A Security Analysis of Deoxys and its Internal Tweakable Block Ciphers

Carlos Cid¹, Tao Huang², Thomas Peyrin², Yu Sasaki³, Ling Song^{2,4}

1. University of London, UK

2. Nanyang Technological University, Singapore

3. NTT Secure Platform Laboratories, Japan

4. Institute of Information Engineering, Chinese Academy of Sciences, China

FSE 2018, Belgium

Outlines

Introduction

- Improved Differential Bounds
- Boomerang Attacks

4 Conclusion

Outline

1 Introduction

- Deoxys
- Deoxys-BC
- Main Results

2 Improved Differential Bounds

3 Boomerang Attacks

4 Conclusion

Deoxys

- A third-round candidate of the CAESAR competition
- Designed by Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Yannick Seurin
- Two AEAD modes:
 - Deoxys-I, the nonce-respecting mode
 - Deoxys-II, the nonce-misuse resistant mode
- Deoxys-BC: AES-based tweakable block cipher
 - Deoxys-BC-256, 14 rounds
 - Deoxys-BC-384, 16 rounds

Deoxys-BC

- AES round function
 - AddRoundTweakey
 - SubBytes
 - ShiftRows
 - MixColumns
- TWEAKEY framework

Figure: Instantiation of the TWEAKEY framework for Deoxys-BC-384.

Deoxys-BC

- Sub-tweakeys
 - Deoxys-BC-256: $STK_i = TK_i^1 \oplus TK_i^2 \oplus RC_i$
 - ▶ Deoxys-BC-384: $STK_i = TK_i^1 \oplus TK_i^2 \oplus TK_i^3 \oplus RC_i$
- Update of *TK*

•
$$TK_{i+1}^1 = h(TK_i^1), TK_{i+1}^2 = h(LFSR_2(TK_i^2)), TK_{i+1}^3 = h(LFSR_3(TK_i^3))$$

Byte permutation h

(0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15
ĺ	1	6	11	12	5	10	15	0	9	14	3	4	13	2	7	8)

LFSRs

$LFSR_2$	$(x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}) \rightarrow (x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} x_{0} x_{7} \oplus x_{5})$
$LFSR_3$	$(x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0) \rightarrow (x_0 \oplus x_6 x_7 x_6 x_5 x_4 x_3 x_2 x_1)$

Main Results

Cid et al.

• New lower bounds on the number of active S-boxes

Deoxys-BC-25	6															
lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
[JNPS16]	0	0	1	5	9	12	16	17	-	22	-	-	-	-		
simple model	0	0	1	5	9	12	16	19	23	26	29	32	35	38		
incompatibility	0	0	1	5	10	14	18	22	27	31	35	40	44	48		
Deoxys-BC-38	4		2	4		6	7	0	0	10	11	10	12	14	15	16
lower bounds	1	2	3	4	5	0	1	8	9	10	11	12	13	14	15	10
[JNPS16]	0	0	0	1	4	8	-	-	-	-	-	22	-	-	-	-
simple model	0	0	0	1	4	8	10	14	18	21	24	28	31	35	37	45
incompatibility	0	0	0	1	5	9	13	18	22	27	31	35	40	44	48	52

Main Results

• Attacks on Deoxys-BC and Deoxys

Deoxys internal primitives

	number	tweak	key	timo	data	momony	attack	rof
	of rounds	size	size	LIIIE	uata	memory	type	iei.
	8/14	128	128	$\leq 2^{128}$	-	-	MitM	[JNPS16]
Deerra-BC-DE6	$\leq 8/14$	128	128	$\leq 2^{128}$	-	-	differential	[JNPS16]
Deoxys-bc-250	9/14	128	128	2^{118}	2^{117}	2^{117}	rectangle	this
	10/14	t < 52	k > 204	2^{204}	$2^{127.58}$	$2^{127.58}$	rectangle	this
	8/16	128	256	$\leq 2^{256}$	-	-	MitM	[JNPS16]
Deoxys-BC-384	12/16	128	256	2^{127}	2^{127}	2^{125}	rectangle	this
	13/16	t < 114	k > 270	2^{270}	2^{127}	2^{144}	rectangle	this

Deoxys AE schemes

Deoxys-I-128-128	9/14	-	128	2^{118}	2^{117}	2^{117}	rectangle	this
Deoxys-II-128-128	-	-	128	-	-	-	-	-
Deoxys-I-256-128	12/16	-	256	2^{236}	2^{126}	2^{124}	rectangle	this
Deoxys-II-256-128	-	-	256	-	-	-	-	-

Outline

Introduction

- Improved Differential Bounds
 - Simple Model
 - Improved Model

3 Boomerang Attacks

4 Conclusion

Single-Key for AES

• For each round, one defines 16 variables $x_i \in \{0, 1\}$, where

$$x_i = \begin{cases} 1, & \text{the } i\text{-th byte is active;} \\ 0, & \text{the } i\text{-th byte is inactive.} \end{cases}$$

• Incorporate the property of branch number 5 of MixColumns: Suppose $(x_0, x_5, x_{10}, x_{15}) \xrightarrow{\text{MixColumns}} (x_{16}, x_{17}, x_{18}, x_{19})$

$$\begin{aligned} x_0 + x_5 + x_{10} + x_{15} + x_{16} + x_{17} + x_{18} + x_{19} \geq 5d_j, \\ d \geq x_0, \ d \geq x_5, \ d \geq x_{10}, \ d \geq x_{15}, \ d \geq x_{16}, \ d \geq x_{17}, \ d \geq x_{18}, \ d \geq x_{19}. \end{aligned}$$

• The objective function:

"minimise $\sum x_i$."

Related-Tweakey with TK^1

• Define 16 variables $stk_i \in \{0, 1\}$, where

 $stk_i = \begin{cases} 1, & \text{the } i\text{-th subtweakey byte is active;} \\ 0, & \text{the } i\text{-th subtweakey byte is inactive.} \end{cases}$

- Related-tweakey with TK^1
 - ▶ Exclude $(x_i, stk_i, y_i) \in \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$ with

$$x_i + stk_i - y_i \ge 0,$$
 $x_i - stk_i + y_i \ge 0,$ $-x_i + stk_i + y_i \ge 0.$

Related-Tweakey with TK^2 and TK^3

- Differential cancellations may happen.
 - \blacktriangleright For ${\it TK}^2,$ there is at most 1 cancellation for each active byte.
 - For TK^3 , there are at most **2** cancellations for each active byte.

Related-Tweakey with TK^2 and TK^3

- Differential cancellations may happen.
 - ▶ For TK^2 , there is at most 1 cancellation for each active byte.
 - For TK^3 , there are at most **2** cancellations for each active byte.

• Let h_{inv} be the inverse of h.

$$\begin{split} \text{LANE}_{i} - \textit{stk}_{i} &\geq 0, \ \text{LANE}_{i} - \textit{stk}_{16+h_{inv}(i)} \geq 0, \ \cdots, \ \text{LANE}_{i} - \textit{stk}_{16(r-1)+h_{inv}^{r-1}(i)} \geq 0, \\ \text{stk}_{i} + \textit{stk}_{16+h_{inv}(i)} + \textit{stk}_{32+h_{inv}^{2}(i)} + \cdots + \textit{stk}_{16(r-1)+h_{inv}^{r-1}(i)} \geq r \cdot \text{LANE}_{i} - \mathbf{1}. \end{split}$$

or

$$\begin{split} \text{LANE}_{i} - \textit{stk}_{i} &\geq 0, \text{ LANE}_{i} - \textit{stk}_{16+h_{inv}(i)} \geq 0, \cdots, \text{ LANE}_{i} - \textit{stk}_{16(r-1)+h_{inv}^{r-1}(i)} \geq 0, \\ \textit{stk}_{i} + \textit{stk}_{16+h_{inv}(i)} + \textit{stk}_{32+h_{inv}^{2}(i)} + \cdots + \textit{stk}_{16(r-1)+h_{inv}^{r-1}(i)} \geq r \cdot \text{LANE}_{i} - \mathbf{2}. \end{split}$$

Application of the Simple Model

• New lower bounds on the number of active S-boxes

Deoxys-BC-256

lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
[JNPS16]	0	0	1	5	9	12	16	17	-	22	-	-	-	-		
simple model	0	0	1	5	9	12	16	19	23	26	29	32	35	38		
Deoxys-BC-3	84															
lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
[
[JNPS16]	0	0	0	1	4	8	-	-	-	-	-	22	-	-	-	-

Limitation of the Simple Model

- There may exist linear incompatibilities.
- Difference cancellations between *STK* and the state imposes some linear relation of key bytes.
 - E.g., $0xF2 \cdot \alpha + 0xF6 \cdot \beta = 0$

Limitation of the Simple Model

- There may exist linear incompatibilities.
- Difference cancellations between *STK* and the state imposes some linear relation of key bytes.
 - E.g., $0xF2 \cdot \alpha + 0xF6 \cdot \beta = 0$

- Cost additional b + c a bytes of degree of freedom
 - a: Number of active bytes before MC. E.g., a = 2
 - b: Number of inactive bytes after MC. E.g., b = 1
 - c: Number of cancellations in ATK. E.g., c = 2

Degrees of Freedom

- Degrees of freedom available
 - $s \cdot \sum \text{LANE}_i$ • s = 2 for TK^2 and s = 3 for TK^3
- Degrees of consumption

Type 1 Cancellations in STK,

• $TK^1[i] \oplus TK^2[i] = 0$ or $TK^1[i] \oplus TK^2[i] \oplus TK^3[i] = 0$

Type 2 Cancellations between STK and the state

• Consume b + c - a bytes of degree of freedom

Representation with MILP

• Degrees of consumption Type 1 for r ounds

$$r \cdot \sum_{i=0}^{15} \text{LANE}_i - \sum_{i=0}^{16r-1} stk_i$$

• Degrees of consumption Type 2: Suppose that $(x_0, x_5, x_{10}, x_{15}) \xrightarrow{MC} (x_{16}, x_{17}, x_{18}, x_{19})$

•
$$a = x_0 + x_5 + x_{10} + x_{15}$$

- ► $b = 4d x_{16} x_{17} x_{18} x_{19}$ where d = 1 means the column is active.
- ▶ For each byte of the column (x_i, stk_i, y_i)

$$-x_{i} - stk_{i} + y_{i} + c_{i} \ge -1, \quad x_{i} + stk_{i} + y_{i} - c_{i} \ge 0,$$

$$-x_{i} - stk_{i} - y_{i} - c_{i} \ge -3, -x_{i} + stk_{i} - y_{i} - c_{i} \ge -2, \quad x_{i} - stk_{i} - y_{i} - c_{i} \ge -2.$$

$$4d - x_{16} - x_{17} - x_{18} - x_{19} + (c_{16} + c_{17} + c_{18} + c_{19}) - (x_0 + x_5 + x_{10} + x_{15}).$$

Representation in the MILP model

Total consumption of degrees

$$s \cdot \sum_{i=0}^{15} \text{LANE}_i \ge \left(r \cdot \sum_{i=0}^{15} \text{LANE}_i - \sum_{i=0}^{16r-1} stk_i\right) + \sum_{j=0}^{4r-1} \text{TYPE}_{2j}.$$

New lower bounds on the number of active S-boxes

Deoxys-BC-256 lower bounds [JNPS16] -_ _ _ _ simple model incompatibility Deoxys-BC-384 lower bounds [JNPS16] _ simple model incompatibility[†]

†Bounds for linear incompatibility are obtained under certain assumptions.

id et al.	A Security Analysis of Deoxys and its Internal Tweakable Block Ciphers	FSE 2018, Belgium	15 / 26
-----------	--	-------------------	---------

Outline

Introduction

2 Improved Differential Bounds

Boomerang Attacks

- Boomerang Switich
- Search for Trails

Conclusion

Introduction of Boomerang attacks

- $E = E_1 \circ E_0$
- Two trails $\alpha \xrightarrow{E_0} \beta$, $\gamma \xrightarrow{E_1} \delta$ with probabilities p and q respectively
- A right quartet can be obtained with probability p²q²
 - Choose P_1 , $P_2 = P_1 \oplus \alpha$
 - $C_1 = E(P_1), C_2 = E(P_2)$
 - Let $C_3 = C_1 \oplus \delta, C_4 = C_2 \oplus \delta$

•
$$P_3 = E^{-1}(C_3), P_4 = E^{-1}(C_4)$$

• Test $P_3 \oplus P_4 = \alpha$

Boomerang Switch

Figure: The ladder switch in a toy three S-box block [BK09].

An Example of the Boomerang Switch

10-round distinguisher of Deoxys-BC-384

R	X	K	Y	Z	p _r
	00 00 00 00	69 00 00 00	69 00 00 00	** 00 00 00	
5	00 00 00 00	00 bb 00 00	00 bb 00 00	** 00 00 00	1
	00 00 00 00	00 00 d2 00	00 00 d2 00	** 00 00 00	1
	00 00 00 00	00 00 00 69	00 00 00 69	** 00 00 00	
	** 00 00 00	00 10 00 00	** 10 00 00	** ** 00 00	
6	** 00 00 00	00 9e 00 00	** 9e 00 00	** 00 00 **	1
0	** 00 00 00	00 8e 00 00	** 8e 00 00	00 00 ** **	1
	** 00 00 00	00 8e 00 00	** 8e 00 00	00 ** ** 00	
	00 ** ** **	00 ee 00 00	00 ** ** **	00 ** ** **	
-	** 00 ** **	00 00 00 00	** 00 ** **	00 ** ** **	1
5	** ** 00 **	00 00 00 00	** ** 00 **	00 ** ** **	1
	** ** ** **	00 00 00 11	** ** ** 00	00 ** ** **	
	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	
6	00 9e 00 00	00 00 00 00	00 9e 00 00	68 00 00 00	2-6
	00 0a ab 00	00 0a 00 00	00 00 ab 00	01 00 00 00	-
	00 00 93 7a	00 00 93 00	00 00 00 7a	b9 00 00 00	

Properties of Truncated Differential Trails

- A few degrees of freedom are left for the master tweakey difference.
- Once the master tweakey difference is fixed, many active bytes of the state are also fixed.

Search for Differential Trails

• Define two types of S-box

Cid et al.

- Type i the input and output differences are determined.
- Type ii the input or output differences are not determined but some constraints are imposed by the subtweakey differences.
- Given a truncated differential trail

Boomerang Distinguishers

E	eoxys-	-BC-256	;	Deoxys-BC-384						
R_1, R_2	#AS	pq	$\hat{p}^2 \hat{q}^2$	R_1, R_2	#AS	pq	$\hat{p}^2 \hat{q}^2$			
4,4	6	2^{-36}	2^{-72}	5,5	4	2^{-24}	2^{-42}			
5,4	9	2^{-61}	2^{-122}	6,5	9	2^{-60}	2^{-120}			
5,5	16	2^{-106}	2^{-212}	6,6	15	2^{-98}	2^{-196}			
6,5	20	2^{-136}	2^{-265}	7,6	20	2^{-134}	2^{-268}			

Boomerang Attacks

Deoxys internal primitives

	number	tweak	key	timo	data	momony	attack	rof
	of rounds	size	size	LIIIE	uata	memory	type	161.
Doorwa-PC-256	8/14	128	128	$\leq 2^{128}$	-	-	MitM	[JNPS16]
	$\leq 8/14$	128	128	$\leq 2^{128}$	-	-	differential	[JNPS16]
Deoxys-BC-256	9/14	128	128	2^{118}	2^{117}	2^{117}	rectangle	this
	10/14	t < 52	k > 204	2^{204}	$2^{127.58}$	$2^{127.58}$	rectangle	this
	8/16	128	256	$\leq 2^{256}$	-	-	MitM	[JNPS16]
Deoxys-BC-384	12/16	128	256	2^{127}	2^{127}	2^{125}	rectangle	this
-	13/16	<i>t</i> < 114	k > 270	2^{270}	2^{127}	2^{144}	rectangle	this

Deoxys AE schemes

Deoxys-I-128-128	9/14	-	128	2^{118}	2^{117}	2^{117}	rectangle	this
Deoxys-II-128-128	-	-	128	-	-	-	-	-
Deoxys-I-256-128	12/16	-	256	2^{236}	2^{126}	2^{124}	rectangle	this
Deoxys-II-256-128	-	-	256	-	-	-	-	-

Outline

Introduction

- 2 Improved Differential Bounds
- 3 Boomerang Attacks

Conclusion

- Two improved lower bounds for the number of active S-boxes for Deoxys-BC under the related-tweakey setting
- Algorithm for searching exact differential trails for Deoxys-BC
- Improved attacks on Deoxys-BC and Deoxys

A Misunderstanding

Byte permutation h in the Tweakey Schedule

(0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	
	1	6	11	12	5	10	15	0	9	14	3	4	13	2	7	8)	

10 14

2

6

Thank you for your attention!

Thank all the group members at ASK 2016 for fruitful discussion.