Accurate Estimate of the Advantage of Impossible Differential Attacks

Céline Blondeau

presented by Christina Boura

March 7, 2018 FSE 2018, Bruges

Introduction

Multivariate Distribution

Key-Recovery Attacks

Outline

Introduction

Multivariate Distribution

Key-Recovery Attacks

Impossible Differential Cryptanalysis

- Defined at the end of the 90's as a generalization of differential cryptanalysis
- Given a cipher $E = E_0 \circ E' \circ E_1$
- A differential (δ_x, δ_y) over E' is impossible if

$$\forall k \in \mathcal{K} \ P_x[\ E'(x \oplus \delta_x) \oplus E'(x) = \delta_y \] = 0$$

- ► Usually a set of differentials (δ_x, δ_y) ∈ Δ_x × Δ_y fulfill this property
- From this distinguisher on E', we can mount a key-recovery attack on E

Complexity

The 3 phases of the key-recovery attack:

- Data generation: Generating pairs from a set of plaintexts
- Key sieving: Partial inversion with a selected number of potential candidate
- Exhaustive key search
- Recent publications: [BN-PS14], [Der16] Analyzing and minimizing the time complexity of the attack, with maximal focus on:
 - the data generation phase
 - and the key sieving phase
- This work: Providing a statistical analysis of the relation between the data complexity and the time complexity of:
 - the exhaustive key-search phase

Distinguishing Attack

• Δ_X and Δ_Y are linear (or affine) spaces

►
$$|\Delta_Y| = 2^{n-\ell}$$

- A structure: subset of 2^t elements in Δ_X
- From a data complexity $N = 2^{s+t}$, we can generate $N_s = 2^{s+t}(2^t 1)$ pairs

Classical Model: Binomial Distribution

- Statistical modeling similar to classical differential attacks
- Statistically a pair is a sample
- [T = i]: the event that the differential(s) appears *i* times

• Given
$$p = |\Delta_Y| 2^{-n} = 2^{-\ell}$$

Assuming a binomial distribution:

For a random permutation,

$$P[T_{\mathcal{B}} = 0] = {\binom{N_S}{0}} p^0 (1-p)^{N_S} \\ = (1-p)^{N_S} \approx \exp[-N_S p]$$

Advantage of an ID Distinguisher

- Advantage of a key recovery attack: number of won key-bits
- False alarm error probability: ratio of random permutations for which the differential(s) is impossible

Wrong key randomization hypothesis:

Advantage of a distinguishing attack: a = log₂(P[T = 0])

Binomial distribution and its approximation

Advantage estimate

$$ilde{\mathsf{a}}_{\mathcal{B}} = rac{\mathsf{N}_{\mathcal{S}}}{\mathsf{ln}(2)} \left(2^{-\ell}
ight)$$

Motivation and Contribution

- Experiments on 12-bit random permutations
- The data complexity is 2^{s+t}
- â: the experimental advantage
- $a_{\mathcal{B}}$: classical advantage
- ► a_{MH}: Advantage obtained with the theory developed in this paper

ℓ	s	t	s+t	â	$a_{\mathcal{B}}$	$a_{\mathcal{MH}}$
7	2	3	5	1.25	1.27	1.25
7	4	3	7	4.99	5.07	4.99
9	4	3	7	1.11	1.26	1.11
9	6	3	9	4.44	5.05	4.44
9	8	3	11	17.73	20.22	17.77

Introduction

Multivariate Distribution

Key-Recovery Attacks

Accurate Estimate of the Advantage of Impossible Differential Attacks,

Counting the Number of Pairs

To derive the new model: we do not manipulate pairs

$$E'(x \oplus \delta_x) \oplus E'(x) \in \Delta_y \Leftrightarrow \lfloor (E'(x \oplus \delta_x) \oplus E'(x) \rfloor_{\ell} = 0$$

Algorithm", inside a structure:

- Create a vector L of l bits
- For all *x*, increment $L[\lfloor E'(x) \rfloor_{\ell}]$
- Number of pairs is $S_j = \sum_{i=0}^{2^{\ell}-1} (L[i](L[i]-1))/2$
- Total number of pairs: Sum of S_i for each structure

Remarks:

- Inside a structure, the counting is similar to the counting in the multidimensional linear context
- Already used to show the relation between truncated differential and multidimensional linear attacks

Focussing on ONE Structure

Focusing on one structure:

$$S_j = \sum_{i=0}^{2^\ell - 1} \left(L[i](L[i] - 1)) \right) / 2$$

- ► Impossible differential attacks: No pairs ⇔ each L[i] should be equal to 0 or 1
- L follows a multivariate hypergeometric distribution
- If the structure has 2^t plaintexts, L should have:
 - $2^{\ell} 2^{t}$ items equal to "0"
 - and 2^t items equal to "1"

$$P[\text{ No pairs }] = rac{\binom{2^{\ell}}{2^{t}}}{\binom{2^{n}}{2^{t}}} (2^{n-\ell})^{2^{t}}$$

Multiple Structures

- Classical attacks: More than one structure
- If we assume independence between the structures we can derive the following estimate:

$$\widetilde{a}_{MH} = rac{N_S}{\ln(2)} \left(2^{-\ell} - 2^{-n}
ight)$$

To compare with the classical estimate

$$\tilde{a}_{B} = \frac{N_{S}}{\ln(2)} \left(2^{-\ell}\right)$$

 In general, the independence assumption is accurate as long as

$$N=2^{s+t}\ll 2^\ell$$

 If we do not make this assumption, the model is more complicated and is based on the bi-multivariate hypergeometric distribution

Bi-Multivariate Hypergeometric Distribution: Maximal Advantage

 The maximal advantage of an impossible differential distinguisher (δ_X, δ_Y) is

$$a_{\max} = \frac{(2^{n-\ell}-1)(2^t-1)}{2\ln(2)} \left(1 + \mathcal{O}(2^{-\min(n,\ell+t)})\right)$$

Outline

Introduction

Multivariate Distribution

Key-Recovery Attacks

Key-Recovery Attacks

- Attack on $r_{in} + r + r_{out}$ rounds
- ► ∆_{in} and ∆_{out} as the sets of all possible input respectively output differences
- N^A = 2^{s'+t'}: Data complexity of the key-recovery attack

When more than one structure is involved, the data complexity of a distinguishing and a key recovery attack is the same

Experiments on a 16-bit Feistel

- Key-recovery attack on a 16-bit Feistel with 4 branches
- ► Taking an impossible differential distinguisher with $|\Delta_X| = |\Delta_Y| = 2^4$
- â: experimental advantage
- ā: obtained in the paper
- ã_B: classical advantage

$\log(N)$	<i>s</i> ′	ť	â	ā	$\tilde{a}_{\mathcal{B}}$
10	0	10	0.51	0.51	0.68
11	0	11	2.53	2.54	2.70
12	0	12	10.14	10.14	10.82

$\log(N)$	s'	ť	â	ā	$ ilde{a}_{\mathcal{B}}$
10	2	8	2.53	2.54	2.71
11	3	8	5.01	5.07	5.41
12	4	8	9.81	10.14*	10.82

- Left: 2 rounds before the distinguisher, 2 rounds after
- Right: 1 round before the distinguisher, 2 rounds after

*:non-accuracy: due to the non-independence of the structures

Only ONE Differential

- In the case of a single input differential (t = 1)
- ► $N_S = 2^{s+t-1}(2^t 1)$ can not be estimated as $N_S \approx 2^{s+2t-1}$
- Maximal advantage: advantage using the full codebook
- Without the approximation, the maximal advantage is 0.72
- This advantage was previously estimated as 1.42
- The time complexity of the recent impossible differential attacks on SIMON is larger than estimated.

LBlock and CRYPTON

- Key-recovery attack on 23 rounds of LBlock of Boura et al
 - Data complexity of 2^{55.5}
 - The time complexity has been computed for an advantage of 30.6 bits
 - Corrected advantage: 28.69 bits
- ► Key-recovery on 7 rounds of CRYPTON of Boura *et al*
 - Data complexity: 2^{114.9} known plaintexts
 - The time complexity has been computed for an advantage of 148.44 bits
 - Corrected advantage: 145.45 bits
- This result does not influence the overall time complexity since it is not dominated by the exhaustive key-search

Conclusion

- We analyze the advantage of impossible differential attacks
- We corrected it from

$$rac{N_S}{\ln(2)}\left(2^{-\ell}
ight)$$

to

$$\frac{N_S}{\ln(2)}\left(2^{-\ell}-2^{-n}\right)$$

- ► This result has an impact on the complexity of the exhaustive key search when ℓ is close to n
- We partially solve the problem of asymmetry between chosen plaintext and chosen ciphertext impossible differential attacks