Optimal PRFs from Blockcipher Designs

Bart Mennink¹ <u>Samuel Neves</u>² FSE 2018

¹Radboud University

²University of Coimbra

Lightweight Cipher Block Sizes

Birthday Attacks

- "On the Practical (In-)Security of 64-bit Block Ciphers Collision Attacks on HTTP over TLS and OpenVPN"
- "Impossible plaintext cryptanalysis and probable-plaintext collision attacks of 64-bit block cipher modes"
- "The Missing Difference Problem, and its Applications to Counter Mode Encryption"
- "Optimal Forgeries Against Polynomial-Based MACs and GCM"

Invertibility as a Liability

- AES-GCM, AES-CCM, ...
 - Needs a PRF, not a PRP
 - PRP in fact the greatest contributor to security degradation
- Why don't we design PRFs instead?
 - We actually do, but they're usually {truncated, xored, ...} from idealized permutations
 - Permutations are what we know how to build
 - Losing information, but not too much, is tricky
 - Non-invertible round functions lose too much

Invertibility as a Liability

- AES-GCM, AES-CCM, ...
 - Needs a PRF, not a PRP
 - PRP in fact the greatest contributor to security degradation
- Why don't we design PRFs instead?
 - We actually do, but they're usually {truncated, xored, ...} from idealized permutations
 - Permutations are what we know how to build
 - Losing information, but not too much, is tricky
 - Non-invertible round functions lose too much
- Can we design PRFs without performance or security hit?

GEDMD

Generalized EDMD

- $\mathsf{Adv}^{\mathrm{PRF}}_{\textit{EDMD}^{p_1,p_2}}(\mathcal{D}) \leq q/2^n \text{ (CRYPTO 2017)}$
- Simple reduction to xor of permutations, extensively studied

Generalized EDMD

- $\mathsf{Adv}^{\mathrm{PRF}}_{\textit{EDMD}^{p_1,p_2}}(\mathcal{D}) \leq q/2^n \text{ (CRYPTO 2017)}$
- Simple reduction to xor of permutations, extensively studied
- No reason to limit ourselves to 2 permutations

Generalized EDMD

- $\mathsf{Adv}^{\mathrm{PRF}}_{\textit{EDMD}^{p_1,p_2}}(\mathcal{D}) \leq q/2^n \text{ (CRYPTO 2017)}$
- Simple reduction to xor of permutations, extensively studied
- No reason to limit ourselves to 2 permutations
- Generalization also reduces to EDMD or xor of d permutations

FastPRF

• Treat block cipher *E_k* as composition of permutations

- Treat block cipher *E_k* as composition of permutations
- Apply GEDMD using imperfect permutations E_k^1, E_k^2, \ldots
- "Prove-then-prune"

- Treat block cipher *E_k* as composition of permutations
- Apply GEDMD using imperfect permutations E_k^1, E_k^2, \ldots
- "Prove-then-prune"
- Why GEDMD?

Truncated Permutations

- At best 2^{3n/4} security
- Attacker gets direct access to weaker E_k^1 and E_k^2
- Risky

Sum of Permutations

- Interesting properties may get through $E_k^1 \oplus E_k^2$
- E.g., linear/differential/integral characteristics
- Still risky

EDM (Cogliati-Seurin)

- Attacker has some control over input of E_k^2
- Differential collisions if E_k^1 has high-probability differential
- Does not generalize easily to more permutations

(G)EDMD (Mennink-Neves)

- No direct control over intermediate states
- Output always masked by full application of E_k
- Appears to be the least risky option!

AES-PRF-128 is AES-128, with a feed-forward after the 5th round

AES-PRF-128 is AES-128, with a feed-forward after the 5th round **AES-PRF-192** is AES-192, with a feed-forward after the 6th round **AES-PRF-256** is AES-256, with a feed-forward after the 7th round

AES-PRF-128 is AES-128, with a feed-forward after the 5th round **AES-PRF-192** is AES-192, with a feed-forward after the 6th round **AES-PRF-256** is AES-256, with a feed-forward after the 7th round

Not the only reasonable choices!

- {5, 6, 7}-round AES, i.e., $E_k^1(\cdot)$, is weakest component
- But is masked by full AES
- Existing $\{4, 5\}$ -round distinguishers do not work in this setting
- Differential and linear distinguishers are ineffective
- Try to break unbalanced AES-PRF variants instead
- E.g., $AES_{10}(x) \oplus x$, $AES_{10}(x) \oplus AES_1(x)$, ...

- This is simply Davies-Meyer
- $AES_{10} = F(x) \oplus x$
- Distinguish in $\approx 2^{64}$ by standard method

$\operatorname{AES}_{10}(x) \oplus \operatorname{AES}_1(x)$

- Cancel out contribution of $AES_1(x)$, 32 bits at a time
- Candidate keys with no collisions happen are likely correct
- Key recovery in $\approx 2^{67}$ queries and memory, 2^{101} time

$\operatorname{AES}_{10}(x) \oplus \operatorname{AES}_9(x)$

- No final MixColumns
- Output is of the form $S(x) \oplus x$
- Highly biased

$\operatorname{AES}_{10}(x) \oplus \operatorname{AES}_2(x)$

- Canceling out AES₂(x) too expensive
- New strategy required
- Seems likely to be breakable as well

Applications of AES-PRF

AES-GCM Before AES-PRF

$$\begin{aligned} \mathsf{Adv}^{\mathrm{conf}}_{\mathrm{GCM}[\mathrm{AES},\tau]}(\mathcal{D}) &\leq \mathsf{Adv}^{\mathrm{prp}}_{\mathrm{AES}}(\mathcal{D}') + \binom{q+\sigma+1}{2}/2^{n} \\ \mathsf{Adv}^{\mathrm{auth}}_{\mathrm{GCM}[\mathrm{AES},\tau]}(\mathcal{D}) &\leq \mathsf{Adv}^{\mathrm{prp}}_{\mathrm{AES}}(\mathcal{D}') + \frac{q'(\ell+1)}{2^{\tau}} + \binom{q+q'+\sigma+1}{2}/2^{n}_{16/20} \end{aligned}$$

AES-GCM After AES-PRF

 $\mathsf{Adv}^{\mathrm{conf}}_{\mathrm{GCM}[\mathrm{AES}\text{-}\mathrm{PRF},\tau]}(\mathcal{D}) \leq \mathsf{Adv}^{\mathrm{prf}}_{\mathrm{AES}\text{-}\mathrm{PRF}}(\mathcal{D}')$

$$\mathsf{Adv}^{\mathrm{auth}}_{\mathrm{GCM}[\mathrm{AES}\text{-}\mathrm{PRF},\tau]}(\mathcal{D}) \leq \mathsf{Adv}^{\mathrm{prf}}_{\mathrm{AES}\text{-}\mathrm{PRF}}(\mathcal{D}') + \frac{q'(\ell+1)}{2^{\tau}}$$

16/20

AES-GCM-SIV Before **AES-PRF**

AES-GCM-SIV After AES-PRF

- Improved, natural, key derivation
- 2–3 fewer PRF calls
- Like GCM, birthday terms disappear

Tweakable FastPRF

- FastPRF principle also applicable to tweakable blockciphers
- Draw from successful designs
 - SKINNY, MANTIS, QARMA, ...
 - E.g., SKINNY-128-256 with feed-forward after 24 rounds
- Result: compressing $\{0,1\}^{256} \rightarrow \{0,1\}^{128} \ \mathsf{PRF}$
- Simple, length-independent authenticators
- E.g., Protected counter sums
- Or PMAC1 bounded by $\mathbf{Adv}_{\widetilde{FastPRF}}^{\mathrm{prf}}(\mathcal{D}') + {\binom{q}{2}}/{2^n}$ instead of by $\mathbf{Adv}_{\widetilde{E}}^{\mathrm{tprp}}(\mathcal{D}') + {\binom{q}{2}}/{2^n} + {\binom{\sigma}{2}}/{2^n}$

Future Work

- Single-permutation (G)EDMD
 - $p(p(x)) \oplus p(x)$
 - Conjectured to be optimally secure
 - FastPRF analogous would cut key schedule cost in (at least) half
 - How secure is it?
- Public-permutation (G)EDMD
 - For usage in, e.g., sponge designs
 - "Free" forward security
 - How secure is it?

Suggestions

- Designers
 - Consider including a PRF along with your new lightweight cipher
 - Might be useful to distinguish between PRP and PRF calls
 - E.g., different constants

Suggestions

- Designers
 - Consider including a PRF along with your new lightweight cipher
 - Might be useful to distinguish between PRP and PRF calls
 - E.g., different constants
- Cryptanalysts
 - Look at AES-PRF!
 - …or its reduced/unbalanced versions

Suggestions

- Designers
 - Consider including a PRF along with your new lightweight cipher
 - Might be useful to distinguish between PRP and PRF calls
 - E.g., different constants
- Cryptanalysts
 - Look at AES-PRF!
 - …or its reduced/unbalanced versions
- Theorists
 - Minimal assumptions for GEDMD / FastPRF to be secure?
 - Efficient tweakable-PRF constructions from non-tweakable PRP designs?

Thank you!