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Context: FLIP [Méaux et al., Eurocrypt 2016]

Key Register KPRNG

Permutation
Generator

Pi

F

pi

ci

zi

F(x) = x1 + x2 + · · ·+ xi1
+ xi1+1xi1+2 + xi1+3xi1+4 + · · ·xi2−1xi2
+ xi2+1 + xi2+2xi2+3 + xi2+4xi2+5xi2+6 + · · ·+ xn−k xn−k+1...xn

Warning

The input of F has always the same Hamming weight.
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Example

f (x1,x2,x3,x4) = x1 + x2 + x3 + x4

x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
f 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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wH(x) = 0 1 2 3 4
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Definitions

Definition (Weightwise Perfectly Balanced Functions)

f is WPB ⇔ wH(f )k =

(n
k

)
2

, ∀ 0 < k < n

⇒ only if n = 2`

f (0, . . . ,0) = 0; f (1, . . . ,1) = 1.

x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
f 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1
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Definitions

Definition (Weightwise Almost Perfectly Balanced Functions)

f is WAPB ⇔ wH(f )k ∈

{(n
k

)
2

,

(n
k

)
±1

2

}
, ∀ 0 < k < n
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ANF of weightwise perfectly balanced functions

If f is WPB Boolean function of n variables, then its ANF has

exactly n/2 monomials of degree 1;

at least n/4 monomials of degree 2;

at least one monomial of degree n/2.
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ANF of weightwise almost perfectly balanced functions

If f is a WAPB Boolean function of n variables, then its ANF has

exactly n/2 monomials of degree 1 if n is even;

(n−1)/2 or (n+1)/2 monomials of degree 1 if n is odd;

at least bn/4c monomials of degree 2.
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Constructions

Let n = 2` and f , g WPB functions with 2`−1 variables, then

F(x ,y) = f (x)+g(y)

is not WPB.
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Constructions

Let n = 2`,
f , f ′, g: WPB functions of 2`−1 variables
g′: any function of 2`−1 variables, then

F(x ,y) = f (x)+g(y)+(f (x)+ f ′(x))g′(y)+
n

∏
i=1

xi

is a WPB function with 2` variables.

Proof.

Fix y . Then F(x ,y) = f (x)+g(y) or f ′(x)+g(y).
Problem: when wH(x) = 0 or n⇒ add ∏

n
i=1 xi
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One particular family of WPB function

For n = 16:
f2(x1,x2) = x1 is WPB

⇒ f4(x1,x2,x3,x4) = f2(x1,x2)+ f2(x3,x4)+ x1x2 = x1 + x3 + x1x2

⇒ f8(x1, ...,x8) = f4(x1, ...,x4)+ f4(x5, ...,x8)+ x1x2x3x4

⇒ f8(x1, ...,x8) = x1 + x3 + x5 + x7 + x1x2 + x5x6 + x1x2x3x4

⇒ f16(x1, ...,x16) = f8(x1, ...,x8)+ f8(x9, ...,x16)+ x1x2x3x4x5x6x7x8

f16(x) = x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15

+x1x2 + x5x6 + x9x10 + x13x14

+x1x2x3x4 + x9x10x11x12

+x1x2x3x4x5x6x7x8

⇒ 8 monomials of degree 1, 4 monomials of degree 2, 1 monomial of
degree 8.
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Definition

Definition

NL(f ) = min
deg`≤1

wH(f + `)

Definition

For any S ⊆ Fn
2,

NLS (f ) = min
deg`≤1

wH(f + `)S
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Degradation with restricted input

σ2(x1,x2,x3,x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

σ2 is a bent function (NL(σ2) = 6)

x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
σ2 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0
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Non-linearity over fixed Hamming weight

Sn,k = {x ∈ Fn
2,wH(x) = k}

Proposition

For (n,k) 6= (50,3) nor (50,47), we have:

NLSn,k (f )<

(n
k

)
2
− 1

2

√(
n
k

)

Improved in [S. Mesnager, 2017].

Related to the study of punctured Reed and Muller codes
[Dumer, Kapralova, 2017].
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Definition

Algebraic Immunity over S
Let f be defined over a set S :

AIS (f ) = min{deg(g),g 6= 0 over S |gf = 0 or g(f +1) = 0 over S}

f (x1,x2,x3,x4) = 1+ x1 + x2x3, AI(f ) = 2

x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
f 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

AI2(f ) = 1
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Degradation on restricted input

Let f be a function of n variables.
Let g be a function of m variables.
Let F(x ,y) = f (x)+g(y), then for any k ≥ n and k ≤m,

AIk(F)≥ AI(f )−deg(g)

while
AI(F)≥max(AI(f ),AI(g))

Upper bounds

We proved upper bounds on AIk(f ) (see Paper).
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Bias of FLIP?

Range of Hamming weights of the key such that the bias is
undetectable for the recommended security level.

Instances kmin kmax

FLIP-530 78 482
FLIP-662 102 621

FLIP-1394 207 1325
FLIP-1704 257 1643
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Non-linearity in FLIP.

Proposition

Let F(x ,y) = f (x)+g(y), then

NLk(F)≥
k

∑
i=0

(
n
i

)
NLk−i(g)+

k

∑
i=0

NLi(f )

((
m

k− i

)
−2NLk−i(g)

)
Range of Hamming weights of the key such that the bias is smaller
than 2−10:

Instances kmin kmax

FLIP-530 107 464
FLIP-662 136 556

FLIP-1394 221 1239
FLIP-1704 266 1492
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Algebraic Immunity in FLIP

We obtain a lower bound on the algebraic immunity of the function
used in FLIP (only when k is close to n/2):

Instances AI(f ) Bound of AIk(f )
FLIP-530 9 ≥ 4
FLIP-662 15 ≥ 6
FLIP-1394 16 ≥ 6
FLIP-1704 23 ≥ 8

Those bounds are not tight, but they guarantee resistance against
algebraic attacks.
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Conclusion

We defined weightwise (almost) perfectly balanced Boolean
functions and provided constructions.

We defined and gave bounds on AIk and NLk .

We gave properties on direct sums.

We eventually gave bounds on the exact cryptographic
parameters of the 4 FLIP instances.

But... be careful!

Thank you !
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