is to distinguish both worlds and we denote by

Adv(D) =
∣∣Pr
[
DO = 1

]
− Pr

[
DP = 1

]∣∣
its advantage. If we denote the maximum amount of queries by q, we can define a
transcript τ which summarizes all query-response tuples seen by the distinguisher during
its interaction with its oracle O or P . Denote by XO (resp. XP) the probability distribution
of transcripts when interacting with O (resp. P). We call a transcript τ ∈ T attainable if
Pr[XP = τ ] > 0, or in other words if the transcript τ can be obtained from an interaction
with P.

Lemma 1 (H-coefficient Technique). Consider a fixed distinguisher D. Define a partition
T = Tgood ∪ Tbad, where Tgood is the subset of T which contains all the “good” transcripts
and Tbad is the subset with all the “bad” transcripts. Let 0 ≤ ε ≤ 1 be such that for all
τ ∈ Tgood:

Pr(XO = τ)
Pr(XP = τ) ≥ 1− ε . (4)

Then, we have Adv(D) ≤ ε+ Pr(XP ∈ Tbad).

Conventionally, O corresponds to the real world and P to the ideal world, but one can
(and in our proof we will) swap their roles.

2.4 Mixing Functions
Ristenpart and Rogaway [RR07] introduced ε-good mixing functions for their length
doubler, and they were later used by Zhang [Zha12] as well. In this work, we will also use
mixing functions, but these do not necessarily need to be ε-good. We refer to these mixing
functions as pure mixing functions.

Definition 1. Letm,n ∈ N such thatm ≤ n. Let mix : ∪ns=m({0, 1}s)2 → ∪ns=m({0, 1}s)2

be a length-preserving permutation, define by mixL the left half of its evaluation and by
mixR its right half. The mixing function is called pure if for all s ∈ [m..n] we have:

• mixL(A, ·) is a permutation for all A ∈ {0, 1}s,

• mixR(·, B) is a permutation for all B ∈ {0, 1}s.

A pure mixing function resembles ideas of, but is a much weaker concept than a
multipermutation [SV93]. A simple example of a pure mixing function is mix(A,B) =
(B,A). For completeness, we describe ε-good mixing functions as defined by Ristenpart and
Rogaway [RR07] in Appendix A. We remark that above-mentioned pure mixing function
is 1-good, which essentially means that it is a bad mixing function that cannot be used to
make HEM by Zhang [Zha12] secure.

We will rely on the following observation.

Lemma 2. Let mix be a pure mixing function as in Definition 1. Given B,D ∈ {0, 1}s,
there exists a unique value A ∈ {0, 1}s such that mixR(A,B) = D and a unique value
C ∈ {0, 1}s such that mix−1

L (C) = (A,B).

Proof. The former follows from the fact that mixR(·, B) is a permutation for all B ∈ {0, 1}s
(the second condition of Definition 1). Given the existence of A, uniqueness of the value C
follows naturally by the fact that C = mixL(A,B) and mixL(A, ·) is a permutation for all
A ∈ {0, 1}s.



258 Efficient Length Doubling From Tweakable Block Ciphers

Algorithm 1 E = LDT[Ẽ,mix] encryption
Input: (K1,K2) ∈ {0, 1}2k, M ∈ {0, 1}[n..2n−1]

Output: C ∈ {0, 1}|M |
1: s← |M | − n
2: M1‖M2 ←M with |M1| = n and |M2| = s
3: Z‖M3 ← ẼK1(pad(M2),M1) with |Z| = n− s and |M3| = s
4: (C3, C2)← mix(M3,M2)
5: C1 ← ẼK2(pad(C2), Z‖C3)
6: return C1‖C2

Therefore, related to a function mix we can describe two functions mix in
L and mixout

L

that, given the right parts of the input and output determine the (unique) left input and
output values. Formally:

mix in
L (B,D) = A⇐⇒ mixR(A,B) = D , (5)

mixout
L (B,D) = C ⇐⇒ mix−1

R (C,D) = B . (6)

3 LDT Doubler
We introduce our length doubler LDT, designed upon a tweakable block cipher and a
mixing function.

Let k, n ∈ N. Let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable block
cipher, and mix : S2 → S2 for S = {0, 1}[0..n−1] a pure mixing function. Our length
doubler E = LDT[Ẽ,mix] with key space {0, 1}2k and state {0, 1}[n..2n−1] is described in
Algorithm 1 and given in Figure 1. Note that the decryption function is very similar to
the encryption function and can be defined as

LDT[Ẽ,mix]−1
K1,K2

= LDT[Ẽ−1,mix−1]K2,K1 . (7)

4 Security Lower Bound
We prove security of the LDT length doubler of Section 3.

Theorem 1. Let k, n ∈ N. Let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable
block cipher, mix : S2 → S2 for S = {0, 1}[0...n−1] a pure mixing function, and consider
E := LDT[Ẽ,mix] of Algorithm 1. For any distinguisher D making at most q queries,
there exist distinguishers D′1 and D′2 with the same query complexity such that

Advvsprp
E (D) ≤ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) + q(q − 1)

2n . (8)

Proof. Consider any distinguisher D making at most q queries. It has access to either
EK for K = (K1,K2) $←− {0, 1}2k or a random length-preserving invertible permutation
ρ

$←− VPerm([n . . . 2n− 1]). As EK evaluates its underlying tweakable block ciphers for the
two independently generated random keys K1,K2, we use an extended notation for EK :

EK = E [ẼK1 ,mix, ẼK2 ] .
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M1 M2

ẼK1 pad

M2M3Z

mix

Z C3 C2

ẼK2 pad

C1 C2

T1

T2

Figure 1: Encryption of length doubler LDT, with Ẽ a tweakable block cipher and mix a
mix function.

Let π̃1, π̃2
$←− P̃erm(n, n). We have

Advvsprp
E (D) = ∆D

(
E [ẼK1 ,mix, ẼK2 ]± ; ρ±

)
≤ ∆D

(
E [π̃1,mix, π̃2]± ; ρ±

)
+ ∆D′1

(
ẼK1 ; π̃1

)
+ ∆D′2

(
ẼK2 ; π̃2

)
= ∆D

(
E [π̃1,mix, π̃2]± ; ρ±

)
+ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) , (9)

for some distinguishers D′1 and D′2 with the same complexity as D.
We focus on the remaining distance in (9). We will allow D to be information-theoretic.

In other words, it has unbounded computational power and its advantage is solely measured
by its query complexity. We can assume that D is deterministic and we will apply the
H-coefficient technique of Lemma 1.

Transcripts. Oracle O will represent the ideal world ρ± and oracle P will represent the
real world E [π̃1,mix, π̃2]±. Distinguisher D makes q queries to its oracle (O or P) and
these queries are summarized in a transcript of the form

τ = {(M (i)
1 ,M

(i)
2 , C

(i)
1 , C

(i)
2 ) | i = 1, . . . , q} .

We can assume without loss of generality that the distinguisher D does not repeat any
query since both O and P give the same output with repeated input, which means that τ
does not contain duplicate elements.

After D’s interaction, but before it outputs 0/1, we disclose the values Z(i) for i =
1, . . . , q. In the real world P, these are the first n− s bits of the output of π̃1 or for an
inverse query π̃−1

2 (see also Figure 1). In the ideal world O, the Z’s are generated as
follows:

1: for i = 1, . . . , q do
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2: Z ← {Z(j) | j < i ∧ (M (i)
2 , C

(i)
2 ) = (M (j)

2 , C
(j)
2 )}

3: Z(i) $←− {0, 1}n−s\Z
Informally, the values Z(i) are generated uniformly at random with the constraint that
Z(i) 6= Z(j) whenever two distinct queries satisfy (M (i)

2 , C
(i)
2 ) = (M (j)

2 , C
(j)
2 ).

It might seem that the generation is not well-defined if q > 2n−s and there are sufficiently
many queries such that (M (i)

2 , C
(i)
2 ) = (M (j)

2 , C
(j)
2 ). However, since transcript attainability

is defined with respect to the real world, P, any transcript for which more than 2n−s Z
values are generated is unattainable, as established by the following claim.

Claim. If transcript τ ∈ T is attainable (Pr[XP = τ ] > 0), there do not exist s ∈
[0, . . . , n−1] and ξ > 2n−s indices i1, . . . , iξ such that |M (ix)

2 | = |C(ix)
2 | = s for x = 1, . . . , ξ,

and

(M (i1)
2 , C

(i1)
2 ) = · · · = (M (iξ)

2 , C
(iξ)
2 ) . (10)

Proof. Suppose to the contrary that for some s ∈ [0, . . . , n− 1], there exist ξ = 2n−s + 1
indices i1, . . . , iξ such that |M (ix)

2 | = |C(ix)
2 | = s and (10) holds. By Lemma 2, this

particularly means that M (i1)
3 = · · · = M

(iξ)
3 . However, the M (i)

1 ’s are pairwise distinct,
and π̃1 is a permutation for fixed M (i1)

2 = · · · = M
(iξ)
2 . In other words, we have obtained

a (2n−s + 1)-fold collision on the rightmost s bits of an n-bits permutation, which is
impossible by design.

We denote the complete transcripts by

τ = {(M (i)
1 ,M

(i)
2 , Z(i), C

(i)
1 , C

(i)
2 ) | i = 1, . . . , q} .

In our proof, we will not consider bad transcripts, hence Tbad = ∅ and Tgood = T .

Pr(XO = τ )/Pr(XP = τ ). Let τ ∈ Tgood be a good transcript. To determine
the two probabilities, it suffices to compute the probability, over the drawing of the
oracle, that the oracle extends τ . Let allXO be the set of all possible oracles in the
ideal world O, and compXO(τ) the fraction of them compatible with τ . Define allXP
and compXP (τ) analogously. Then, we obtain Pr(XO = τ) = |compXO(τ)|/|allXO | and
Pr(XP = τ) = |compXP (τ)|/|allXP |.

We will introduce some parameters related to τ .

• For t = 0, . . . , 2n−1, αt denotes the number of tuples in τ such that pad(M (i)
2 ) = 〈t〉n;

• For t = 0, . . . , 2n−1, βt denotes the number of tuples in τ such that pad(C(i)
2 ) = 〈t〉n;

• For t, t′ = 0, . . . , 2n−1, γt,t′ denotes the number of tuples in τ such that pad(M (i)
2 ) =

〈t〉n and pad(C(i)
2 ) = 〈t′〉n;

• For s = 0, . . . , n−1, δs denotes the number of tuples in τ such that |M (i)
2 | = |C

(i)
2 | = s.

For the real world P, we have |allXP | = (2n!)2n(2n!)2n , the number of elements in
P̃erm(n, n)× P̃erm(n, n). The computation of |compXP (τ)| boils down to the number of
oracles π̃1, π̃2 that could yield the transcript τ . As mix is a pure mixing function, using the
functions mix in

L of (5) and mixout
L of (6) we can determine for each tuple in the transcript

the unique values M (i)
3 (the last s bits of the output of π̃1) and C(i)

3 (the last s bits of
the input to π̃2). Therefore, each tuple in the transcript uniquely defines an input-output
tuple

(pad(M (i)
2 ),M (i)

1 ) 7→ (Z(i)‖M (i)
3 ) (11)
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for π̃1 and an input-output tuple

(pad(C(i)
2 ), Z(i)‖C(i)

3 ) 7→ (C(i)
1 ) (12)

for π̃2. The queries in τ are unique by assumption, and the entire transcript defines exactly
αt tuples in (11) and exactly βt tuples in (12) for tweak 〈t〉n, where t = 0, . . . , 2n − 1.
This leaves

∏2n−1
t=0 (2n − αt)! tweakable permutations π̃1 and

∏2n−1
t=0 (2n − βt)! tweakable

permutations π̃2 compliant with v, and thus

|compXP (τ)| =
2n−1∏
t=0

(2n − αt)!
2n−1∏
t=0

(2n − βt)!. (13)

We obtain for the real world P that

Pr(XP = τ) =
∏2n−1
t=0 (2n − αt)!

∏2n−1
t=0 (2n − βt)!

(2n!)2n(2n!)2n = 1∏2n−1
t=0 (2n)αt

∏2n−1
t=0 (2n)βt

, (14)

where (x)y = x!/(x− y)!.
Define Ts = {t | |unpad(〈t〉n)| = s}. For the ideal world O, we have

|allXO | =
n−1∏
s=0

2n+s!
n−1∏
s=0

∏
t∈Ts

∏
t′∈Ts

2n−s! ,

where the first part counts the number of elements in VPerm([n . . . 2n− 1]) and the latter
part counts the total number of solutions to the Z-values (which were disclosed to the
distinguisher after the queries were made). The computation of |compXO(τ)| likewise
boils down to computing the number of oracles ρ that could yield transcript τ , multiplied
with the number of possible choices for Z-values that comply with {Z(1), . . . , Z(q)} in the
transcript. The queries in τ are unique by assumption, and for s = 0, . . . , n − 1 there
are exactly δs queries of size n+ s. In our disclosure to the distinguisher, the generation
of the Z-values is in such a way that these are distinct whenever two queries satisfy
(M (i)

2 , C
(i)
2 ) = (M (j)

2 , C
(j)
2 ). Therefore, we find

|compXO (τ)|=
n−1∏
s=0

(2n+s − δs)!
n−1∏
s=0

∏
t∈Ts

∏
t′∈Ts

(2n−s − γt,t′)! ,

using our definition of γt,t′ and δs. As before, we obtain for the ideal world O that

Pr(XO = τ) = 1∏n−1
s=0 (2n+s)δs

∏n−1
s=0

∏
t∈Ts

∏
t′∈Ts(2n−s)γt,t′

. (15)

From (14) and (15) we can compute the fraction:

Pr(XO = τ)
Pr(XP = τ) =

∏2n−1
t=0 (2n)αt

∏2n−1
t=0 (2n)βt∏n−1

s=0 (2n+s)δs
∏n−1
s=0

∏
t∈Ts

∏
t′∈Ts(2n−s)γt,t′

=
n−1∏
s=0

∏
t∈Ts(2

n)αt
∏
t∈Ts(2

n)βt
(2n+s)δs

∏
t∈Ts

∏
t′∈Ts(2n−s)γt,t′

. (16)

Note that, for all s, ∏
t∈Ts

∏
t′∈Ts

(2n−s)γt,t′ ≤
∏
t∈Ts

∏
t′∈Ts

(2n−s)γt,t′ .
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Proceeding from (16), we have

(16) ≥
n−1∏
s=0

∏
t∈Ts(2

n)αt
∏
t∈Ts(2

n)βt
(2n+s)δs

∏
t∈Ts

∏
t′∈Ts(2n−s)

γt,t′

≥
n−1∏
s=0

(2n)δs(2n)δs
(2n+s)δs(2n−s)δs

, (17)

where we use that for all s ∈ {0, . . . , n− 1},∑
t∈Ts

αt =
∑
t∈Ts

βt =
∑
t∈Ts

∑
t′∈Ts

γt,t′ = δs ,

and, in addition, (x)y(x)z ≥ (x)y+z. Proceeding from (17),

(17) =
n−1∏
s=0

δs−1∏
i=0

(2n − i)(2n − i)
(2n+s − i)2n−s

=
n−1∏
s=0

δs−1∏
i=0

(
1− 2i2n − i2n−s − i2

22n − i2n−s

)

≥
n−1∏
s=0

δs−1∏
i=0

(
1− 2i

2n

)
, (18)

where we use that 2i2n−i2n−s−i2
22n−i2n−s ≤ 2i

2n . Using that (1−x)(1−y) = 1−x−y+xy ≥ 1−x−y,
we can proceed from (18) as follows:

(18) ≥ 1−
n−1∑
s=0

δs−1∑
i=0

2i
2n

= 1−
∑n−1
s=0 (δ2

s − δs)
2n

≥ 1− q2 − q
2n , (19)

where we use that q =
∑n−1
s=0 δs and q2 ≥

∑n−1
s=0 δ

2
s . We conclude from (16,17,18,19) that

Pr(XO = τ)
Pr(XP = τ) ≥ 1− q(q − 1)

2n =: 1− ε .

5 Security Upper Bound
We describe an attack against LDT in approximately 2n−s/2 queries, where the distinguisher
makes queries of size n + s for s ∈ [0, n − 1]. This attack is based on distinguishing a
truncated permutation from a random function. In the attack, we essentially reduce the
security of length doubler LDT to the advantage in distinguishing a truncated LDT from
a random function.

Theorem 2. Let k, n ∈ N. Let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable
block cipher, mix : ∪n−1

s=0 ({0, 1}s)2 → ∪n−1
s=0 ({0, 1}s)2 a pure mixing function, and consider

E := LDT[Ẽ,mix] of Algorithm 1. Let s ∈ [kn, n − 1] for some constant k < 1. There
exists a distinguisher D making q queries such that

Advvsprp
E (D) ∈ Ω

(
q2

22n−s

)
. (20)
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Proof. Let K = (K1,K2) $←− {0, 1}2k be the key to EK and let ρ $←− VPerm([n . . . 2n− 1])
be a random length-preserving invertible permutation. For any distinguisher D′, whose
goal it is to distinguish bEKcs from bρcs, there exists a distinguisher D for EK versus ρ
with the same complexity and at least the same success probability:

∆D′
(
bEKcs ; bρcs

)
≤ ∆D

(
EK ; ρ

)
= Advvsprp

E (D) , (21)

as the advantage to distinguish a truncated length doubler from a truncated random
length-preserving permutation is smaller or equal to the advantage to distinguish the
non-truncated version of both.

In addition, let π $←− Func(n+ s, s). Using the triangle inequality, we have

∆D′
(
bEKcs ; π

)
≤ ∆D′

(
bEKcs ; bρcs

)
+ ∆D′

(
bρcs ; π

)
. (22)

From (21) and (22) we obtain that for any distinguisher D′ there exists a distinguisher D
such that

Advvsprp
E (D) ≥ ∆D′

(
bEKcs ; π

)
−∆D′

(
bρcs ; π

)
. (23)

Our goal is to describe a distinguisher D′ such that the right hand side of (23) is non-
negligible. Regarding ∆D′

(
bEKcs ; π

)
, when M2 is fixed, bEK(·,M2)cs is an n-bit

permutation with the leftmost n− s bits truncated. Hall et al. [HWKS98] show that there
exists a distinguisher D′ such that

∆D′
(
bEKcs ; π

)
∈ Ω

(
q2

22n−s

)
,

and for simplicity we assume the existence of a constant c1 such that

∆D′
(
bEKcs ; π

)
≥ c1

q2

22n−s . (24)

On the other hand, regarding ∆D′
(
bρcs ; π

)
, Gilboa and Gueron [GG15] proved that for

any distinguisher D′,

∆D′
(
bρcs ; π

)
∈ O

(
q2

22n+s

)
,

i.e., there is a constant c2 such that

∆D′
(
bρcs ; π

)
≤ c2

q2

22n+s . (25)

Plugging (24) and (25) into (23) yields

Advvsprp
E (D) ≥ c1

q2

22n−s − c2
q2

22n+s ,

for some distinguisher D constructed out of D′. For increasing s, the first term becomes
larger whereas the second term becomes negligible. For s = n − 1, the bound is of the
form Ω

(
q2/2n

)
.

6 Use of LDT in Modes of Operation
We will demonstrate how to use LDT in combination with an online authenticated en-
cryption scheme for integral length messages in order to obtain a scheme for arbitrary
length messages greater than n bits. Before doing so, we briefly discuss the security model
of online authenticated encryption schemes in Section 6.1. The extension is given in
Section 6.2.
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6.1 Online Authenticated Encryption
Authenticated encryption provides both data confidentiality and data authentication,
and consists of an encryption function Enc and a decryption function Dec. Enc takes
as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}n, associated data A ∈ {0, 1}∗, and
a message M ∈ {0, 1}∗, and outputs a ciphertext C ∈ {0, 1}∗, and tag T ∈ {0, 1}n:
(C, T ) ← Enc(K,N,A,M). Dec takes as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}n,
and associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and tag T ∈ {0, 1}n, and outputs
a messageM ∈ {0, 1}∗ if the tag T is correct and ⊥ otherwise: M/⊥ ← Dec(K,N,A,C, T ).
In this work we focus on online authenticated encryption schemes, and we first give an
explicit definition of an ideal online function in terms of arbitrary input length URFs: a
function f with arbitrary input size and range {0, 1}n is a uniform random function (URF)
if it outputs a random value from {0, 1}n for every new input.

Definition 2 (Ideal Online Function). Let fi : {0, 1}n × {0, 1}∗ × {0, 1}ni → {0, 1}n, for
i = 1, . . . , l−1, fl : {0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}n, and f∗ : {0, 1}n×{0, 1}∗×{0, 1}∗ →
{0, 1}n be URFs. We define $ : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}n as

$(N,A,M) = f1(N,A,M1)f2(N,A,M1M2) · · · fl−1(N,A,M1 · · ·Ml−1)‖
bfl(N,A,M))c|M∗

l
|f
∗(N,A,M) ,

where M1M2 · · ·Ml−1M
∗
l ←M .

Let E = (Enc, Dec) be an online authenticated encryption scheme, and let P be an
idealized underlying primitive of E , if P exists. Let K be a randomly drawn key. Let $
be a function as defined in Definition 2. Let ⊥ be a function that always outputs ⊥. We
define the confidentiality insecurity of E based on P as

Advcpa
E (D) =

∣∣∣Pr
[
K

$←− {0, 1}k : DEncK = 1
]
− Pr

[
D$ = 1

]∣∣∣ ,
where $ is an ideal online function as in Definition 2, and the integrity security of E based
on P as

Advint
E (D) = Pr

[
K

$←− {0, 1}k : DEncK ,DecK forges
]
,

where “forges” means that the distinguisher returns a tuple (N,A,C, T ) such that DecK(N,A,C, T )
returns a valid message M and (N,A,C, T ) has not been output by EncK .

6.2 Fractional Data Coverage
Let k′, k, n ∈ N. Let E : {0, 1}k′ × {0, 1}n × {0, 1}∗ × ({0, 1}n)+ → ({0, 1}n)+ × {0, 1}n be
an authenticated encryption scheme for integral length messages as defined in the previous
section. Let LDT: {0, 1}2k×{0, 1}[n...2n−1] → {0, 1}[n...2n−1] be the length doubler defined
in Section 3. In Algorithm 2 (and in Figure 2) we describe an authenticated encryption
scheme F [E ,LDT] for arbitrary length messages greater than n bits. It has key space
{0, 1}k′ × {0, 1}2k and internally uses E and LDT.

One can prove that if E is a secure online cipher over integral data, and LDT is a
secure length doubler, then F is a secure online cipher over data of arbitrary size greater
than n bits.

Theorem 3. Let k′, k, n ∈ N. Let E : {0, 1}k′×{0, 1}n×{0, 1}∗×({0, 1}n)+ → ({0, 1}n)+×
{0, 1}n be an authenticated encryption scheme for integral length messages as defined in
previous section. Let LDT: {0, 1}2k×{0, 1}[n...2n−1] → {0, 1}[n...2n−1] be the length doubler
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Algorithm 2 F [E ,LDT] authenticated encryption
Input: KE ∈ {0, 1}k

′ ,KLDT ∈ {0, 1}2k, N ∈ {0, 1}n, A ∈ {0, 1}∗, M ∈ {0, 1}∗
Output: C ∈ {0, 1}|M |+n

1: M1M2 · · ·Ml−1M
∗
l ←M with |Mi| = n (i = 1, . . . , l − 1) and |M∗l | ≤ n

2: C1 · · ·Cl−1, T
′ ← EKE (N,A,M1 · · ·Ml−1) with |Ci| = |T ′| = n (i = 1, . . . , l − 1)

3: ClT ← LDTKLDT(T ′M∗l ) with |Cl| = |M∗l | and |T | = n
4: C ← C1 · · ·Cl
5: return (C, T )

M1 M2 · · · Ml−1 M∗l

E
N

A

C1 C2 · · · Cl−1 T ′

LDT

Cl T

Figure 2: Authenticated encryption F , with E an authenticated encryption scheme for
integral data and LDT our length doubler

defined in Section 3. For any distinguisher D making at most q queries, each of length at
most ` and of total size σ, there exist distinguishers D′1 with the same query complexity
and D′2 making at most q queries such that

Advcpa/int
F (D) ≤ Advcpa/int

E (D′1) + Advvsprp
LDT (D′2) + 2

(
q

2

)
/2n . (26)

Proof. We treat confidentiality and integrity separately.

Confidentiality. Consider any distinguisher D making at most q queries, each of length
at most ` and of total size σ. It has access to either FKE ,KLDT for KE

$←− {0, 1}k′ and
KLDT = (K1,K2) $←− {0, 1}2k, or an ideal online function $ as defined in Definition 2.
As FKE ,KLDT evaluates its underlying authenticated encryption scheme E for a randomly
generated key KE and its underlying length doubler LDT for random key KLDT, we use
an extended notation for FKE ,KLDT :

FKE ,KLDT = F [EKE ,LDTKLDT ] .

Let $′ be another ideal online function and ρ $←− VPerm([n . . . 2n− 1]). We have

Advcpa
F (D) = ∆D

(
F [EKE ,LDTKLDT ] ; $

)
≤ ∆D

(
F [$′, ρ] ; $

)
+ ∆D′1

(
EKE ; $′

)
+ ∆D′2

(
LDTKLDT ; ρ

)
= ∆D

(
F [$′, ρ] ; $

)
+ Advcpa

E (D′1) + Advvsprp
LDT (D′2) , (27)
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for some distinguishers D′1 with the same query complexity as D and D′2 making at most
q queries.

We focus on the remaining distance in (27). As both oracles are completely randomized,
it remains to evaluate the statistical distance. Note that both oracles behave identically on
the first ciphertext blocks C1 · · ·Cl−1. The function F [$′, ρ] then outputs ClT = ρ(T ′M∗l )
where T ′ = f∗$′(N,A,M), whereas the ideal online function outputs

Cl = bf$,l(N,A,M)c|M∗
l
| ,

T = f∗$ (N,A,M) .

As ρ is a random length preserving invertible function (see Section 2.2) whose input is
partially randomized, both responses are distributed identically up to collisions on the
input T ′ or on the output ClT , and we have ∆D

(
F [$′, ρ] ; $

)
≤ 2
(
q
2
)
/2n, as in the worst

case |M∗l | = 0 and ρ outputs n-bit strings.

Integrity. As before, we consider any distinguisher D with the same complexity, but now
it has access to

F [EKE ,LDTKLDT ] and F [EKE ,LDTKLDT ]−1 ,

for KE
$←− {0, 1}k′ and KLDT = (K1,K2) $←− {0, 1}2k. Let ρ $←− VPerm([n . . . 2n− 1]). We

have

Advint
F (D) = Pr

[
DF [EKE ,LDTKLDT ],F [EKE ,LDTKLDT ]−1

forges
]

≤ Pr
[
DF [EKE ,ρ],F [EKE ,ρ]−1

forges
]

+ ∆D′2
(

LDTKLDT ,LDT−1
KLDT

; ρ, ρ−1
)

= Pr
[
DF [EKE ,ρ],F [EKE ,ρ]−1

forges
]

+ Advvsprp
LDT (D′2) , (28)

for some distinguisher D′2 making at most q queries.
We focus on the remaining distance in (28), and we will demonstrate that any forgery

attempt either reduces to a forgery attempt on E , or corresponds to an accidental collision
in ρ−1. In more detail, consider any new forgery attempt (N,A,C1 · · ·Cl, T ). Let T ′M∗l =
ρ−1(ClT ). We make the following case distinction:
• There exists an earlier query with identical (Cl, T ). As, w.l.o.g., the distinguisher
never repeats any query, the tuple (N,A,C1 · · ·Cl−1, T

′) is new, and if the forgery
attempt against F is successful, then (N,A,C1 · · ·Cl−1, T

′) is a forgery on E ;

• There does not exist any earlier query with identical (Cl, T ). We make a further
case distinction:

– There does not exist any earlier query with identical (N,A,C1 · · ·Cl−1, T
′).

This means that we have likewise found a forgery on E ;
– There exists an earlier query with identical (N,A,C1 · · ·Cl−1, T

′). This means
that the new and older query have two different input values of ρ−1 but the
same output value T ′, which happens with probability at most

(
q
2
)
/2n.

We have thus obtained that

Pr
[
DF [EKE ,ρ],F [EKE ,ρ]−1

forges
]
≤ Advint

E (D′1) +
(
q

2

)
/2n ,

for some distinguisher D′1 with the same query complexity as D.

Note that F reminds of ciphertext stealing [Dae95], but it differs in the fact that
ciphertext stealing only works for plaintexts which are at least two blocks long. F works
on arbitrary sized messages greater than n bits.
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A Example Mixing Functions
Ristenpart and Rogaway [RR07] defined ε-good mixing functions as follows.

Definition 3. Let m,n ∈ N such that m ≤ n, and denote S = {0, 1}[m..n]. Let mix :
S2 → S2 be a length-preserving permutation, define by mixL the left half of its evaluation
and by mixR its right half. Let ε : {m..n} → [0..1]. The mixing function is called ε-good if
for all s ∈ [m..n] we have:

• mixL(A, ·) is a permutation for all A ∈ {0, 1}s,

• mixR(·, B) is a permutation for all B ∈ {0, 1}s,

• Pr[R $←− {0, 1}s : C = mixL(R,B)] ≤ ε(s) for all B,C ∈ {0, 1}s, and

• Pr[R $←− {0, 1}s : C = mixR(A,R)] ≤ ε(s) for all A,C ∈ {0, 1}s.

Note that the definition differs from the pure mixing functions of Definition 1 in the
presence of the third and fourth condition.

The best one can hope for is a 2−s-good mixing function. Ristenpart and Rogaway
proposed two efficient mixing functions, mix1 and mix2 defined below:

mix1 (A,B) =
(
3A+ 2B, 2A+ 3B

)
=
(
A+ 2(A+B), B + 2(A+B)

)
,

mix2 (A,B) =
(
A⊕ rol(A⊕B), (B ⊕ rol(A⊕B)

)
,

where rol(X) is the left circular bit-rotation, that means for any string X of length s,
rol(X) = X[2]X[3] · · ·X[s]X[1]. Ristenpart and Rogaway proved that mix1 is 2−s-good
and mix2 is 21−s-good. Both are also pure in the sense of Definition 1, yet not as efficient
as, e.g., mix(A,B) = (B,A).
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