

Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

Shivam Bhasin¹, Dirmanto Jap¹, Thomas Peyrin^{1,2,3}

¹Temasek Laboratories ²School Of Physical and Mathematical Sciences ³School of Computer Science and Enginnering Nanyang Technological University, Singapore

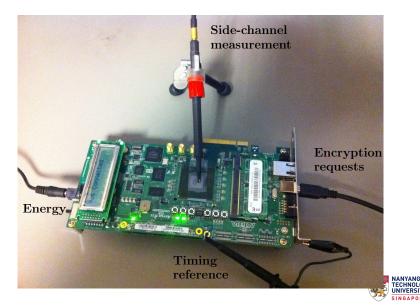
> FSE 2018 Brugge, Belgium

2 Hiding Countermeasure in Software

2 Hiding Countermeasure in Software

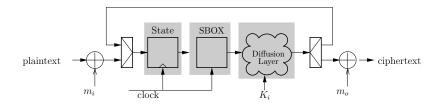
Practical Analysis

Side-Channel Attacks (SCA)



Source: http://www.inmagine.com

Side-Channel Attacks (SCA)

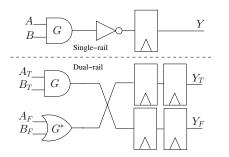


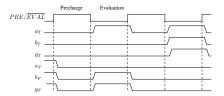
2 / 14

HNOLOGICAL

SCA Countermeasure: Masking

Basic Principle


- \Rightarrow Randomization of the sensitive data¹.
- Power consumption uncorrelated to data.



¹Coron et al, CHES 2000

SCA Countermeasure: Hiding

Dual Rail and Precharge Logic (DPL)

- \Rightarrow Data-Independent Power Consumption
- Duplication \Rightarrow Balanced Activity²
- Two Phases \Rightarrow Constant Transitions.
- $0 \mapsto 01$, $1 \mapsto 10$, precharge $\mapsto 00$, invalid $\mapsto 11$.

²Tiri et al, DATE 2004.

2 Hiding Countermeasure in Software

Hiding Countermeasure in Software

- Idea introduced by Hoogvorst el al in 2011³
- Adopt DPL principle for data representation in software.
- Aimed to reduce (or remove) data dependence of power consumption. Both data and operations are adjusted to enable processing of encoded data.
- Two further proposals:
 - Balanced bit slicing, following DPL method⁴: $0 \mapsto 01$, $1 \mapsto 10$
 - Balanced Encoding⁵: $b_3\overline{b_3}b_2\overline{b_2}b_1\overline{b_1}b_0\overline{b_0}$.
- In practice, both leak but reduce SNR.
- Shows additional fault resistance properties⁶.

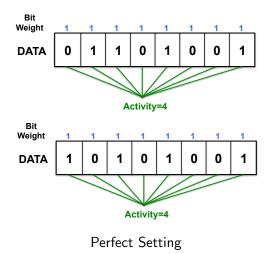
³Hoogvorst et al, COSADE 2011.

⁴Rauzy et al., PROOFS 2014

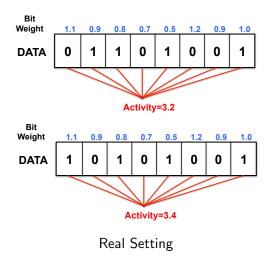
⁵Chen et al., CARDIS 2014

⁶Breier et al, HOST 2016.

Why Does it Leaks?



- Device physics
- DPL assumes equal bit contribution/weight
- In reality, bits have unequal contribution
- Perfect HW/HD model are hard to realise


Why Does it Leaks?

Why Does it Leaks?

• Proposed by Maghrebi et al.⁷

- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

- Proposed by Maghrebi et al.⁷
- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

- Proposed by Maghrebi et al.⁷
- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

- Proposed by Maghrebi et al.⁷
- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

- Proposed by Maghrebi et al.⁷
- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

- Proposed by Maghrebi et al.⁷
- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

- Proposed by Maghrebi et al.⁷
- There is Wisdom in Harnessing the Strengths of Your Enemy
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect Sbox look-up
- Vary from one device copy to another

Simulated Analysis of Customised Encoding

- Derived values from real EM measurements
- AES on 8-bit AVR microcontroller
- Profile for β and noise variances
- Variance of $\beta \in [0.2, 0.8]$
- Variance of noise $\in [5.5, 6.8]$
- Use TVLA⁸ based analysis
- Considered leaking data-dependant information if $t \notin [-4.5, 4.5]$

⁸Goodwill et al, NIAT 2011.

Simulated Analysis of Customised Encoding

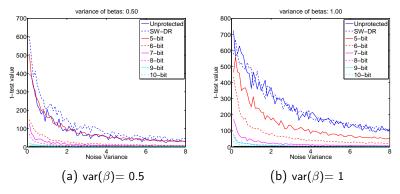


Figure: TVLA results for unprotected and countermeasure (5 to 10 bits encoding and software dual-rail (SW-DR)) with different β variances.

Simulated Analysis of Customised Encoding

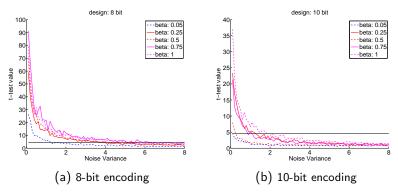


Figure: TVLA results for 8 to 10-bit encoding schemes with different noise levels

2 Hiding Countermeasure in Software

Building Customised Encoding



Figure: Feature selection for β .

- EM measurement on AVR for AES Sbox (LDR+STR)
- β averaged over clock of highest correlation
- Two encodings a1 and a2 derived
- Used to implement lightweight SKINNY

Impact of Changing the Register

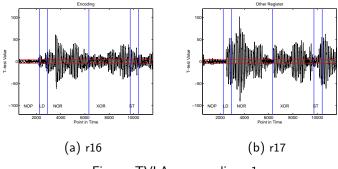


Figure: TVLA on encoding a1

- Implementing whole cipher with one instruction and register can be difficult
- Protecting one instruction and register is possible
- · Encoding must be updated with change in register

Impact of Measurement Method

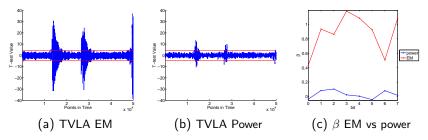
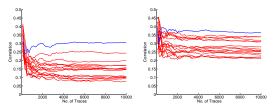
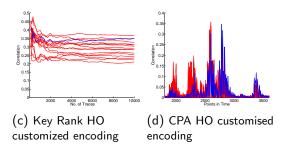


Figure: Leakage profiling comparison: EM vs Power. (c) The β coefficients obtained from EM and power under the same setup.

- Similar observations for different EM positions, time samples.
- Updating/Converting encoding can be costly and leak


Longer & Higher Order Encoding

- Tested longer encodings with 32-bit ARM microcontroller
- Limited to 10 bit encoding due to memory size
- Also tested higher order (HO) encoding taking not only individual β but their coupling affect to arrive at a more precise encoding.



Longer & Higher Order Encoding

(a) Key rank unprotected (b) Key rank customized encoding

2 Hiding Countermeasure in Software

B Practical Analysis

4 Conclusions

Conclusion

- Practically evaluated Customised encoding countermeasure
- Shown sound in simulations
- In practice, temporal and spatial variance of β prevents effective encoding
- Hard to obtain a generic encoding
- Implementing a full cipher was difficult
- Several test cases highlighted on two different microcontrollers
- + β based estimation works well for attacks but its relation with device physics is not clear
- Studying it will help develop strong countermeasures

Thank you! Any questions?

