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Abstract. Cryptographic modes built on top of a blockcipher usually rely on the
assumption that this primitive behaves like a pseudorandom permutation (PRP). For
many of these modes, including counter mode and GCM, stronger security guarantees
could be derived if they were based on a PRF design. We propose a heuristic
method of transforming a dedicated blockcipher design into a dedicated PRF design.
Intuitively, the method consists of evaluating the blockcipher once, with one or more
intermediate state values fed-forward. It shows strong resemblance with the optimally
secure EDMD construction by Mennink and Neves (CRYPTO 2017), but the use of
internal state values make their security analysis formally inapplicable. In support of
its security, we give the rationale of relying on the EDMD function (as opposed to
alternatives), and present analysis of simplified versions of our conversion method
applied to the AES. We conjecture that our main proposal AES-PRF, AES with a
feed-forward of the middle state, achieves close to optimal security. We apply the
design to GCM and GCM-SIV, and demonstrate how it entails significant security
improvements. We furthermore demonstrate how the technique extends to tweakable
blockciphers and allows for security improvements in, for instance, PMAC1.
Keywords: PRP · PRF · EDMD · AES-PRF · GCM · GCM-SIV · PMAC1

1 Introduction
The conventional approach to cryptographic designs is to evaluate a blockcipher in a certain
mode of operation, and undoubtedly the vast majority of MAC functions, encryption
schemes, and authenticated encryption schemes follow this paradigm. It allows to reduce
the security of the (keyed) construction in a standard model argument to the security of
the keyed underlying primitive. The approach is, to a certain extent, a natural one. Ample
literature discusses the design [DR02, KR11, DR01, RDP+96, DKR97, Vau03, Mat96,
HT96, DPU+16] and analysis [BS93, Mat93, Knu94, LH94, JK97, BBS99, Wag99, BDK01]
of blockciphers, and we even have a widely deployed and well-understood standardized
blockcipher, the AES [DR02]. For modes that evaluate the cryptographic primitive in
the forward as well as inverse direction, one in fact needs an invertible primitive, and a
blockcipher is the most logical choice.

However, many cryptographic primitives in the literature evaluate the underlying
blockcipher in forward direction only. For example, counter mode encryption [BDJR97]
(the observation applies equally well to authenticated encryption mode GCM [MV04])
internally uses a blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n to encrypt a message m =
m1 · · ·ml ∈ ({0, 1}n)l as ci = Ek(ctr + i) ⊕ mi for i = 1, . . . , l. Counter mode can be
distinguished from a random encryption scheme in about 2n/2 data blocks: an adversary
can keep mi constant and observe that the ci never collide whereas they likely collide for a
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random encryption scheme. Inspired by this, it makes more sense to not use a blockcipher,
but rather a dedicated pseudorandom function inside counter mode (and GCM).

This is no longer a theoretical purity concern. Birthday-style attacks on common
blockcipher modes of operation have been shown to be feasible in real scenarios [BL16,
McG12], and in the case of counter mode they could be entirely avoided by choosing a
PRF instead of a PRP. Although [BL16] could be chalked up to legacy ciphers (e.g., DES
or Blowfish) being used in modern protocols, this is not necessarily the case in general.
Over the last decade, there has been a flurry of ciphers targeting low-end hardware, which
overwhelmingly have small block sizes in common. Some, like SIMON [BSS+13], SPECK,
SIMECK [YZS+15], KATAN, or KTANTAN [CDK09], go as far as having 32-bit block
variants. A birthday bound here renders these ciphers nearly unusable in several relevant
modes of operation.

Another prominent example scheme that, to a lesser extent, benefits from using a
pseudorandom function over a pseudorandom permutation is Wegman-Carter MAC [WC81,
Bra82]:

WCk,h(u,m) = Fk(u)⊕ h(m) , (1)

where Fk is a PRF and h is a universal hash function. Not only is WC typically used with a
PRF, the concept of PRFs was developed (in part) to make Wegman-Carter work with short
keys [Bra82, GGM86]. Nevertheless, given that blockciphers are better understood, Shoup
suggested to use a blockcipher instead, in what is now known as the Wegman-Carter-Shoup
MAC [Sho96],

WCSk,h(u,m) = Ek(u)⊕ h(m) , (2)

where Ek is a PRP. But despite quantitative improvements from Shoup [Sho96] and
Bernstein [Ber05], WCS based on a PRP remains stuck at the birthday bound, unlike WC
based on a PRF.

Further examples of schemes that would benefit from the usage of a PRF abound.
Unfortunately, unlike the case of blockciphers, dedicated fixed input length pseudorandom
function designs are scarce: the only well-known candidate in literature is SURF by
Bernstein [Ber97]. In fact, this scarcity was one of the reasons for the introduction of
WCS over WC.

1.1 Generic PRP-PRF Conversion Functions
Various methods of generically transforming a PRP into a PRF have appeared in literature.
First off, the well-known PRP-PRF switch [Fre77, IR88, BKR94, HWKS98, BR06, CN08]
suggests to simply view the PRP as a PRF, which can be done as long as q � 2n/2.
Mennink and Neves [MN17] summarized four main directions in achieving security beyond
the birthday bound.

A first direction is in truncating permutations, as first suggested in cryptographic
context by Hall et al. [HWKS98]. Bellare and Impagliazzo [BI99] and later Gilboa and
Gueron [GG16] proved that truncating an n-bit blockcipher by m < n bits is secure up to
about 2 m+n

2 queries.1 On the downside, truncation decreases the rate at which randomness
is generated and hence makes the mode less efficient.

Bellare et al. [BKR98] were the first to suggest the xor of permutations,

XoPk1,k2(x) = Ek1(x)⊕ Ek2(x) . (3)

Following a sequence of analyses by Lucks [Luc00] and Bellare and Impagliazzo [BI99],
Patarin achieved 2n/67 security [Pat08, Pat13b, Pat10]. The results generalize to more

1In a non-cryptographic context, Stam [Sta78] in fact derived this result already in 1978.
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permutations [CLP14, MP15], as well as to the single key variant with domain separa-
tion [Pat10]. Using XoP in counter mode or Wegman-Carter would yield optimal security,
but the resulting scheme is twice as expensive.

Iwata [Iwa06] offered a compromise between the xor of permutations and traditional
counter mode with the CENC mode of operation: Ek1 can be used as a mask which is
used for the encryption of w ≥ 1 blocks using Ek2 . If w = 1, CENC constitutes counter
mode based on XoP, but also for larger (but still reasonably small) values of w, CENC
achieves essentially optimal security [IMV16] and shares most of the benefits of the xor
of permutations construction without much of a performance hit. Nevertheless, CENC
remains a mode of operation, not a PRF primitive, and thus is not usable as a general
replacement for a PRF.

Two novel constructions are EDM by Cogliati and Seurin [CS16] and EDMD by
Mennink and Neves [MN17]:

EDMk1,k2(x) = Ek2(Ek1(x)⊕ x) , (4)
EDMDk1,k2(x) = Ek2(Ek1(x))⊕ Ek1(x) . (5)

Mennink and Neves proved security of EDM up to approximately 2n/(67n) queries and
EDMD up to approximately 2n/67 queries. However, just like the xor of permutations,
these two generic modes are again twice as expensive.

1.2 Towards a Dedicated PRF
None of the above generic methods seem particularly suitable for the design of an efficient
PRF. In particular, it is difficult to argue for their practical usage when they entail such a
noticeable slowdown. What if, instead, we could design a secure and efficient PRF from
scratch?

One could try and design a non-invertible round function, and design a PRF around
its iteration. However, non-invertible round functions are hard to get right, as collision
probabilities are amplified with each iteration, and the track record of this design approach
is not very reassuring [PK14, Dae16].

Instead, our approach is to stick with tried-and-tested designs, namely those of block-
ciphers. Our key observation is that the EDMD structure of (5) is particularly suited
to (heuristically) transform imperfect random permutations into a good PRF. We call
this heuristic construction FastPRF. At a high level, the idea of FastPRF is as follows:
if a blockcipher Ek consists of r rounds, the blockcipher is evaluated exactly one time,
with a predetermined selection of state values fed-forward. Naturally, the strength of
FastPRF highly depends on the blockcipher itself, as well as on the choice of states that
are fed-forward. For example, if E is any blockcipher, and the 0th state is fed-forward,
this effectively corresponds to

Ek(x) = Ek(x)⊕ x , (6)

which can be distinguished from random in about 2n/2 evaluations (cf., Section 3.3). A
more logical choice is to use the middle state. Let E1

k and E2
k be the first and second r/2

rounds of the cipher, for example. Then we can define FastPRF as

FastPRFk(x) = Ek(x)⊕ E1
k(x) . (7)

Closer inspection at SURF reveals that the high-level structure behind (7) matches that
of SURF [Ber97], yet FastPRF is more general. We can observe that (7) resembles
the structure of EDMD with Ek1(·) = E1

k(·) and Ek2(·) = E2
k(·). As a matter of fact,

the generalized FastPRF method in Section 2.2 is based on the generalized GEDMD
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construction which we introduce in Section 2.1 and which we prove to attain at least the
same level of security as EDMD.

Unfortunately, the security guarantees of EDMD and GEDMD do not transfer to
FastPRF. For one, the same key is used for both permutations. Additionally, the
underlying permutations are neither ideal nor independently drawn. Thus, we cannot
claim “provable” security of FastPRF designs. One could argue the security of FastPRF
using the “prove-then-prune” approach, introduced by Hoang et al. [HKR15] to argue
the security of AEZ, but invoking “prove-then-prune” still requires both a solid heuristic
argument for the instantiation, as well as cryptanalytic results. We discuss the rationale
of FastPRF in Section 2.3.

We see FastPRF as a potentially fruitful concrete object of study and analysis, but
also as an opportunity for blockcipher designers—particularly in the lightweight space—to
define a PRF along with their designs, in order to widen their applicability. As initial
concrete target, we propose AES-PRF: an instantiation of FastPRF based on the AES
standard. We introduce and analyze this instantiation in Section 3.

We demonstrate the applicability of our scheme in Section 4, by instantiating GCM and
GCM-SIV with it. In more detail, whereas the original GCM [MV04] achieves birthday
bound security only, GCM instantiated with a dedicated PRF is optimally secure. Likewise,
using a dedicated PRF inside GCM-SIV [GL15, GLL17, LLG17] yields significant security
and efficiency improvements, both in the subkey derivation and in the internal evaluation
of GCM. In Section 5, we briefly elaborate on the neat and almost immediate extension of
our technique to tweakable blockciphers such as SKINNY [BJK+16]. Extending FastPRF
to tweakable blockciphers effectively results in a compressing fixed-input-length PRF. The
resulting construction can contribute to a removal of the length parameter in security
bounds, as we exemplify for PMAC1. The extension to tweakable blockciphers finds further
applications in MAC functions based on compressing fixed-input-length PRFs such as
Yasuda’s [Yas08] construction and NI+ [DNP16].

2 Optimal PRFs from Blockciphers
In this section we describe a general method of transforming an iterative blockcipher into a
PRF. We begin with a generalization of Mennink and Neves’s EDMD construction [MN17],
and demonstrate that it achieves at least the same level of security (Section 2.1). Then, in
Section 2.2 we show how to use this construction to design native PRFs. We elaborate on
its rationale in Section 2.3.

2.1 Generalized EDMD
Let E : {0, 1}κ × {0, 1}n → {0, 1}n. Let d ≥ 2, and define generalized EDMD, or
GEDMDd : {0, 1}κ·d × {0, 1}n → {0, 1}n, as

GEDMDd
k1,...,kd

(x) = (Ekd
◦ · · · ◦ Ek1)(x)⊕ (Ekd−1 ◦ · · · ◦ Ek1)(x)⊕ . . .⊕ Ek1(x) . (8)

We will demonstrate that GEDMDd has at least the same level of security as EDMD =
GEDMD2.

2.1.1 Security Model

Denote by perm(n) the set of all permutations on {0, 1}n, and by func(m,n) the set of all
functions from {0, 1}m → {0, 1}n. For a blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n, we
denote its PRP security against distinguisher D by

Advprp
E (D) =

∣∣Pr
[
DEk ⇒ 1

]
−Pr [Dp ⇒ 1]

∣∣ , (9)



232 Optimal PRFs from Blockcipher Designs

where the probabilities are taken over uniform random drawings k $←− {0, 1}κ and p
$←−

perm(n). For a function F : {0, 1}κ × {0, 1}m → {0, 1}n, we denote its PRF security
against distinguisher D by

Advprf
F (D) =

∣∣Pr
[
DFk ⇒ 1

]
−Pr

[
Df ⇒ 1

]∣∣ , (10)

where the probabilities are taken over uniform random drawings k $←− {0, 1}κ and f $←−
func(m,n).

2.1.2 Security of GEDMD

Mennink and Neves [MN17] proved that EDMD is secure up to 2n/67 evaluations.

Lemma 1 (EDMD [MN17]). Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a blockcipher. For
any distinguisher D with query complexity at most q ≤ 2n/67, we have

Advprf
EDMD(D) ≤ q/2n + Advprp

E (D′) + Advprp
E (D′′) , (11)

for some distinguishers D′ and D′′ with the same query and time complexity as D.

One can easily observe that, for any d ≥ 3, GEDMDd is at least as secure as GEDMDd−1.
As such, the bound of Lemma 1 is inherited by GEDMDd for any d ≥ 2.2

Theorem 1. Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a blockcipher. Let d ≥ 2. For any
distinguisher D with query complexity at most q ≤ 2n/67, we have

Advprf
GEDMDd(D) ≤ q/2n + Advprp

E (D′) + Advprp
E (D′′) . (12)

for some distinguishers D′ and D′′ with the same query and time complexity as D.

Proof (Proof). Consider any distinguisher D whose goal is to distinguish GEDMDd ∈
func(n, n) from f

$←− func(n, n). As a first step, note that

GEDMDd
k1,...,kd

(x) = (GEDMDd−1
k2,...,kd

◦ Ek1)(x)⊕ Ek1(x) .

Let g $←− func(n, n), and define

Fk1,g(x) = (g ◦ Ek1)(x)⊕ Ek1(x) .

By a hybrid argument, we have

Advprf
GEDMDd(D) ≤ Advprf

GEDMDd−1(D) +
∣∣Pr

[
DFk1,g ⇒ 1

]
−Pr

[
Df ⇒ 1

]∣∣ .
However, as Ek1 is a permutation, the distributions of Fk1,g and f are identical. Inductive
application yields, for any d ≥ 2,

Advprf
GEDMDd(D) ≤ Advprf

GEDMDd−1(D) ≤ · · · ≤ Advprf
GEDMD2(D) ,

where GEDMD2 = EDMD. The proof is completed using Lemma 1.

2Alternatively, in the same vein as how Mennink and Neves reduced the security of EDMD to XoP,
one can prove that GEDMDd is at least as secure as the xor of d permutations XoPd.
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2.2 FastPRF Design
To prevent some classes of attacks (e.g., slide attacks [BW99]), most blockciphers consist
of distinct round functions. This might be accomplished by a complex key schedule, by
adding round constants, or some other way. In effect, the result is that most blockciphers
resemble the following structure, in one way or another:

Ek(x) = (Erk ◦ Er−1
k ◦ · · · ◦ E1

k)(x) .

While this immediately suggests the use of GEDMD with each state value fed-forward,
this is not a good idea: round functions are often too weak and too simple for each of
them to realistically resemble a random permutation.

Because round functions are individually weak, blockciphers tend to have a lot of them.
Instead of looking at the cipher in terms of round functions, we can see it in terms of
groups of round functions, as follows:

Ek(x) = (Edk ◦ Ed−1
k ◦ · · · ◦ E1

k)(x) ,

where each Eik function is comprised of a number of rounds, i.e., d < r. We can now define
a PRF out of this representation by applying GEDMD:

FastPRFk(x) = (Edk ◦ Ed−1
k ◦ · · · ◦ E1

k)(x)⊕ (Ed−1
k ◦ · · · ◦ E1

k)(x)⊕ . . .⊕ E1
k(x) . (13)

Concrete blockciphers are not ideal permutations, and even though a good blockcipher
can be considered as a pseudorandom permutation, we cannot directly apply the results
of Section 2.1 to FastPRF: one requires the individual groups of round functions Eik to
be mutually independent and sufficiently random. In general, however, this is the nature
of concrete ciphers. There is a long history of concrete designs, such as Feistel networks
or key-alternating ciphers, taking provably-secure structures and instantiating them with
weaker—but efficiently computable—round functions.

2.3 Rationale
The goal behind FastPRF of (13) is to achieve an optimal or quasi-optimal PRF at the
same cost as a regular blockcipher. We are convinced by the plausibility of this quest, given
that there is no complexity-theoretic reason that a PRF should be significantly slower to
compute than a PRP. To achieve our goal, we looked at the currently known PRP to PRF
conversion methods (cf., Section 1.1), and investigated which of them suits our purposes
best.

Truncation necessarily entails a significant slowdown compared to the original blockci-
pher. To salvage this slowdown, one could, hypothetically, split the blockcipher Ek into
two halves, Ek = E2

k ◦ E1
k, and output the concatenation of the truncation of both:

Fk(x) = trunc(E1
k(x)) ‖ trunc(E2

k(x)) ,

where trunc truncates by n/2 bits. This construction has two strong drawbacks:

1. An attacker has direct access to the output of half the cipher, making the function
significantly riskier to use than the original blockcipher;

2. Even assuming that both halves are ideal, one would still be far from obtaining
optimal security: distinguishing this construction from random can be done in
approximately 23n/4 queries [GG16].

The xor of permutations can be used likewise with the same cost as a single Ek
evaluation as

Fk(x) = E1
k(x)⊕ E2

k(x) .
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x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 F (x)

k

Figure 1: AES-PRF-128.

However, similar to the case of truncation, the attacker has more or less direct access to
half the cipher; in particular, many useful properties may survive the xor of two weaker
primitives. This, once again, makes this primitive riskier to use than the original cipher.

This risk is technically eliminated using Cogliati and Seurin’s EDM construction:

Fk(x) = E2
k(E1

k(x)⊕ x) .

Indeed, unlike truncation and xor of permutations, EDM does not expose the results of
half the cipher directly to an adversary. However, there is still some risk involved with this
construction: the attacker has control over the intermediate state. For example, differential
collisions are easy to mount in this construction. If a high-probability differential for E1

k

exists, it is easy to obtain collisions for Fk(x) and its security crumbles. On the other hand,
a high-probability differential for E1

k does not necessarily spell doom for the blockcipher
Ek itself. Additionally, it is not easy to generalize EDM as in Section 2.1 to multiple
intermediate state values and preserve its security proof.

This leaves us with the (generalized) EDMD construction, as

1. it generalizes easily to multiple state values fed-forward;

2. it does not give an attacker control over intermediate state values, beyond the control
it has over the input;

3. it does not give an attacker access to half the cipher: instead, the state values that
are fed-forward are always masked by a full application of the cipher Ek, effectively
randomizing it.

3 Concrete Instantiation: AES-PRF
We present a concrete instantiation of FastPRF based on the AES [DR02]. We adopt the
most straightforward choice:

• For 128-bit keys and 10 rounds, we define AES-PRF-128 to be AES xored with the
internal state after 5 rounds (cf., Figure 1);

• For 192-bit keys and 12 rounds, we define AES-PRF-192 to be AES xored with the
internal state after 6 rounds;

• For 256-bit keys and 14 rounds, we define AES-PRF-256 to be AES xored with the
internal state after 7 rounds.

Alternative choices naturally exist. One could, for example, split the 192-bit key case
into three 4-round permutations, resulting in an arguably stronger PRF. Note that, by
design, each of the proposals consists of one full AES xored with an intermediate state.
Throughout, we assume that the full AES is a secure pseudorandom permutation. In
addition, we denote the first t ≥ 0 rounds of AES by AESt, where the instance of AES
(128-, 192-, or 256-bit keys) is usually clear from the context. For convention, we define
the special case AES0(x) to be x instead of x⊕ k.
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Table 1: Observed speed, in cycles per byte, of AES-128 in counter mode versus AES-PRF-
128 in counter mode.

Microarchitecture AES-128 AES-PRF-128
Intel Sandy Bridge 0.72 0.75
Intel Haswell 0.63 0.63
Intel Skylake 0.63 0.63
AMD Ryzen 0.37 0.37

3.1 Efficiency
It is easy to verify that AES-PRF is essentially as fast as the AES. The additional overhead
is composed of

• An extra xor;

• An additional 128 bits to store the intermediate state(s) to xor the output with.

As far as performance goes, the xor is negligible compared to the cost of the full cipher.
The extra state might be more of a problem for implementers in heavily constrained
environments, but we argue that in most cases, this is not a problem. For example, in
counter mode, we can xor the intermediate state directly with the message block to encrypt,
thus eliminating the need for another separate state.

We have implemented AES-PRF-128 in counter mode for some Intel and AMD x86_64
processors, using the AES-NI instruction set, and its performance is nearly indistinguishable
from using the AES directly, as can be verified in Table 1. The only noteworthy case is
Sandy Bridge, which is particularly sensitive to instruction scheduling. However, for Sandy
Bridge, the overhead of incrementing the counter is far more noticeable—0.72 cycles per
byte against the optimal 0.63—than the overhead incurred by using AES-PRF over AES.
Of course, the same implementation precautions must be taken with AES-PRF as with AES.
In particular, implementations that make use of table lookups are susceptible to cache-
timing attacks [TOS10]. In most consumer hardware this is no longer an insurmountable
problem, with AES-NI being present in the majority of Intel and AMD processors, and
with ARMv8-A, SPARC T4, POWER8, and others also having dedicated constant-time
AES instructions available.

3.2 Security Analysis
To assess the concrete security of the AES-PRF construction, it is necessary to dive into the
details of the AES. In particular, the 5-round AES is the weakest link in the construction.

There are well-established bounds for the maximum expected differential and linear
probabilities of 4-round AES [KMT01, PSLL03, KS07]. Therefore, we do not expect
differential or linear attacks to have any meaningful success against AES-PRF.

While there are several attacks that do efficiently break AES reduced to 5 rounds, e.g.,
[DKR97, BK00, Bir04, Tun12], these attacks appear to be inapplicable here, as the 5-round
output is masked by a full AES application. Moreover, most such attacks rely on 3- or
4-round distinguishers, followed by key recovery; direct distinguishers for 5 rounds have only
recently been discovered, and have massive data and time requirements [SLG+16, GRR16].
The most promising attack known to date, by Grassi et al. [GRR17], belongs to the
subspace trail family of attacks [GRR16], and expects the number of output differences of
a certain kind of input difference to be a multiple of 8. In AES-PRF, it is not possible
to directly access this information, so it seems unlikely that this kind of distinguisher is
feasible in our setting.
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More generally, attacks that rely on observing relations between tuples of outputs
seem unlikely to be successful—the attacker is only able to observe these relations masked
by a strong PRP. Suppose, for the sake of argument, that a high-probability differential
∆ AES5−−−→ ∆′ existed. What the attacker would be able to see, in effect, would be

AES10(xi)⊕AES10(xi ⊕∆)⊕AES5(xi)⊕AES5(xi ⊕∆) .

Even if AES5(xi)⊕AES5(xi ⊕∆) were effectively constant, AES10(xi)⊕AES10(xi ⊕∆)
is not, and is in itself essentially indistinguishable from the distribution of differentials
of a random function [DR07] (assuming, again, security of the full AES). This masking
becomes even more pronounced for higher-order attacks, which are the most dangerous
attack class for reduced-round AES.

AES-PRF is also, of course, vulnerable to any attack that does not rely on particular
properties of AES5, but only on the high-level structure of EDMD. The very costly
distinguishers enabled by this structure are, for the sake of completeness, described
in Appendix A. We conjecture that AES-PRF cannot be distinguished from random
significantly faster than by either bruteforcing the key or by the generic attacks of
Appendix A.

3.3 Unbalanced Variants
To gauge AES-PRF’s resistance against attacks, one may consider “reduced-round variants”
of the PRF. In our case, we propose unbalanced variants of it: instead of AES-PRF(x) =
AES10(x)⊕AES5(x), we suggest looking at

AES-PRFt(x) = AES10(x)⊕AESt(x) ,

for t ∈ {0, . . . , 9}.

3.3.1 AES-PRF0

AES-PRF0 is exactly the Davies-Meyer construction. It is known to be no less distinguish-
able than the underlying blockcipher. In more detail, distinguishing AES-PRF0 from a
random function f is equally hard as distinguishing AES-PRF0 ⊕ id from random. This
function, however, does not expose collisions, and can be distinguished from random with
2n/2 queries [CS16].

3.3.2 AES-PRF1

AES-PRF1 is the first nontrivial case, and the above attack no longer works. However,
AES-PRF1 is still not more secure than AES-PRF0: one can perform a key-recovery attack
with 267 queries.

We may rewrite AES-PRF1(x) as

AES-PRF1(x) = AES10(x)⊕ P (x⊕ k)⊕ k1 ,

where P is the non-keyed portion of the AES round, i.e., MixColumns◦ShiftRows◦SubBytes.
We rely here in the following property of the AES round:

S0

SB

S1

SR

S2

MC

S3
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In other words, 4 well-chosen bytes will only affect some other 4 bytes of the output. In
particular, input bytes s0, s5, s10, s15 only affect output bytes s0, s1, s2, s3; input bytes
s4, s9, s14, s13 only affect output bytes s4, s5, s6, s7; input bytes s8, s13, s2, s7 only af-
fect output bytes s8, s9, s10, s11; and input bytes s12, s1, s6, s11 only affect output bytes
s12, s13, s14, s15.

Thus, if we correctly guess 4 bytes of the key on one of those input positions, this will
cancel out the contribution of P (x⊕ k) on the corresponding 4 output bytes, in which case
we obtain AES10(x)⊕ k1 verbatim, which can be distinguished from random by its lack of
collisions.

This observation leads to the following simple key-recovery attack:

1. Initialize the 16-byte candidate key k′ = 0;

2. Accumulate a large number q ≈ 267 of queries (xi, yi = AES-PRF1(xi)), yielding
approximately

(267

2
)
/2128 ≈ 32 collisions among the yi;

3. Let (A → B) be any pair of corresponding input-output affected bytes for one
round of AES, i.e., (0, 5, 10, 15)→ (0, 1, 2, 3), (4, 9, 14, 3)→ (4, 5, 6, 7), (8, 13, 2, 7)→
(8, 9, 10, 11), and (12, 1, 6, 11)→ (12, 13, 14, 15). Let sA (resp. sB) denote the bytes
of s at the positions defined by A (resp. B);

4. For each (A→ B) pair:

(a) For all values a of A:
i. Compute S = {yi ⊕ P (xi ⊕ a)} for all q queries;
ii. If there are no collisions in S, we either succeeded in finding the correct

key or did not collect enough queries;
iii. If there are collisions in S, but SiB = SjB for all i 6= j, the current value a

is likely the correct choice for the value of k′A. Set k′A = a, and move on to
the next (A→ B) pair.

In total, we require approximately 267 queries, 2101 computations, and 267 memory. The
number of queries is justified by the following criteria:

• The probability that there is no collision after q queries is approximately e−(q
2)/2128

.
With q = 267, this probability is suitably small: approximately 2−46;

• The probability that every collision misses the currently active B is 2−32 per collision.

The key observation here is that, under the wrong key randomization hypothesis, only the
correct key guess k′ results in the set {AES-PRF1(xi)⊕ P (xi ⊕ k′)} to have no collisions
with high probability. We take advantage of the fact that 1 round of AES does not have
full diffusion and allows us to guess 32 bits of the key at a time.

This attack may improve its time complexity by noticing that once bytes of k are
available, so are the corresponding bytes of k1 = AES10(x)⊕ P (x⊕ k). Exploiting the key
schedule may accelerate the filtering of incorrect key guesses.

3.3.3 AES-PRF2

The same attack strategy used for AES-PRF1 no longer works for two rounds. Any single
byte affects every output byte, so detecting where collisions happen is no longer reliable
as a means to verify correct keys. However, we do believe that AES-PRF2 is still within
reach of an efficient attack, and leave it as an open problem.
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Table 2: Distribution of output values of x⊕ S(x) by number of preimages.

Preimages Count
1 91
2 54
3 15
4 3

3.3.4 AES-PRF9

We can also look at the other end of unbalanced variants of AES-PRF. The first thing to
notice is that the last round does not include MixColumns.3 This means that AES-PRF9
can be written, for the first row of the state, as

x0 ⊕ S(x0) ⊕ k0 ,

x4 ⊕ S(x4) ⊕ k4 ,

x8 ⊕ S(x8) ⊕ k8 ,

x12 ⊕ S(x12)⊕ k12 .

By observing the distribution of x ⊕ S(x) (see Table 2), we see that only 3 outputs
have maximal probability 1/64:

0x7E⊕ S(0x7E) = 0x81⊕ S(0x81) = 0xDA⊕ S(0xDA) = 0xE4⊕ S(0xE4) = 0x8D ,

0x1D⊕ S(0x1D) = 0xC1⊕ S(0xC1) = 0xD8⊕ S(0xD8) = 0xF8⊕ S(0xF8) = 0xB9 ,

0x17⊕ S(0x17) = 0x47⊕ S(0x47) = 0x56⊕ S(0x56) = 0xC2⊕ S(0xC2) = 0xE7 .

Therefore, by observing the frequency of bytes 0, 4, 8, 12 of AES-PRF9 for sufficiently many
outputs (q � 28), we are able to derive each of k0, k4, k8, k12 as one of 3 possibilities with
high confidence. For the other rows the same principle does not apply, since their bytes
are of the form xi ⊕ S(xj), whose output is balanced. Nevertheless, recovering the first
32 bits of the key cheaply is still an attack, and the distribution of x⊕ S(x) acts as very
efficient distinguisher here.

4 Application to GCM and GCM-SIV
We discuss the security of GCM by McGrew and Viega [MV04] and GCM-SIV by Gueron
and Lindell [GL15], in case they are instantiated using FastPRF. The reasoning below
directly applies to counter mode encryption, as GCM uses this mode internally.

4.1 Security Model
Formally, an authenticated encryption scheme AE consists of two algorithms Enc,Dec.
The encryption algorithm Enc gets as input a key k, a nonce n, associated data ad, a
message m, and outputs a ciphertext c, and tag t. The decryption algorithm Dec gets as
input a key k, a nonce n, associated data ad, a ciphertext c, and a tag t, and outputs
either a message m or a dedicated ⊥-sign, where Dec(k, n, ad,Enc(k, n, ad,m)) = m is
required to hold for any (k, n, ad,m).

3Consequences of the lack of MixColumns in the last round have been previously studied by Dunkelman
and Keller [DK10].
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Figure 2: Overview of the GCM mode with a 96-bit nonce, a single block of associated
data, and two blocks of plaintext (resp. ciphertext). ⊗H is multiplication by H in F2128 ,
whereas �1 is addition modulo 232 of the least significant bytes of the state.

Security of AE = (Enc,Dec) is usually measured via its confidentiality and authenticity.
We denote the confidentiality of AE against a distinguisher D by

Advconf
AE (D) =

∣∣∣Pr
[
DEnck ⇒ 1

]
−Pr

[
D$ ⇒ 1

]∣∣∣ , (14)

where $(n, a,m) always returns a random (c, t) $←− {0, 1}|m|+τ (where τ is the tag size),
and where the probabilities are taken over uniform random drawings k $←− {0, 1}κ and $.
The authenticity of AE against a distinguisher D is denoted by

Advauth
AE (D) =

∣∣Pr
[
DEnck,Deck ⇒ 1

]
−Pr

[
DEnck,⊥ ⇒ 1

]∣∣ , (15)

where ⊥ always returns the ⊥-sign, and where the probabilities are taken over the uniform
random drawing k $←− {0, 1}κ. For authenticity, the distinguisher is not allowed to relay
a response from its first oracle to its second oracle. Unless explicitly stated otherwise,
we will consider the case where D is required to be nonce-respecting: it is not allowed to
repeat a nonce in an encryption query (it may reuse a nonce in a decryption query).

4.2 AES-PRF-GCM
GCM is an authenticated encryption scheme by McGrew and Viega [MV04]. It internally
uses counter mode on top of a blockcipher (see Figure 2).

McGrew and Viega [MV04] and later Iwata et al. [IOM12] proved the following result
for GCM with 96-bit nonce. (We express the result in terms of AES as underlying primitive
for convenience.)

Theorem 2 (GCM [MV04, IOM12]). Let AES : {0, 1}κ × {0, 1}n → {0, 1}n be the AES
blockcipher, and τ be the tag length. For any distinguisher D with encryption query
complexity at most q, decryption query complexity at most q′ (= 0 for confidentiality),
per-query length at most `, and total complexity at most σ, we have

Advconf
GCM[AES,τ ](D) ≤

(
q + σ + 1

2

)
/2n + Advprp

AES(D′) , (16)

Advauth
GCM[AES,τ ](D) ≤ q′(`+ 1)

2τ +
(
q + q′ + σ + 1

2

)
/2n + Advprp

AES(D′) , (17)
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for some distinguisher D′ with the same time complexity as D and making at most
q + q′ + σ + 1 queries.

Proof (Proof (sketch)). We only discuss the high-level structure. The proof consists of
three steps: (i) replacing AES by a random permutation π $←− perm(n), (ii) subsequently
replacing π by a random function f $←− func(n, n), and (iii) analyzing (with slight abuse of
notation) GCM[f, τ ]. In more detail, the following bound for confidentiality/authenticity
follows by a hybrid argument:

Advconf/auth
GCM[AES,τ ](D) ≤ Advconf/auth

GCM[π,τ ](D) + Advprp
AES(D′)

≤ Advconf/auth
GCM[f,τ ](D) +

∣∣∣Pr
[
D′′f ⇒ 1

]
−Pr

[
D′′π ⇒ 1

]∣∣∣+ Advprp
AES(D′)

≤ Advconf/auth
GCM[f,τ ](D) +

(
q + q′ + σ + 1

2

)
/2n + Advprp

AES(D′) , (18)

for some distinguishers D′,D′′ that make at most q + q′ + σ + 1 queries. The core part in
the analysis of GCM centers around the analysis of GCM based on a random function f ,
and McGrew and Viega [MV04] and later Iwata et al. [IOM12] proved that

Advconf
GCM[f,τ ](D) = 0 ,

Advauth
GCM[f,τ ](D) ≤ q′(`+ 1)

2τ ,

which completes the proof.

From high-level inspection of the security analysis of GCM, it becomes clear that
FastPRF can be used to improve GCM’s security significantly. In more detail, if we use
AES-PRF instead of AES, steps (i) and (ii) in the proof merge and become “replacing
AES-PRF by a random function f $←− func(n, n).” In other words, we simply get

Advconf/auth
GCM[AES-PRF,τ ](D) ≤ Advconf/auth

GCM[f,τ ](D) + Advprf
AES-PRF(D′)

instead of (18), and we obtain the following corollary.

Corollary 1. Let AES-PRF : {0, 1}κ × {0, 1}n → {0, 1}n be the AES-PRF construction
of Section 3, and τ be the tag length. For any distinguisher D with encryption query
complexity at most q, decryption query complexity at most q′ (= 0 for confidentiality),
per-query length at most `, and total complexity at most σ, we have

Advconf
GCM[AES-PRF,τ ](D) ≤ Advprf

AES-PRF(D′) , (19)

Advauth
GCM[AES-PRF,τ ](D) ≤ q′(`+ 1)

2τ + Advprf
AES-PRF(D′) , (20)

for some distinguisher D′ with the same time complexity as D and making at most
q + q′ + σ + 1 queries.

4.3 AES-PRF-GCM-SIV
GCM is notoriously sensitive to nonce repeats, which lead to forgeries and even key recov-
ery [Jou06, BZD+16]. GCM-SIV [GL15, GLL17, LLG17] is an authenticated encryption
mode based on GCM that aims to be more robust to such usage failures. In particular,
GCM-SIV aims for a slightly different security notion than GCM—misuse-resistant au-
thenticated encryption, or mrAE. This notion comprises (14) and (15), with the exception
that the requirement that nonces are unique is lifted.
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Figure 3: A high-level overview of GCM-SIV with a 128-bit key, one block of associated
data, and two blocks of plaintext (resp. ciphertext). Notation matches that of Figure 2.
fix0 sets the most significant bit of a block to 0; fix1 sets it to 1. xy indicates truncation of
the first 64 bits; ‖ denotes concatenation.

There are several variants of GCM-SIV [GL15, IM16, GLL17]. In this work, we consider
the most recent one, [GLL17], which is also being considered as an IETF RFC [LLG17].
It is based on the SIV [RS06] mode, and reuses the individual components of GCM (see
Figure 3). The basic GCM-SIV construction uses two keys, one of size n bits, one of size
at most 2n bits, and GCM-SIV of [GLL17] uses the DeriveKey mechanism4 to derive two
subkeys from a single one in the following way:

k1 = trunc(AESk(n‖0)) ‖ trunc(AESk(n‖1)) ,
k2 = trunc(AESk(n‖2)) ‖ · · · ‖ trunc(AESk(n‖5)) ,

(21)

where trunc truncates by n/2 bits (recall the truncation construction of Section 1.1).
An earlier security analysis of GCM-SIV was performed by Gueron et al. [GL15, GLL17].

Iwata and Seurin [IS17] pointed out several shortcomings in the analysis, and performed
an improved analysis.

Theorem 3 (GCM-SIV [IS17]). Let AES : {0, 1}κ × {0, 1}n → {0, 1}n be the AES
blockcipher. For any distinguisher D that can make encryption queries for at most qu
distinct nonces and at most r repeats per nonce, and that can make qD decryption queries
with total complexity at most σD, all with per-query associated data and message length at
most `a and `m, we have

AdvmrAE
GCM-SIV[AES](D) ≤ Advprp

AES(D′′) + min
((6(qu+qD)

2
)

2n ,
6(qu + qD)

23n/4

)
+ (22)

(qu + qD) ·Advprf
AES(D′) + (23)

(qu + qD)2

2κ+1 + qur
2(`a + 3`m + 3)

2n + 2rqD(`a + `m + 1)
2n + qD

2n ,
(24)

for some distinguishers D′ making at most r(`m + 1) + 1 + σD queries and D′′ making at
most 6(qu + qD) queries (both with the same time complexity as D).

4DeriveKey was introduced to GCM-SIV after analysis revealed that the original key derivation
mechanism was weaker than expected [NSA17].
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Part (22) of the bound comes from how well the DeriveKey functionality behaves like
random, part (23) reflects the security of AES used in GCM-SIV based on two uniformly
randomly generated subkeys, and (24) reflects the security of GCM-SIV based on uniformly
randomly generated primitives. We remark that the bound of Iwata and Seurin is slightly
stronger, having the multi-user PRF security Advmu-prf

AES (D′) instead of (23), where now
distinguisher D′ makes at most r(`m + 1) queries for at most qu distinct users and an
additional amount of qD + σD queries freely distributed over all users. We have adopted
the slightly simplified bound.

Suppose that, instead of (21), the key is derived using AES-PRF:

k1 = AES-PRF(n‖0) ,
k2 = AES-PRF(n‖1)‖AES-PRF(n‖2) ,

(25)

then this subkey derivation function inherits the PRF security of AES-PRF against a
distinguisher D′′ making at most 3(qu+qD) queries. In other words, part (22) of Theorem 3
becomes Advprf

AES-PRF(D′′), for some distinguisher D′′ making at most 3(qu + qD) queries.
In addition, (23) has a term that measures the PRF security of AES, which is at best(
r(`m+1)+1+σD

2
)
/2n due to the PRP-PRF switch. By directly using AES-PRF instead of

AES, this implicit birthday term gets eliminated. We thus obtain the following corollary.

Corollary 2. Let AES-PRF : {0, 1}κ × {0, 1}n → {0, 1}n be the AES-PRF construction
of Section 3. For any distinguisher D that can make encryption queries for at most qu
distinct nonces and at most r repeats per nonce, and that can make qD decryption queries
with total complexity at most σD, all with per-query associated data and message length at
most `a and `m, we have

AdvmrAE
GCM-SIV[AES-PRF](D) ≤ Advprf

AES-PRF(D′′) + (qu + qD) ·Advprf
AES-PRF(D′)

+ (qu + qD)2

2κ+1 + qur
2(`a + 3`m + 3)

2n + 2rqD(`a + `m + 1)
2n + qD

2n , (26)

for some distinguishers D′ making at most r(`m + 1) + 1 + σD queries and D′′ making at
most 3(qu + qD) queries (both with the same time complexity as D).

5 Extension to Tweakable Blockciphers
Tweakable blockciphers are a relatively recent invention formalized by Liskov et al. [LRW02,
LRW11]. A tweakable blockcipher, as the name implies, is a blockcipher that takes one
additional input beyond the message and key—a tweak. The security of a tweakable
blockcipher is then defined as the indistinguishability of the construction against a collection
of random permutations, one per each key and tweak.

The FastPRF construction can be generalized to such designs as well, though more
care is necessary to ensure that the tweak and the key contribute to each of the individual
permutations. More detailed, if Ẽ is a tweakable blockcipher which can be partitioned
into groups of round functions as follows:

Ẽk,t(x) = (Ẽdk,t ◦ Ẽd−1
k,t ◦ · · · ◦ Ẽ

1
k,t)(x) ,

we can define a compressing PRF out of this representation by applying GEDMD:

˜FastPRFk(t, x) = (Ẽdk,t ◦ Ẽd−1
k,t ◦ · · · ◦ Ẽ

1
k,t)(x)⊕ (Ẽd−1

k,t ◦ · · · ◦ Ẽ
1
k,t)(x)⊕ . . .⊕ Ẽ1

k,t(x) .
(27)
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Once again: this construction only works if the groups of rounds are sufficiently strong
individually, but in addition, we require that each of the rounds is sufficiently dependent
on t.

Unlike the case of blockciphers, there do not exist many native designs of tweakable
blockciphers to draw from. Indeed, most tweakable blockciphers in current use are in fact
generic blockcipher-based constructions with far from optimal security (e.g., Rogaway’s
XEX construction [Rog04] is used in OCB2, a large number of CAESAR submissions,
and XTS disk encryption). Some particular examples of dedicated tweakable blockcipher
designs to apply ˜FastPRF on are Threefish [FLS+10], SCREAM [GLS+15], or the more
general TWEAKEY [JNP14] framework which is for instance adopted by the developers of
SKINNY [BJK+16]. One may for example take SKINNY-128-256 as tweakable blockcipher
with a 128-bit state and 256-bit tweakey: it consists of 48 rounds, and ˜SKINNY-PRF-128
can be defined to be SKINNY-128-256 xored with the internal state after 24 rounds. Like
the AES, SKINNY has solid design principles; 6 rounds are already sufficient for full
diffusion, and 24 rounds are already sufficient to withstand several classes of attacks.
However, there has not yet been enough cryptanalytic research on SKINNY to confidently
claim that the resulting PRF is heuristically secure.

Assuming the existence of ˜FastPRF, one could use this construction instead of existing
tweakable blockciphers in settings where the tweakable blockcipher is not evaluated in
inverse direction. For example, consider PMAC1 from Rogaway [Rog04], the tweakable
blockcipher based variant of PMAC. Rogaway proved the following result on the PRF
security of PMAC1 with tag length n (the definition of Section 2.1.1 generalizes to variable
input sizes).

Theorem 4 (PMAC1 [Rog04]). Let Ẽ : {0, 1}κ×{0, 1}τ×{0, 1}n → {0, 1}n be a tweakable
blockcipher. For any distinguisher D with encryption query complexity at most q and total
complexity at most σ, we have

Advprf
PMAC1[Ẽ]

(D) ≤
(
q

2

)
/2n +

(
σ

2

)
/2n + Advtprp

Ẽ
(D′) , (28)

for some distinguisher D′ with the same time complexity as D and making at most σ
queries.

Closer inspection of the security analysis reveals that
(
σ
2
)
/2n comes from viewing Ẽ

as a random function (one could call this a TPRP-TPRF-switch, although a tweakable
PRF is just a compressing fixed-input-length PRF). Following a similar reasoning as in
Section 4, one can observe that directly using ˜FastPRF in PMAC1 yields the following
corollary.

Corollary 3. Let ˜FastPRF : {0, 1}κ × {0, 1}τ × {0, 1}n → {0, 1}n be the construction
of (27). For any distinguisher D with encryption query complexity at most q and total
complexity at most σ, we have

Advprf
PMAC1[ ˜FastPRF]

(D) ≤
(
q

2

)
/2n + Advprf

˜FastPRF
(D′) , (29)

for some distinguisher D′ with the same time complexity as D and making at most σ
queries.

In other words, unlike for the original PMAC1, the security bound of PMAC1 based
in ˜FastPRF does not admit a quadratic security loss on σ, provided ˜FastPRF is in turn
built on a dedicated tweakable blockcipher.
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A Security Against Generic Attacks
We consider how AES-PRF behaves when its underlying permutations are idealized.
Patarin [Pat13a] found several attacks against XoPdk1,...,kd

dependent on q, the number of
oracle queries. Here we adapt the attacks to the two-permutation GEDMD construction
used in AES-PRF.

A.1 q = 2n

Given access to the full codebook, the following property occurs with probability 1:⊕
x∈{0,1}n

(Ek2(Ek1(x))⊕ Ek1(x)) =
⊕

x∈{0,1}n

Ek2(Ek1(x))⊕
⊕

x∈{0,1}n

Ek1(x) = 0 .

In a random function, this event has probability 2−n. This yields an attack with advantage
of 1− 2−n with running time of 2n xor operations.

A.2 q < 2n

In this setting, we can distinguish EDMD from a random function by counting the number
of collisions. Let ncoll(q) be this quantity. In a random function, the expected number of
collisions is ncoll =

(
q
2
)
/2n; in EDMD it is

(
q
2
)
/(2n − 1). This distinguisher stems from the

fact that given a collision Ek2(Ek1(x))⊕ Ek1(x) = Ek2(Ek1(y))⊕ Ek1(y), we equivalently
have Ek2(Ek1(x))⊕ Ek2(Ek1(y)) = Ek1(x)⊕ Ek1(y), in which neither side can be 0.

When q < 2n/2, the distinguisher simply outputs 1 when a collision exists, and 0
otherwise. The advantage is given by (q

2)
22n−2n ≈ q2/22n. When q > 2n/2, the distinguisher

is slightly different: output 1 when ncoll ≥
(
q
2
)
/2n, 0 otherwise. The advantage here is more

complex to calculate, but Patarin calculates it to be O(q/23n/2). This attack strategy is
likely to be optimal, as it matches the recent asymptotic bound on the sum of permutations
by Eberhard [Ebe17, Theorem 1.5].

None of these attacks is particularly threatening to the PRF security of AES-PRF, as
no amount of extra computation—short of bruteforcing the key—will be of any help. In
effect, the advantage remains negligible even when the attacker obtains nearly the entire
codebook.
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