Accurate Estimate of the Advantage of Impossible Differential Attacks

Céline Blondeau
presented by Christina Boura

March 7, 2018
FSE 2018, Bruges

Outline

Introduction

Multivariate Distribution

Key-Recovery Attacks

Outline

Introduction

Multivariate Distribution

Key-Recovery Attacks

Impossible Differential Cryptanalysis

- Defined at the end of the 90's as a generalization of differential cryptanalysis
- Given a cipher $E=E_{0} \circ E^{\prime} \circ E_{1}$
- A differential $\left(\delta_{\mathrm{x}}, \delta_{\mathrm{y}}\right)$ over E^{\prime} is impossible if

$$
\forall k \in \mathcal{K} \quad P_{x}\left[E^{\prime}\left(x \oplus \delta_{x}\right) \oplus E^{\prime}(x)=\delta_{y}\right]=0
$$

- Usually a set of differentials $\left(\delta_{x}, \delta_{y}\right) \in \Delta_{x} \times \Delta_{y}$ fulfill this property
- From this distinguisher on E^{\prime}, we can mount a key-recovery attack on E

Complexity

The 3 phases of the key-recovery attack:

- Data generation: Generating pairs from a set of plaintexts
- Key sieving: Partial inversion with a selected number of potential candidate
- Exhaustive key search
- Recent publications: [BN-PS14], [Der16] Analyzing and minimizing the time complexity of the attack, with maximal focus on:
- the data generation phase
- and the key sieving phase
- This work: Providing a statistical analysis of the relation between the data complexity and the time complexity of:
- the exhaustive key-search phase

Distinguishing Attack

- Δ_{X} and Δ_{Y} are linear (or affine) spaces
- $\left|\Delta_{Y}\right|=2^{n-\ell}$
- A structure: subset of 2^{t} elements in Δ_{X}
- From a data complexity $N=2^{s+t}$, we can generate $N_{s}=2^{s+t}\left(2^{t}-1\right)$ pairs

Classical Model: Binomial Distribution

- Statistical modeling similar to classical differential attacks
- Statistically a pair is a sample
- [$T=i$]: the event that the differential(s) appears i times
- Given $p=\left|\Delta_{Y}\right| 2^{-n}=2^{-\ell}$

Assuming a binomial distribution:

- For a random permutation,

$$
\begin{aligned}
P\left[T_{\mathcal{B}}=0\right] & =\binom{N_{S}}{0} p^{0}(1-p)^{N_{S}} \\
& =(1-p)^{N_{S}} \approx \exp \left[-N_{S} p\right]
\end{aligned}
$$

Advantage of an ID Distinguisher

- Advantage of a key recovery attack: number of won key-bits
- False alarm error probability: ratio of random permutations for which the differential(s) is impossible

Wrong key randomization hypothesis:

- Advantage of a distinguishing attack: $a=\log _{2}(P[T=0])$

Binomial distribution and its approximation

- Advantage estimate

$$
\tilde{a}_{\mathcal{B}}=\frac{N_{S}}{\ln (2)}\left(2^{-\ell}\right)
$$

Motivation and Contribution

- Experiments on 12-bit random permutations
- The data complexity is 2^{s+t}
- â: the experimental advantage
- $a_{\mathcal{B}}$: classical advantage
- $a_{\mathcal{M H}}$: Advantage obtained with the theory developed in this paper

ℓ	s	t	$s+t$	\hat{a}	$a_{\mathcal{B}}$	$a_{\mathcal{M H}}$
7	2	3	5	1.25	1.27	1.25
7	4	3	7	4.99	5.07	4.99
9	4	3	7	1.11	1.26	1.11
9	6	3	9	4.44	5.05	4.44
9	8	3	11	17.73	20.22	17.77

Outline

Multivariate Distribution

Key-Recovery Attacks

Counting the Number of Pairs

To derive the new model: we do not manipulate pairs

$$
E^{\prime}\left(x \oplus \delta_{x}\right) \oplus E^{\prime}(x) \in \Delta_{y} \Leftrightarrow\left\lfloor\left(E^{\prime}\left(x \oplus \delta_{x}\right) \oplus E^{\prime}(x)\right\rfloor_{\ell}=0\right.
$$

- "Algorithm", inside a structure:
- Create a vector L of ℓ bits
- For all x, increment $L\left[\left\lfloor E^{\prime}(x)\right\rfloor_{\ell}\right]$
- Number of pairs is $S_{j}=\sum_{i=0}^{2^{e}-1}(L[i](L[i]-1)) / 2$
- Total number of pairs: Sum of S_{j} for each structure

Remarks:

- Inside a structure, the counting is similar to the counting in the multidimensional linear context
- Already used to show the relation between truncated differential and multidimensional linear attacks

Focussing on ONE Structure

- Focusing on one structure:

$$
S_{j}=\sum_{i=0}^{2^{\ell}-1}(L[i](L[i]-1)) / 2
$$

- Impossible differential attacks: No pairs \Leftrightarrow each $L[i]$ should be equal to 0 or 1
- L follows a multivariate hypergeometric distribution
- If the structure has 2^{t} plaintexts, L should have:
- $2^{\ell}-2^{t}$ items equal to " 0 "
- and 2^{t} items equal to " 1 "

$$
P[\text { No pairs }]=\frac{\binom{2^{\ell}}{2^{t}}}{\binom{2^{2 n}}{2^{t}}}\left(2^{n-\ell}\right)^{2^{t}}
$$

Multiple Structures

- Classical attacks: More than one structure
- If we assume independence between the structures we can derive the following estimate:

$$
\tilde{a}_{M H}=\frac{N_{S}}{\ln (2)}\left(2^{-\ell}-2^{-n}\right)
$$

- To compare with the classical estimate

$$
\tilde{a}_{B}=\frac{N_{S}}{\ln (2)}\left(2^{-\ell}\right)
$$

- In general, the independence assumption is accurate as long as

$$
N=2^{s+t} \ll 2^{\ell}
$$

- If we do not make this assumption, the model is more complicated and is based on the bi-multivariate hypergeometric distribution

Bi-Multivariate Hypergeometric Distribution: Maximal Advantage

- The maximal advantage of an impossible differential distinguisher $\left(\delta_{X}, \delta_{Y}\right)$ is

$$
a_{\max }=\frac{\left(2^{n-\ell}-1\right)\left(2^{t}-1\right)}{2 \ln (2)}\left(1+\mathcal{O}\left(2^{-\min (n, \ell+t)}\right)\right)
$$

Outline

Introduction

Multivariate Distribution

Key-Recovery Attacks

Key-Recovery Attacks

- Attack on $r_{\text {in }}+r+r_{\text {out }}$ rounds
- $\Delta_{\text {in }}$ and $\Delta_{\text {out }}$ as the sets of all possible input respectively output differences
- $N^{A}=2^{s^{\prime}+t^{\prime}}$: Data complexity of the key-recovery attack
ℓ^{\prime} bits
- When more than one structure is involved, the data complexity of a distinguishing and a key recovery attack is the same

Experiments on a 16-bit Feistel

- Key-recovery attack on a 16-bit Feistel with 4 branches
- Taking an impossible differential distinguisher with

$$
\left|\Delta_{X}\right|=\left|\Delta_{Y}\right|=2^{4}
$$

- â: experimental advantage
- \bar{a} : obtained in the paper
- $\tilde{a}_{\mathcal{B}}$: classical advantage

$\log (N)$	s^{\prime}	t^{\prime}	\hat{a}	\bar{a}	$\tilde{a}_{\mathcal{B}}$
10	0	10	0.51	0.51	0.68
11	0	11	2.53	2.54	2.70
12	0	12	10.14	10.14	10.82

$\log (N)$	s^{\prime}	t^{\prime}	\hat{a}	\bar{a}	$\tilde{a}_{\mathcal{B}}$
10	2	8	2.53	2.54	2.71
11	3	8	5.01	5.07	5.41
12	$\mathbf{4}$	8	9.81	10.14^{*}	10.82

- Left: 2 rounds before the distinguisher, 2 rounds after
- Right: 1 round before the distinguisher, 2 rounds after
*:non-accuracy: due to the non-independence of the structures

Only ONE Differential

- In the case of a single input differential $(t=1)$
- $N_{S}=2^{s+t-1}\left(2^{t}-1\right)$ can not be estimated as $N_{S} \approx 2^{s+2 t-1}$
- Maximal advantage: advantage using the full codebook
- Without the approximation, the maximal advantage is 0.72
- This advantage was previously estimated as 1.42
- The time complexity of the recent impossible differential attacks on SIMON is larger than estimated.

LBlock and CRYPTON

- Key-recovery attack on 23 rounds of LBlock of Boura et al
- Data complexity of $2^{55.5}$
- The time complexity has been computed for an advantage of 30.6 bits
- Corrected advantage: 28.69 bits
- Key-recovery on 7 rounds of CRYPTON of Boura et al
- Data complexity: $2^{114.9}$ known plaintexts
- The time complexity has been computed for an advantage of 148.44 bits
- Corrected advantage: 145.45 bits
- This result does not influence the overall time complexity since it is not dominated by the exhaustive key-search

Conclusion

- We analyze the advantage of impossible differential attacks
- We corrected it from

$$
\frac{N_{S}}{\ln (2)}\left(2^{-\ell}\right)
$$

to

$$
\frac{N_{S}}{\ln (2)}\left(2^{-\ell}-2^{-n}\right)
$$

- This result has an impact on the complexity of the exhaustive key search when ℓ is close to n
- We partially solve the problem of asymmetry between chosen plaintext and chosen ciphertext impossible differential attacks

