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Abstract. Random number generators (RNGs) are essential for cryptographic ap-
plications. In most practical applications, the randomness of RNGs is provided
by entropy sources. If the randomness is less than the expected, the security of
cryptographic applications could be undermined. Accurate entropy estimation is a
critical method for the evaluation of RNG security, and significant overestimation and
underestimation are both inadvisable. The NIST Special Publication 800-90B is one
of the most common certifications for entropy estimation. It makes no assumption of
the entropy source and provides min-entropy estimation results by a set of entropy
estimators. It estimates the entropy sources in two tracks: the IID (independent
and identically distributed) track and non-IID track. In practice, non-IID entropy
sources are more common, as physical phenomenon, sampling process or external
perturbation could cause the dependency of the outputs.
In this paper, we prove that the Collision Estimate and the Compression Estimate
in non-IID track could provide significant underestimates in theory. In order to
accurately estimate the min-entropy of non-IID sources, we provide a formula of min-
entropy based on conditional probability, and propose a new estimator to approximate
the result of this formula. Finally, we perform experiments to compare our estimator
with the NIST estimators using simulated non-IID data. Results show that our
estimator gives close estimates to the real min-entropy.
Keywords: Entropy estimation · NIST SP 800-90B · Min-entropy · Random number
generator

1 Introduction
Random number generators (RNGs) play an important role in cryptographic systems.
They are widely employed in generating secret keys, initialization vectors, nonces, and so
on. The security of most cryptographic schemes and protocols is based on the randomness
of output numbers generated by RNGs. RNGs are classified into two types: pseudo-random
number generators (PRNGs) and true random number generators (TRNGs). In general,
PRNGs use deterministic algorithms to extend the seeds for generating long sequences,
and the seeds are generated by TRNGs based on entropy sources.
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The security of PRNGs is based on the randomness of their seeds. There have been
many examples of systems or platforms which use PRNG seeds with insufficient randomness.
Naturally and inevitably, some cryptographic keys generated in these systems or platforms
were compromised, as in [DGP09, GPR06, VP16]. Therefore, it is critical to assess and
quantify the randomness (i.e., express the level of randomness as an amount) of the
entropy source. Randomness has three features: unpredictability, unbiasedness and non-
repeatability. Several commonly used statistical test suites are to check whether the
outputs are of perfect randomness, such as Diehard [Mar] and the NIST SP 800-22 [R+],
but they are not able to quantify the randomness. Instead, people use the concept of
entropy to measure the unbiasedness and unpredictability of the entropy source’s outputs,
and the non-repeatability is validated by restart tests. There are many possible types
of entropy; for cryptographic applications, the min-entropy is a proper choice, because
min-entropy corresponds to the difficulty of guessing the most likely output of the entropy
source [T+16].

Nowadays, there are two main security certifications including entropy estimation. One
is the AIS 20/31 [KS] developed by German BSI (Federal Office for Information Security).
In this certification, TRNG designers are required to provide a stochastic model of the
entropy source, so the entropy can be estimated in theory according to the model. The
other certification is the estimation suite in the NIST Special Publication (SP) 800-90B
[T+16], and the latest version is the second draft published in 2016. Different with the AIS
20/31, the SP 800-90B provides a serial of statistical algorithms to estimate min-entropy
with no assumption. It first checks whether the outputs are IID through a set of statistical
tests. In IID track, it only employs one basic estimator; in non-IID track, it further employs
additional 9 entropy estimators. The minimum estimate of all estimators is selected as the
final result. These two certifications have different emphases. The AIS 20/31 is a more
stringent but risky approach, as the entropy estimation heavily depends on the provided
stochastic model. On the contrary, the black-box NIST estimation suite may not be very
precise, but less risky. Therefore, the NIST certification is more convenient for designers
and verifiers to estimate the entropy of entropy sources.

There are a lot of statistical methods on entropy estimation based on output data, some
of which have been adopted by the second draft of NIST SP 800-90B. The basic type is the
frequency-counts estimator, which approximates the distribution of the outputs on the basis
of frequency, such as [Gra03, Pan03, Rou99]. In another way, some use Bayesian methods
to estimate the entropy, such as [WW94, NSB01]. Besides these two main methods,
compression algorithms are employed in entropy estimation, such as [KASW98, WZ89],
and Hagerty and Draper [HD] proposed a conception of “entropic” statistics and used them
to estimate the entropy. At CHES 2015, Kelsey et al. [KMT15] provided novel predictive
models for entropy estimation. This method is based on the knowledge of machine learning,
which is a new approach included in the second draft of NIST SP 800-90B.
Motivation. The current version of NIST SP 800-90B [T+16] consists 10 capable estima-
tors, each of which targets one or more properties (such as periodicity) of the assessed
entropy source, so overestimation seldom occurs in the final result. Meanwhile, the under-
estimation of each estimator has a negative impact on the performance of the suite, as the
minimum of all estimates is chosen as the final result. The significant underestimations of
some estimators have been pointed out by Kelsey et al. [KMT15], but the reasons have
not been revealed. Furthermore, it is still a challenge to accurately estimate the entropy
for non-IID entropy sources, due to the contained complex dependency in these sources.
Our contributions. In this paper, we study the min-entropy estimation methods of
SP 800-90B for non-IID entropy sources, especially for the Collision Estimate and the
Compression Estimate. We explain the reasons of underestimation for the Collision
Estimate and the Compression Estimate by theoretical analysis and experimental validation.
In order to accurately estimate the min-entropy of non-IID sources, we provide a formula of



Shuangyi Zhu, Yuan Ma, Tianyu Chen, Jingqiang Lin and Jiwu Jing 153

min-entropy based on conditional probability, and propose a new estimator to approximate
the result of this formula. Finally, we perform experiments to compare our estimator with
the NIST estimators using simulated non-IID data.

In summary, we make the following contributions.

1. We explain the reasons of the underestimation for the Collision Estimate and the
Compression Estimate for the first time. Figuring out the reason of this underestima-
tion has a practical significance for improving the draft of SP 800-90B and guiding
the design of similar estimators.

2. We provide a specific formula of min-entropy for non-IID entropy sources, and
propose a new estimator for non-IID track based on our formula, especially for
the entropy source based on Markov model. Comparison result with the Markov
Estimate shows that, our estimator has smaller statistical error, lower computational
overhead, and wider scope of application.

3. We compare the performance between our estimator and the NIST estimators, using
two types of non-IID data with known entropy values. Our estimator gives close
estimates to the real min-entropy, and its performance is comparable or much better
than that of the NIST estimators.

Organization. The rest of this paper is organized as follows. In Sect. 2, we introduce
the definition of min-entropy and the NIST estimation suite. In Sect. 3, we explain the
underestimation for the Collision Estimate and the Compression Estimate, and perform
the theoretical analysis and experimental validation. In Sect. 4, we propose our estimator
and compare it with the Markov Estimate and prediction based estimators in the NIST
estimation suite. We also perform the experiment to compare the performance between
our estimator and the NIST estimators. In Sect. 5, we conclude the paper.

2 Preliminary
In this section, we introduce the definition and formula of the min-entropy. We also
introduce the entropy estimation procedure and the estimators employed in the second
draft of SP 800-90B [T+16].

2.1 Min-entropy of Entropy Sources
The entropy source has been defined in [T+16]. As assumed in [T+16], the outputs obtained
from an entropy source take values from a finite alphabet.

We take the next output from the entropy source as a random variable X. For the
independent discrete random variable X, the NIST SP 800-90B [T+16] gives the definition
of min-entropy: if X takes value from the set A = {x1, x2, ..., xk} with probability
Pr{X = xi} = pi for i = 1, ..., k, the min-entropy

H = min
1≤i≤k

(− log2 pi)

= − log2 max
1≤i≤k

pi. (1)

If the min-entropy of X is h, then the occurring probability of any particular value is no
greater than 2−h. The maximum possible value for min-entropy of an IID random variable
with k distinct values is log2 k, which is achieved when the random variable has an uniform
probability distribution, i.e., p1 = p2 = ... = pk = 1

k .
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For Markov process, Kelsey et al. gave a definition of min-entropy in [KMT15]. A
stochastic process {sn}n∈N that takes values from a finite set A = {x1, ..., xk} is called a
first-order Markov chain, if

Pr{sn+1 = qn+1|sn = qn, sn−1 = qn−1, ..., s0 = q0} = Pr{sn+1 = qn+1|sn = qn},

where q0, ..., qn+1 ∈ A. For a dth-order Markov Model, the transition probabilities satisfy

Pr{sn+1 = qn+1|sn = qn, ..., s0 = q0} = Pr{sn+1 = qn+1|sn = qn, ..., sn−d+1 = qn−d+1}.

The min-entropy of the first-order Markov chain of length c+ 1 is defined as

H = − log2
(

max
(q0,...,qc)∈Ac+1

pq0

c∏
j=1

pqjqj+1

)
, (2)

where pq0 = Pr{s0 = q0} and pqjqj+1 = Pr{sj+1 = qj+1|sj = qj}. The entropy per sample
can be approximated by dividing H by c+ 1.

2.2 Entropy Estimation Procedure in Draft SP 800-90B
Firstly, the tested data from entropy sources are divided into two tracks through a set of
statistical tests: IID track and non-IID track. Then, different estimators are employed
in different tracks. There are 10 estimators for non-IID track: the Most Common Value
Estimate, the Collision Estimate, the Markov Estimate, the Compression Estimate, the
t-Tuple Estimate, the Longest Repeated Substring (LRS) Estimate, the Multi Most
Common in Window (MultiMCW) Prediction Estimate, the Lag Prediction Estimate, the
MultiMMC Prediction Estimate, and the LZ78Y Prediction Estimate. According to the
underlying methods they employ, we divide these estimators into 3 classes: basic type,
statistic based type, and prediction based type, which are shown in Table 1. For IID track,
only the Most Common Value Estimate is employed.

In the estimation process, each estimator calculates its own estimate independently.
Among all estimates, the minimum one is selected as the final estimate for the entropy
source.

Table 1: Classification of NIST estimators

Basic type Statistic based type Prediction based type
Most Common Value
Estimate

Collision
Estimate

MultiMCW Prediction
Estimate

t-Tuple Estimate Lag Prediction Estimate

LRS Estimate Compression
Estimate MultiMMC Prediction Estimate

Markov Estimate LZ78Y Prediction Estimate

2.3 Estimators in Draft SP 800-90B
We first introduce the basic type estimators. The Most Common Value Estimate computes
entropy based on the frequency of the most common value concluded in the tested data.
The t-Tuple Estimate and LRS Estimate are extensions of the Most Common Value
Estimate. They compute entropy based on the frequency of the most common tuples in
the tested data. The Markov Estimate computes entropy by assuming that the tested data
obey a first-order Markov model.
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The following are the detailed introductions to the statistic based and the prediction
based estimators included in the second draft of SP 800-90B.
The Collision Estimate. This estimator is proposed by Hagerty and Draper [HD].
In the tested data sequence, if any value repeats, we call there exists a collision. This
estimator calculates the mean number of samples to the first collision as the statistic. On
the basis of this statistic, it provides an estimate of the probability of the most-likely
output value. The following are the calculation steps of the Collision Estimate, given the
inputs S = (s1, ..., sL), where si ∈ A = {x1, ..., xk}.

1. Let v denote the total number of collisions in S. Let ti denote the number of samples
that are used to generate the ith collision. Calculate the mean X̄ that is the statistic,
and the sample standard deviation σ̂, of ti as

X̄ = 1
v

v∑
i=1

ti, σ̂ =

√√√√1
v

v∑
i=1

(ti − X̄)2.

2. Compute the lower bound of the 99% confidence interval for the statistic, based on a
normal distribution,

X̄ ′ = X̄ − 2.576 σ̂√
v
.

3. Let k be the number of possible values of the inputs. Using a binary search, solve
for the parameter p, such that

X̄ ′ = pq−2(1 + 1
k

(p−1 − q−1)
)
F (q)− pq−1 1

k
(p−1 − q−1), (3)

where
q = 1− p

k − 1 ,

p ≥ q,

F (1
z

) = Γ(k + 1, z)z−k−1ez,

and Γ(a, b) is the incomplete Gamma function,

Γ(a, b) =
∫ +∞

b

xa−1e−xdx.

4. If the binary search yields a solution, then the min-entropy estimate is calculated as
− log2(p), otherwise the min-entropy estimate is calculated as log2(k).

The Compression Estimate. This estimator computes the entropy rate of inputs on the
basis of Maurer Universal Statistic presented in [Mau92]. In order to calculate the statistic,
the inputs are first partitioned into two disjoint parts. The first part is used to establish
a dictionary for the universal compression algorithm; the second part serves as the test
group to calculate the Maurer statistic. The calculation steps in the Compression Estimate
are listed as follows, given the inputs S = (s1, ..., sL), where si ∈ A = {x1, ..., xk}.

1. Partition the inputs into two disjoint groups.

(a) Create the dictionary from the first d = 1000 observations, (s1, s2, ..., sd).
(b) Use the remaining v = L− d observations, (sd+1, ..., sL), for testing.
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2. The Maurer statistic is computed as:

X̄ = 1
v

L∑
i=d+1

log2Ai,

where

Ai =
{
i, if si 6= sj ∀ 0 < j < i,
i−max{j : j < i and sj = si}, otherwise. (4)

3. Compute the lower bound of the 99% confidence interval for X̄, using

X̄
′

= X̄ − 2.576σ̂√
v

,

where

σ̂ = α

√∑L
i=d+1(log2Ai)2

v
− X̄2, α = 0.7− 0.8

b
+

(4 + 32
b )v−3/b

15 ,

and b = blog2 kc+ 1.

4. Using a binary search, solve for the parameter p, such that following equation is
satisfied:

X̄ ′ = G(p) + (k − 1)G(q) (5)

where

G(z) = 1
v

L∑
t=d+1

t∑
u=1

log2(u)F (z, t, u), q = 1− p
k − 1 ,

and
F (z, t, u) =

{
z2(1− z)u−1, if u < t,
z(1− z)t−1, if u = t.

5. If the binary search yields a solution, then the min-entropy estimate is calculated as
− log2(p), otherwise the min-entropy estimate is calculated as log2(k).

Prediction Based Type Estimators. Estimators of prediction based type are proposed
by Kelsey et al. [KMT15] and adopted by the second draft of SP 800-90B. These estimators
attempt to predict the next sample in a sequence based on previous samples, and provide
an estimate based on the probability of successfully predicting a source’s outputs.

Each predictor (i.e., prediction based estimator) consists of a set of subpredictors.
The predictor takes a competition strategy among its subpredictors, and it chooses the
subpredictor with the highest rate of successful predictions to predict the subsequent
output.

Below we introduce the specific mechanisms of the subpredictors [KMT15].

1. Most Common in Window Subpredictor. This kind of subpredictors includes
a sliding window to record the most recently observed t samples. It predicts the
subsequent output on the basis of the most common value in the window. The
window size t takes value in {63, 255, 1023, 4095}.

2. The Lag Subpredictor. This kind of subpredictors is designed to detect the
correlation and periodicity. The prediction value is the same as the tth former value.
The range of the parameter t is set from 1 to 128 in this predictor.
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3. The Markov Model Counting Subpredictor. This kind of subpredictors records
the occurrences of transitions from a fixed length pattern to a subsequent output,
and makes a prediction, based on the most frequently observed transition from the
current outputs.

4. The LZ78Y Subpredictor. This kind of subpredictors keeps a dictionary to record
tuples that have appeared in previous outputs. The subpredictor is based on the
LZ78 algorithm and the dictionary has a fixed size of 65536.

3 On the Underestimation of Statistic Based Estimators
In this section, we first discuss the negative impact of underestimation on the suite, and
explain the reasons why the Collision Estimate and the Compression Estimate often provide
underestimations. We present both theoretical analysis and experimental validation.

3.1 Impact of Underestimation
In non-IID track, estimators in the NIST estimation suite may give both underestimation
and overestimation. As the SP 800-90B suite consists a serial of capable estimators and
the minimum estimate is selected as the final result, overestimation seldom occurs in
the final result, as long as one estimator provides a (nearly) correct estimate. Therefore,
most overestimated values are not reflected in the final result. For example, the Most
Common Value Estimate always gives the overestimates, but these results are discarded in
the end. However, if an estimator provides a significant underestimate, the final result
will be assigned to this underestimated value no matter how correct other estimators are.
Therefore, we hold the opinion that, the underestimations of estimators are more harmful
to the performance of the NIST estimation suite, thus should be avoided.

3.2 Analysis on Collision Estimate
We find that the Collision Estimate could underestimate the entropy source in both IID
and non-IID tracks due to the following reasons.

1. For non-IID track, this estimator approximates the min-entropy on the basis of a
statistic calculated from tested non-IID data, however, the formula used to calculate
the statistic holds only under the hypothesis that the sources are IID.

2. For IID track, the Collision Estimate is highly sensitive to the statistic when the
entropy sources are (almost) perfectly random.

Non-IID situation. This estimator calculates the min-entropy primarily according to Eq.
(3). In order to illustrate the unsuitability of Eq. (3) for non-IID sources, we calculate a
new equation of X̄ and p when the inputs obey a first-order Markov process as an example,
as shown in Theorem 1.

Theorem 1. Let {sn}n∈N be a first-order Markov process of {0, 1}, whose transfer matrix

is
(

p 1− p
1− p p

)
, where p > 0.5. Then the theoretical min-entropy H equals to

− log2(3− E(X̄)), where E(X̄) is the expectation of collision statistic X̄of {sn}.

Proof. Let t be the number of samples to generate a collision. Since all the possible
collision patterns are “00”,“11”,“010”,“011”,“100”, and “101”, the value of t can only be 2
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or 3. Then, E(X̄) is calculated as

E(X̄) = 2× Pr{t = 2}+ 3× Pr{t = 3}
= 2× p+ 3× (1− p)
= 3− p.

For the first-order Markov process, according to Eq. (2), the theoretical min-entropy
per sample is

H = − 1
n

log2(0.5× pn−1) ≈ − log2(p) = − log2(3− E(X̄)),

when n is large.

Fig. 1 shows the difference of the min-entropy derived from Theorem 1 and the Collision
Estimate. It is observed that the results from the Collision Estimate are always lower than
the theoretical ones, and the errors cannot be ignored at most cases of X̄. Since the SP
800-90B chooses the minimum estimate among all estimates as the final result, the suite
significantly underestimates the min-entropy of this kind of non-IID entropy sources.
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Figure 1: The comparison of min-entropy derived from Theorem 1 and the Collision
Estimate

IID situation. Although the Collision Estimate is designed under the IID assumption
(but used in non-IID track), we find that it still often underestimates the entropy sources
that are perfectly random (i.e., the outputs have a uniform probability distribution). One
reason is that the Collision Estimate is extremely sensitive to the statistic X̄ when the
min-entropy is close to its upper bound. In addition, it takes the 99% confidence interval’s
lower bound of X̄ to calculate the min-entropy, which means a value slightly smaller than
X̄ is calculated to estimate the min-entropy. However, this causes a significant reduction
of the min-entropy estimate due to the high sensitivity to X̄. We present Theorem 2 to
prove the above observations.

Theorem 2. The min-entropy H derived by the Collision Estimate is a function of
X̄. 1) When H approaches log2(k), dH

dX̄
approaches infinity. 2) The Collision Estimate

underestimates a perfect entropy source with probability 0.99.



Shuangyi Zhu, Yuan Ma, Tianyu Chen, Jingqiang Lin and Jiwu Jing 159

Proof. According to Eq. (3), X̄ is a function of p. Hagerty and Draper [HD] proved that

dX̄

dp
< 0 for p ∈

(1
k
, 1], and dX̄

dp
= 0 when p = 1

k
, (6)

where k and p are the same as the notations in Sect. 2.3. We can consider p as a function
of X̄ and lim

p→ 1
k

dp
dX̄

=∞ according to Eq. (6). Then we can get,

lim
H→log2(k)

dH

dX̄
= lim

p→ 1
k

dH

dp
× dp

dX̄

= k

ln(2) ×∞

= ∞.

That is, when H approaches log2(k), dH
dX̄

approaches infinity.
Then we will prove the second statement. According to Eq. (6), we can conclude that

H is a monotonic increasing function of X̄. As we mentioned in Sect. 2.3, the statistic X̄
approximately obeys a normal distribution N (µ, σ̂2), where µ and σ̂2 are the expectation
and variance of X̄, respectively. The theoretical entropy of a perfect entropy source is
H(µ) = log2(k), and the derived min-entropy of the Collision Estimate is H(X̄ ′) , where
X̄ ′ = X̄ − 2.576 σ̂√

v
and v is the number of collisions. Then we get the probability that the

Collision Estimate underestimates a perfect entropy source as

Pr{H(X̄ ′)−H(µ) < 0} = Pr{X̄ ′ < µ} = 0.99.

The two statements in Theorem 2 jointly cause the Collision Estimate to give an
obvious underestimation of the min-entropy for (almost) perfectly random IID outputs.
We note that, for other types of estimators, the second statement in Theorem 2 is also
applicable, but the first statement does not hold. These estimators directly take the upper
bound of the probability p instead of X̄, yielding that lim

p→ 1
k

dH
dp = −k/ ln(2) which is finite.

Therefore, they do not have this problem.

3.3 Analysis on Compression Estimate
The Compression Estimate may underestimate the non-IID sources for the same reason
with the Collision Estimate, as its statistic is also calculated under IID assumption. This
estimator calculates the min-entropy primarily according to Eq. (5). We employ the same
method to illustrate the unsuitability of Eq. (5) for non-IID sources in Theorem 3.

Theorem 3. Let {sn}n∈N be a first-order Markov process of {0, 1}, whose transfer matrix

is
(

p 1− p
1− p p

)
, where p > 0.5. Then E(X̄) =

∞∑
i=2

log2(i)× (1− p)2pi−2, where E(X̄)

is the expectation of compression statistic X̄of {sn}.

Proof. Following the definition of Ai in Eq. (4), we get the probability

Pr{Ai = i} =
{
p, i = 1,
(1− p)2pi−2, i > 1.



160 Analysis and Improvement of Entropy Estimators in NIST SP 800-90B

Then we have the expectation

E(X̄) =
∞∑
i=1

log2(i)× Pr{Ai = i}

=
∞∑
i=2

log2(i)× (1− p)2pi−2 + log2(1)× p

=
∞∑
i=2

log2(i)× (1− p)2pi−2. (7)

According to Theorem 3, p can be calculated based on E(X̄) by Eq. (7). Then, we can
get the min-entropy H = − log2(p), which has been proved in Theorem 1.

Fig. 2 depicts the difference of the min-entropy derived from Theorem 3 and the
Compression Estimate. We can draw the similar conclusion with the Collision Estimate
that the Compression Estimate distinctly underestimates the min-entropy for the entropy
source following a first-order Markov process.
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Figure 2: The comparison of min-entropy derived from Theorem 3 and the Compression
Estimate

3.4 Experimental Validation
Non-IID source. Using MATLAB, we simulate an entropy source based on the first-order
Markov process defined in Theorems 1 and 3 with different p’s. The data size of each group
is 106. Then we test the outputs with all estimators in the SP 800-90B. The experimental
results are listed in Table 2.
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Table 2: Entropy estimates for first-order Markov process with different p’s

Estimator p = 0.8 p = 0.75 p = 0.7 p = 0.65 p = 0.6 p = 0.5
1. MostCommon 0.9956 0.9958 0.9942 0.9948 0.9960 0.9959
2. LRS 0.5603 0.6836 0.7943 0.8763 0.9234 0.9886
3. MultiMCW 0.4843 0.6249 0.7007 0.8200 0.8758 0.9985
4. Markov 0.3256 0.4184 0.5152 0.6232 0.7365 0.9975
5. t-Tuple 0.3230 0.4134 0.5385 0.6134 0.7219 0.9469
6. Lag 0.3199 0.4132 0.5113 0.6198 0.7333 0.9966
7. MultiMMC 0.3199 0.4132 0.511 0.6198 0.7333 0.9962
8. LZ78Y 0.3199 0.4132 0.5113 0.6198 0.7333 0.9970
9. Compression 0.2223 0.2844 0.3518 0.4304 0.5228 1
10. Collision 0.1704 0.2266 0.2895 0.3681 0.4618 0.9178
Theoretical
min-entropy 0.3219 0.4150 0.5141 0.6214 0.7369 1

From Table 2 we observe that, for this kind of data, the Collision Estimate always
provides the minimum estimate among all estimators. The min-entropy from the Compres-
sion Estimate is larger than that from the Collision Estimate but also lower than other
estimates, except for p = 0.5. The prediction based estimators and Markov estimator
provide close estimates with the theoretical min-entropy. We present Fig. 3 to depict
the results in Table 2 intuitively. It is observed that, the estimates of the No. 4 to
No. 8 estimators are similar, while estimates of the No. 9 and No. 10 estimators (i.e.
the Collision Estimate and the Compression Estimate) have significant reductions. This
confirms the inaccuracy of the Collision Estimate and the Compression Estimate.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

The ordinal number of estimators in Table 2

M
in

−
en

tr
op

y 
es

tim
at

es

 

 

p=0.8
p=0.75
p=0.7
p=0.65
p=0.6
p=0.5

Figure 3: Min-entropy estimates of the NIST estimators for the first-order Markov progress

IID source. To confirm that the Collision Estimate also underestimates the perfectly
random entropy sources, we choose several popular PRNGs including Blum-Blum-Shub
generator (BBS) [BBS86], Linear Congruential Generator (LCG), Modular Exponentiation
Generator (MODEXPG), and Micall-Schnorr Generator (MSG). We employ these PRNGs
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Table 3: Entropy estimates for (almost) perfectly random data generated by different
PRNGs

Estimator BBS LCG MODEXPG MSG
MostCommon 0.9877 0.9893 0.9882 0.9832

LRS 0.9984 0.9996 0.9951 0.9803
MultiMCW 0.9873 0.9918 0.9834 0.9910
Markov 0.9927 0.9941 0.9853 0.9856
t-Tuple 0.9227 0.9359 0.9319 0.9430
Lag 0.9881 0.9947 0.9913 0.9931

MultiMMC 0.9910 0.9926 0.9883 0.9912
LZ78Y 0.9945 0.9910 0.9931 0.9924

Compression 1 1 1 1
Collision 0.8250 0.8527 0.8630 0.8742

to generate (almost) perfectly random numbers with 105 bits for each data set. Table 3
shows that, the Collision Estimate’s results are all under 0.9 and obviously lower than the
results of other estimators, which is consistent with our theoretical conclusion.

4 Proposed Estimator Based on Conditional Probability
In this section, we propose a new estimator to calculate the min-entropy according to
conditional probability. Then, we compare it with the Markov Estimate and prediction
based estimators, and analyze the advantages of our estimator. Finally, we perform
experiments to validate our analysis.

4.1 Proposed Formula of Min-entropy
As introduced in Sect. 2.1, Eq. (1) provided by the SP 800-90B [T+16] is only suitable
for the IID entropy source, and Eq. (2) presented by Kelsey et al. [KMT15] targets the
first-order Markov process. Therefore, we provide a new formula for high order Markov
process, as this process is a very common model for non-IID entropy sources in real world.

We denote the outputs of an entropy source as {sn}n∈N, where sn ∈ A = {x1, ..., xk}.
We focus on the most-likely probability of the value of the subsequent output. By assuming
that any output sq only depends on its previous d samples {sq−d, sq−d+1, ..., sq−1} denoted
as sd, the probability distribution of sq is represented as Pr{sq = xi|sd = ξ} = pξ,i, where
ξ ∈ Ad and i = 1, ..., k. As the previous output sequence sd has different possible values,
we employ the weighted mean value of max

1≤i≤k
pξ,i to calculate the min-entropy

HD = − log2
( ∑
ξ∈Ad

Pr{sd = ξ} max
1≤i≤k

pξ,i
)
. (8)

We note that Eq. (8) is a theoretical formula based on conditional probability. Next,
we propose an estimator for HD.

4.2 Proposed Estimator Based on Conditional Probability
We use similar idea of the Most Common Value Estimate to estimate the values of
conditional probabilities. The following are the estimating steps of our estimator.

Given the inputs S = (s1, ..., sL), where si ∈ A = {x1, ..., xk},
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1. Set the length w of sw to 16 (this value can change according to the data size).

2. Record the pattern of (si, si+1, ..., si+w−1), from i = 1 to i = L − w. Count the
number of different kinds of patterns, denoted as Z, and denote these patterns as
ξ1, ξ2, ..., ξZ . Then, count the number of their occurrences, denoted as B[1], B[2],...,
B[Z].

3. If min
1≤i≤Z

B[i] < len = 166, set w = w − 1, and go to Step 2.

4. For each pattern, record the value of the subsequent element and count the number
of the most common value. Denote these numbers as M [1],M [2], ...,M [Z].

5. Approximate Pr{sw = ξi} by B[i]
L−w and approximate max

1≤j≤k
pξi,j by

M [i]
B[i] .

6. Compute the probability p of the most-likely subsequent output,

p =
Z∑
i=1

(M [i]
B[i] ×

B[i]
L− w

)
=

Z∑
i=1

M [i]/(L− w).

7. Calculate the upper bound of the 99% confidence interval of p, p0.99 = min
(
1, p+

2.576
√

p(1−p)
L−w

)
.

8. The min-entropy HD is estimated as − log2(p0.99).

Example. For illustrative purposes, we suppose that w = 2, k = 2, L = 17 and
S = (1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1). Then, the number of patterns is 4, and we
calculate that s1 = (1, 0), B[1] = 3, M [1] = 3, s2 = (0, 0), B[2] = 6, M [2] = 3, s3 = (0, 1),
B[3] = 3, M [3] = 2, s4 = (1, 1), B[4] = 3, and M [4] = 2. Then we get p = 3+3+2+2

17−2 = 2
3 ,

p0.99 = 0.98, and HD = − log2(p0.99) = 0.02. Note that, HD is very small in this example,
as the sample length is too short.
Parameter setting. We set the initial value of w as 16, because the highest order of the
Markov model considered in the SP 800-90B is 16. We set the value of len as 166 to ensure
the statistical errors of max

1≤j≤k
pξi,j are no larger than 2.576 ∗

√
p∗(1−p)

166 (≤ 0.1) in the 99%

confidence level. These statistical errors are due to using M [i]
B[i] to approximate max

1≤j≤k
pξi,j .

As these statistical errors offset each other when calculating the weighted average value in
Step 6, the final statistical error of p is much less than 0.1 in practice.
Computational overhead. The overhead of our proposed estimator is comparable to
that of one subpredictor of the MultiMMC Prediction Estimate, thus is not expensive.
Recommended size for tested data. If the subsequent output of an entropy source
mainly depends on its previous d samples (d < w), the data length len× kd will be enough
for our estimator to provide an accurate estimate. If data size is a concern, users can
decrease the value of len to improve the applicability.

4.3 Advantages over Markov Estimate
The Markov Estimate assumes that the tested data obey a first-order Markov model. It
calculates the initial probability of each possible value xi in A = {x1, ..., xk} and the k× k
transition matrix. Then, it computes the maximal possibility Pmax of a sequence with
length 128 according to the calculated initial probabilities and transition matrix. The
min-entropy estimate is − 1

128 log2(Pmax).
In fact, the Markov Estimate is basically equivalent to our estimator with w = 1.

The main difference is that, the Markov Estimate focuses on the maximal probability
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of a 128-length sequence, while our estimator focuses on the maximal probability of one
subsequent sample given previous samples.

Compared with the Markov Estimate, our estimator has an obvious advantage in the
estimation for dth-order (d > 1) Markov model, while the Markov Estimate is only suitable
for first-order Markov model due to the heavy computation complexity. Another advantage
is that, our estimator has a lower statistical error thanks to the offset operation in Step 6.

4.4 Comparison with Prediction Based Estimators
The prediction based estimators also focus on the subsequent sample as our proposed
estimator. A predictor consists of a set of subpredictors, and each subpredictor predicts
the next output based on previous samples by a specific algorithm. A predictor takes a
competition strategy among its subpredictors. For each prediction, it predicts the next
output employing the subpredictor with the highest rate of successful predictions. Then,
the predictor uses the correctly predicting probability to calculate the min-entropy.

We point out that the correctly predicting probability of a predictor is also a kind of
conditional probability (as the basis of our proposed estimator) in Theorem 4. To prove
that, we first show the relationship between the correctly predicting probabilities, of a
predictor and its subpredictors, in Lemma 1.

Lemma 1. We denote the correctly predicting probability of the predictor as P0, and denote
that of each subpredictor as Pi, where i = 1, 2, ..., l, and l is the number of subpredictors.
When the length L of inputs is large enough, we have lim

L→∞
P0 = max

i∈(1,...,l)
Pi.

Proof. We denote the jth prediction value of the predictor as Pre0,j and that of each
subpredictor as Prei,j . Without loss of generality, we assume that Pl > Pl−1 > ... > P1.
According to the Bernoulli law of large numbers, we have

∀ε,∃M, s.t. when j > M, Pr{Pre0,j = Prel,j} > 1− ε.

That is to say, after M samples, the lth subpredictor will be chosen almost all the time.
Assuming that L is large enough, if the first M predictions are all successful, we get

lim
L→∞

P0 ≤ lim
L→∞

M + (L−M)× Pl
L

= Pl;

if the first M predictions all fail, we get

lim
L→∞

P0 ≥ lim
L→∞

(L−M)× Pl −M
L

) = Pl.

So we have lim
L→∞

P0 = max
i∈(1,...,l)

Pi.

Theorem 4. When the entropy source follows a stationary process and the tested sequence
is long enough, the correctly predicting probability of a predictor is no larger than the
maximal conditional probability.

Proof. We denote the tested samples as S = (s1, ..., sL), where si ∈ A = {x1, ..., xk},
and the jth prediction value of the subpredictor as Prej . The subpredictor predicts
the subsequent output sq only depending on a fixed length t of previous samples st =
(sq−t, sq−t+1, ..., sq−1), where q = t+ 1, t+ 2, ..., L. Then we can easily get

Pr{sq = Preq|st = ξ} ≤ max
1≤i≤k

Pr{sq = xi|st = ξ}.
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Since the entropy source is stationary, Pr{sq = xi|st = ξ} does not change with time.
According to the total probability formula, we have

Pr{sq = Preq} ≤
∑
ξ∈At

Pr{st = ξ} × max
1≤i≤k

Pr{sq = xi|st = ξ}.

According to Lemma 1, we can easily get that, when the tested sequence is long enough,
the correctly predicting probability of a predictor is no larger than the maximal conditional
probability.

It is reasonable to assume that the entropy source follows a stationary process. If the
inherent entropy of the entropy source varies with time, the static entropy estimation is
meaningless. When the conditions in Theorem 4 are satisfied, a well-designed prediction
based estimator will provide an estimate equaling toHD which is the target of our estimator.
Assume that the subsequent output of an entropy source mainly depends on previous d
samples. When d is not large (e.g., d is less than the chosen w in our estimator), the
min-entropy estimate provided by our estimator is no worse than that of any predictor.
However, when d is large, our estimator may have non-negligible statistical errors due to
the lack of data, while the prediction based estimators may have lower requirement for the
data amount.

4.5 Experimental Results
To evaluate the effectiveness of our proposed estimator, we perform experiments on non-IID
entropy sources to compare our estimator with the NIST estimators. We simulate non-IID
data of the following two common types.
– Markov model. In this model, the samples are generated from the first-order and second-
order Markov processes. The correct theoretical min-entropy of this model can be calculated
by Eq. (8). We generate 10 sets of data with different min-entropy in this model.
– Oscillator-based model. In this model, the samples are simulated by sampling an oscil-
lating signal with phase noise. The correct theoretical min-entropy of this model can be
approximated by the lower bound of entropy in [BLMT11]. We generate 6 sets of data
with different min-entropy in this model.

For each data set with the length 106, we first calculate the correct theoretical min-
entropy, and then perform the estimation by using our estimator and the NIST estimation
suite. The results are shown in Fig. 4 and 5, where we only present our estimate and three
representative estimates: the highest, lowest, and best estimates in the NIST estimation
suite.

Fig. 4 shows the estimation results of simulated data from Markov models. We observe
that estimates provided by our estimator are close to the correct estimates. The highest
estimates are significantly larger than the correct estimates, which are mostly provided by
the Most Common Value Estimate and the Collision Estimate. The lowest estimates which
are close to the correct estimates are provided by prediction based estimators, while the
other lowest estimates, which are much lower than the correct estimates, are provided by
the Collision Estimate. The best estimates in the NIST suite are all provided by prediction
based estimators.

Fig. 5 shows the estimation results of simulated data from the oscillator-based model.
This model only provides binary data, so the entropy per sample is no more than 1.
Our estimates and the best estimates from NIST estimation suite are very close to the
correct estimates. But the highest estimates and lowest estimates are both far away from
the correct estimates. The Most Common Value Estimate always provides the highest
estimates and the Collision Estimate always provides the lowest estimates, which are
consistent with our analysis in Sect. 3.
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Figure 4: The comparison between our estimator and NIST estimation suite using data
from Markov model
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Figure 5: The comparison between our estimator and NIST estimation suite using data
from oscillator-based model

In the experimental results, the best estimates in the NIST suite are always generated
by the prediction based estimators for either type of entropy source. Meanwhile, our
estimator has comparable performance with these estimators, which is consistent with the
conclusion of Theorem 4.
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5 Conclusion
Accurate entropy estimation is critical for the evaluation of RNG security. We prove
that the Collision Estimate and the Compression Estimate could provide significant
underestimates for non-IID data. Furthermore, we propose a novel estimator to calculate
the min-entropy of non-IID sources, from the perspective of the maximal probability of the
subsequent output. Compared with the Markov Estimate, our estimator has a wider scope
of application. We also prove that our proposed estimator is able to show comparable
performance with the excellent prediction based estimators under common conditions.
Experiments on simulated non-IID sources show that our estimator provides close estimates
to the real min-entropy.
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