Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

Shivam Bhasin1, Dirmanto Jap1, Thomas Peyrin1,2,3

1Temasek Laboratories
2School Of Physical and Mathematical Sciences
3School of Computer Science and Engineering
Nanyang Technological University, Singapore

FSE 2018
Brugge, Belgium
1. Context

2. Hiding Countermeasure in Software

3. Practical Analysis

4. Conclusions
1 Context

2 Hiding Countermeasure in Software

3 Practical Analysis

4 Conclusions
Side-Channel Attacks (SCA)

Source: http://www.inmagine.com
Side-Channel Attacks (SCA)
SCA Countermeasure: Masking

Basic Principle

- ⇒ Randomization of the sensitive data\(^1\).
- Power consumption uncorrelated to data.

\(^1\)Coron et al, CHES 2000
SCA Countermeasure: Hiding

Dual Rail and Precharge Logic (DPL)

- ⇒ Data-Independent Power Consumption
- Duplication ⇒ Balanced Activity\(^2\)
- Two Phases ⇒ Constant Transitions.
- 0→01, 1→10, precharge→00, invalid→11.

\(^2\)Tiri et al, DATE 2004.
Hiding Countermeasure in Software
Hiding Countermeasure in Software

- Idea introduced by Hoogvorst et al in 2011\(^3\)
- Adopt DPL principle for data representation in software.
- Aimed to reduce (or remove) data dependence of power consumption. Both data and operations are adjusted to enable processing of encoded data.
- Two further proposals:
 - Balanced bit slicing, following DPL method\(^4\): 0\(\mapsto\)01, 1\(\mapsto\)10
 - Balanced Encoding\(^5\): \(b_3\overline{b}_3b_2\overline{b}_2b_1\overline{b}_1b_0\overline{b}_0\).
- In practice, both leak but reduce SNR.
- Shows additional fault resistance properties\(^6\).

\(^3\)Hoogvorst et al, COSADE 2011.
\(^4\)Rauzy et al., PROOFS 2014
\(^5\)Chen et al., CARDIS 2014
\(^6\)Breier et al, HOST 2016.
Why Does it Leaks?

- Device physics
- DPL assumes equal bit contribution/weight
- In reality, bits have unequal contribution
- Perfect HW/HD model are hard to realise
Why Does it Leaks?

Perfect Setting
Why Does it Leaks?

Real Setting
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.7
 - There is Wisdom in Harnessing the Strengths of Your Enemy
 - Profile actual bit weights (β) from the device
 - Compute encoding from the bit weights to minimise bias
 - Longer encodings (vs 2 bits for DPL)
 - Previously demonstrated to protect S-box look-up
 - Vary from one device copy to another

7 Maghrebi et al, FSE 2016.
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.7
- *There is Wisdom in Harnessing the Strengths of Your Enemy*
 - Profile actual bit weights (β) from the device
 - Compute encoding from the bit weights to minimise bias
 - Longer encodings (vs 2 bits for DPL)
 - Previously demonstrated to protect Sbox look-up
 - Vary from one device copy to another

7Maghrebi et al, FSE 2016.
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.\(^7\)
- *There is Wisdom in Harnessing the Strengths of Your Enemy*
- Profile actual bit weights (\(\beta\)) from the device
 - Compute encoding from the bit weights to minimise bias
 - Longer encodings (vs 2 bits for DPL)
 - Previously demonstrated to protect *Sbox look-up*
 - Vary from one device copy to another

\(^7\) Maghrebi et al, FSE 2016.
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.7
- *There is Wisdom in Harnessing the Strengths of Your Enemy*
- Profile actual bit weights (\(\beta\)) from the device
- Compute encoding from the bit weights to minimise bias
 - Longer encodings (vs 2 bits for DPL)
 - Previously demonstrated to protect \textit{Sbox look-up}
 - Vary from one device copy to another

7Maghrebi et al, FSE 2016.
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.7
- *There is Wisdom in Harnessing the Strengths of Your Enemy*
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
 - Previously demonstrated to protect \textit{Sbox look-up}
 - Vary from one device copy to another

7Maghrebi et al, FSE 2016.
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.7
- \textit{There is Wisdom in Harnessing the Strengths of Your Enemy}
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect \textit{Sbox look-up}
- Vary from one device copy to another

7Maghrebi et al, FSE 2016.
Customised Encoding Countermeasure

- Proposed by Maghrebi et al.7
- \textit{There is Wisdom in Harnessing the Strengths of Your Enemy}
- Profile actual bit weights (β) from the device
- Compute encoding from the bit weights to minimise bias
- Longer encodings (vs 2 bits for DPL)
- Previously demonstrated to protect \textit{Sbox look-up}
- Vary from one device copy to another

7 Maghrebi et al, FSE 2016.
Simulated Analysis of Customised Encoding

- Derived values from real EM measurements
- AES on 8-bit AVR microcontroller
- Profile for β and noise variances
- Variance of $\beta \in [0.2, 0.8]$
- Variance of noise $\in [5.5, 6.8]$
- Use TVLA8 based analysis
- Considered leaking data-dependant information if $t / \notin [-4.5, 4.5]$

8Goodwill et al, NIAT 2011.
Simulated Analysis of Customised Encoding

Figure: TVLA results for unprotected and countermeasure (5 to 10 bits encoding and software dual-rail (SW-DR)) with different β variances.
Simulated Analysis of Customised Encoding

(a) 8-bit encoding

(b) 10-bit encoding

Figure: TVLA results for 8 to 10-bit encoding schemes with different noise levels

Longer encoding helps
Context

Hiding Countermeasure in Software

Practical Analysis

Conclusions
Building Customised Encoding

(a) Region of Interest

(b) CPA results

Figure: Feature selection for β.

- EM measurement on AVR for AES Sbox (LDR+STR)
- β averaged over clock of highest correlation
- Two encodings a_1 and a_2 derived
- Used to implement lightweight SKINNY
Impact of Changing the Register

Figure: TVLA on encoding a1

- Implementing whole cipher with one instruction and register can be difficult
- Protecting one instruction and register is possible
- Encoding must be updated with change in register
Impact of Measurement Method

(a) TVLA EM
(b) TVLA Power
(c) β EM vs power

Figure: Leakage profiling comparison: EM vs Power. (c) The β coefficients obtained from EM and power under the same setup.

- Similar observations for different EM positions, time samples.
- Updating/Converting encoding can be costly and leak
Longer & Higher Order Encoding

- Tested longer encodings with 32-bit ARM microcontroller
- Limited to 10 bit encoding due to memory size
- Also tested higher order (HO) encoding taking not only individual β but their coupling affect to arrive at a more precise encoding.
Longer & Higher Order Encoding

(a) Key rank unprotected
(b) Key rank customized encoding

(c) Key Rank HO customized encoding
(d) CPA HO customised encoding
1 Context

2 Hiding Countermeasure in Software

3 Practical Analysis

4 Conclusions
Conclusion

- Practically evaluated Customised encoding countermeasure
- Shown sound in simulations
- In practice, temporal and spatial variance of β prevents effective encoding
- Hard to obtain a generic encoding
- Implementing a full cipher was difficult
- Several test cases highlighted on two different microcontrollers
- β based estimation works well for attacks but its relation with device physics is not clear
- Studying it will help develop strong countermeasures
Thank you!
Any questions?