A Security Analysis of Deoxys and its Internal Tweakable Block Ciphers

Carlos Cid ${ }^{1}$, Tao Huang ${ }^{2}$, Thomas Peyrin ${ }^{2}$, Yu Sasaki ${ }^{3}$, Ling Song, ${ }^{2,4}$

1. University of London, UK
2. Nanyang Technological University, Singapore
3. NTT Secure Platform Laboratories, Japan
4. Institute of Information Engineering, Chinese Academy of Sciences, China

FSE 2018, Belgium

Outlines

(1) Introduction

(2) Improved Differential Bounds

(3) Boomerang Attacks
4. Conclusion

Outline

(1) Introduction

- Deoxys
- Deoxys-BC
- Main Results

(2) Improved Differential Bounds

(3) Boomerang Attacks
(4) Conclusion

Deoxys

- A third-round candidate of the CAESAR competition
- Designed by Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Yannick Seurin
- Two AEAD modes:
- Deoxys-I, the nonce-respecting mode
- Deoxys-II, the nonce-misuse resistant mode
- Deoxys-BC: AES-based tweakable block cipher
- Deoxys-BC-256, 14 rounds
- Deoxys-BC-384, 16 rounds

Deoxys-BC

- AES round function
- AddRoundTweakey
- SubBytes
- ShiftRows
- MixColumns
- TWEAKEY framework

Tweakey Schedule $(p=3)$

Figure: Instantiation of the TWEAKEY framework for Deoxys-BC-384.

Deoxys-BC

- Sub-tweakeys
- Deoxys-BC-256: $S T K_{i}=T K_{i}^{1} \oplus T K_{i}^{2} \oplus R C_{i}$
- Deoxys-BC-384: $S T K_{i}=T K_{i}^{1} \oplus T K_{i}^{2} \oplus T K_{i}^{3} \oplus R C_{i}$
- Update of TK
- $T K_{i+1}^{1}=h\left(T K_{i}^{1}\right), T K_{i+1}^{2}=h\left(\operatorname{LFSR}_{2}\left(T K_{i}^{2}\right)\right), T K_{i+1}^{3}=h\left(\operatorname{LFSR}_{3}\left(T K_{i}^{3}\right)\right)$
- Byte permutation h
$\left(\begin{array}{rrrrrrrrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 6 & 11 & 12 & 5 & 10 & 15 & 0 & 9 & 14 & 3 & 4 & 13 & 2 & 7 & 8\end{array}\right)$
- LFSRs

LFSR $_{2}$	$\left(x_{7}\| \| x_{6}\| \| x_{5}\| \| x_{4}\| \| x_{3}\| \| x_{2}\| \| x_{1}\| \| x_{0}\right) \rightarrow\left(x_{6}\| \| x_{5}\| \| x_{4}\| \| x_{3}\| \| x_{2}\| \| x_{1}\| \| x_{0}\| \| x_{7} \oplus x_{5}\right)$
LFSR $_{3}$	$\left(x_{7}\| \| x_{6}\| \| x_{5}\| \| x_{4}\| \| x_{3}\| \| x_{2}\| \| x_{1}\| \| x_{0}\right) \rightarrow\left(x_{0} \oplus x_{6}\| \| x_{7}\| \| x_{6}\| \| x_{5}\| \| x_{4}\| \| x_{3}\| \| x_{2}\| \| x_{1}\right)$

Main Results

- New lower bounds on the number of active S-boxes

Deoxys-BC-256														
lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14
[JNPS16]	0	0	1	5	9	12	16	17	-	22	-	-	-	-
simple model	0	0	1	5	9	12	16	19	23	26	29	32	35	38
incompatibility	0	0	1	5	10	14	18	22	27	31	35	40	44	48

Deoxys-BC-384

lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
[JNPS16]	0	0	0	1	4	8	-	-	-	-	-	22	-	-	-	-
simple model	0	0	0	1	4	8	10	14	18	21	24	28	31	35	37	45
incompatibility	0	0	0	1	5	9	13	18	22	27	31	35	40	44	48	52

Main Results

- Attacks on Deoxys-BC and Deoxys

Deoxys internal primitives

	number of rounds	tweak size	key size	time	data	memory	attack type	ref.
Deoxys-BC-256	$8 / 14$	128	128	$\leq 2^{128}$	-	-	MitM	[JNPS16]
	$\leq 8 / 14$	128	128	$\leq 2^{128}$	-	-	differential	[JNPS16]
	$9 / 14$	128	128	2^{118}	2^{117}	2^{117}	rectangle	this
	$10 / 14$	$t<52$	$k>204$	2^{204}	$2^{127.58}$	$2^{127.58}$	rectangle	this
Deoxys-BC-384	$8 / 16$	128	256	$\leq 2^{256}$	-	-	MitM	[JNPS16]
	$12 / 16$	128	256	2^{127}	2^{127}	2^{125}	rectangle	this
	$13 / 16$	$t<114$	$k>270$	2^{270}	2^{127}	2^{144}	rectangle	this

Deoxys AE schemes

Deoxys-I-128-128	$9 / 14$	-	128	2^{118}	2^{117}	2^{117}	rectangle	this
Deoxys-II-128-128	-	-	128	-	-	-	-	-
Deoxys-I-256-128	$12 / 16$	-	256	2^{236}	2^{126}	2^{124}	rectangle	this
Deoxys-II-256-128	-	-	256	-	-	-	-	-

Outline

(1) Introduction

(2) Improved Differential Bounds

- Simple Model
- Improved Model

(3) Boomerang Attacks

4. Conclusion

Single-Key for AES

- For each round, one defines 16 variables $x_{i} \in\{0,1\}$, where

$$
x_{i}= \begin{cases}1, & \text { the } i \text {-th byte is active; } \\ 0, & \text { the } i \text {-th byte is inactive }\end{cases}
$$

- Incorporate the property of branch number 5 of MixColumns:

Suppose $\left(x_{0}, x_{5}, x_{10}, x_{15}\right) \xrightarrow{\text { MixColumns }}\left(x_{16}, x_{17}, x_{18}, x_{19}\right)$

$$
\begin{array}{r}
x_{0}+x_{5}+x_{10}+x_{15}+x_{16}+x_{17}+x_{18}+x_{19} \geq 5 d_{j} \\
d \geq x_{0}, d \geq x_{5}, d \geq x_{10}, d \geq x_{15}, d \geq x_{16}, d \geq x_{17}, d \geq x_{18}, d \geq x_{19}
\end{array}
$$

- The objective function:

$$
\text { "minimise } \Sigma x_{i} \text {." }
$$

Related-Tweakey with $T K^{1}$

- Define 16 variables $s t k_{i} \in\{0,1\}$, where

$$
s t k_{i}= \begin{cases}1, & \text { the } i \text {-th subtweakey byte is active; } \\ 0, & \text { the } i \text {-th subtweakey byte is inactive }\end{cases}
$$

- Related-tweakey with $T K^{1}$
- Exclude $\left(x_{i}, s t k_{i}, y_{i}\right) \in\{(0,0,1),(0,1,0),(1,0,0)\}$ with

$$
x_{i}+s t k_{i}-y_{i} \geq 0, \quad x_{i}-s t k_{i}+y_{i} \geq 0, \quad-x_{i}+s t k_{i}+y_{i} \geq 0 .
$$

Related-Tweakey with $T K^{2}$ and $T K^{3}$

- Differential cancellations may happen.
- For $T K^{2}$, there is at most $\mathbf{1}$ cancellation for each active byte.
- For $T K^{3}$, there are at most $\mathbf{2}$ cancellations for each active byte.

Related-Tweakey with $T K^{2}$ and $T K^{3}$

- Differential cancellations may happen.
- For $T K^{2}$, there is at most $\mathbf{1}$ cancellation for each active byte.
- For $T K^{3}$, there are at most $\mathbf{2}$ cancellations for each active byte.

$s t k_{0}$

$s t k_{16+7}$

$s t k_{32+14}$

st k_{48+9}

$s t k_{64+8}$

$s t k_{80+15}$

$s t k_{96+6}$

$s t k_{112+1}$
- Let $h_{i n v}$ be the inverse of h.

$$
\begin{array}{r}
\mathrm{LANE}_{i}-s t k_{i} \geq 0, \mathrm{LANE}_{i}-s t k_{16+h_{i n v}(i)} \geq 0, \cdots, \operatorname{LANE}_{i}-s t k_{16(r-1)+h_{i v v}^{r-1}(i)} \geq 0, \\
s t k_{i}+s t k_{16+h_{i n v}(i)}+s t k_{32+h_{i n v}^{2}(i)}+\cdots+s t k_{16(r-1)+h_{i n v}^{r-1}(i)} \geq r \cdot \operatorname{LANE}_{i}-1 .
\end{array}
$$

or

$$
\begin{array}{r}
\mathrm{LANE}_{i}-s t k_{i} \geq 0, \mathrm{LANE}_{i}-s t k_{16+h_{i n v}(i)} \geq 0, \cdots, \mathrm{LANE}_{i}-s t k_{16(r-1)+h_{i n v}^{r-1}(i)} \geq 0, \\
s t k_{i}+s t k_{16+h_{i n v}(i)}+s t k_{32+h_{i n v}^{2}(i)}+\cdots+s t k_{16(r-1)+h_{i n v}^{r-1}(i)} \geq r \cdot \mathrm{LANE}_{i}-2 .
\end{array}
$$

Application of the Simple Model

- New lower bounds on the number of active S-boxes

Deoxys-BC-256												
lower bounds												

Deoxys-BC-384													
lower bounds													

Limitation of the Simple Model

- There may exist linear incompatibilities.
- Difference cancellations between STK and the state imposes some linear relation of key bytes.
- E.g., $0 x F 2 \cdot \alpha+0 x F 6 \cdot \beta=0$

Limitation of the Simple Model

- There may exist linear incompatibilities.
- Difference cancellations between STK and the state imposes some linear relation of key bytes.
- E.g., $0 x F 2 \cdot \alpha+0 x F 6 \cdot \beta=0$

- Cost additional $b+c-a$ bytes of degree of freedom a: Number of active bytes before MC. E.g., $a=2$
b : Number of inactive bytes after MC. E.g., $b=1$
c: Number of cancellations in ATK. E.g., $c=2$

Degrees of Freedom

- Degrees of freedom available
- $s \cdot \sum$ LANE $_{i}$
- $s=2$ for $T K^{2}$ and $s=3$ for $T K^{3}$
- Degrees of consumption

Type 1 Cancellations in STK,

- $\operatorname{TK}^{1}[i] \oplus \operatorname{TK}^{2}[i]=0$ or $\operatorname{TK}^{1}[i] \oplus \operatorname{TK}^{2}[i] \oplus \operatorname{TK}^{3}[i]=0$

Type 2 Cancellations between STK and the state

- Consume $b+c-a$ bytes of degree of freedom

Representation with MILP

- Degrees of consumption Type 1 for r rounds

$$
r \cdot \sum_{i=0}^{15} \mathrm{LANE}_{i}-\sum_{i=0}^{16 r-1} s t k_{i}
$$

- Degrees of consumption Type 2:

Suppose that $\left(x_{0}, x_{5}, x_{10}, x_{15}\right) \xrightarrow{M C}\left(x_{16}, x_{17}, x_{18}, x_{19}\right)$

- $a=x_{0}+x_{5}+x_{10}+x_{15}$
- $b=4 d-x_{16}-x_{17}-x_{18}-x_{19}$ where $d=1$ means the column is active.
- For each byte of the column $\left(x_{i}, s t k_{i}, y_{i}\right)$

$$
\begin{aligned}
-x_{i}-s t k_{i}+y_{i}+c_{i} \geq-1, & x_{i}+s t k_{i}+y_{i}-c_{i} \geq 0 \\
-x_{i}-s t k_{i}-y_{i}-c_{i} \geq-3,-x_{i}+s t k_{i}-y_{i}-c_{i} \geq-2, & x_{i}-s t k_{i}-y_{i}-c_{i} \geq-2
\end{aligned}
$$

- $b+c-a$
$4 d-x_{16}-x_{17}-x_{18}-x_{19}+\left(c_{16}+\mathrm{c}_{17}+\mathrm{c}_{18}+\mathrm{c}_{19}\right)-\left(x_{0}+x_{5}+x_{10}+x_{15}\right)$.

Representation in the MILP model

- Total consumption of degrees

$$
s \cdot \sum_{i=0}^{15} \mathrm{LANE}_{i} \geq\left(r \cdot \sum_{i=0}^{15} \mathrm{LANE}_{i}-\sum_{i=0}^{16 r-1} s t k_{i}\right)+\sum_{j=0}^{4 r-1} \mathrm{TYPE}_{j}
$$

- New lower bounds on the number of active S-boxes

Deoxys-BC-256														
lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14
[JNPS16]	0	0	1	5	9	12	16	17	-	22	-	-	-	-
simple model	0	0	1	5	9	12	16	19	23	26	29	32	35	38
incompatibility	0	0	1	5	10	14	18	22	27	31	35	40	44	48

Deoxys-BC-384																
lower bounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
[JNPS16]	0	0	0	1	4	8	-	-	-	-	-	22	-	-	-	-
simple model	0	0	0	1	4	8	10	14	18	21	24	28	31	35	37	45
incompatibility \dagger	0	0	0	1	5	9	13	18	22	27	31	35	40	44	48	52

\dagger Bounds for linear incompatibility are obtained under certain assumptions.

Outline

(1) Introduction

(2) Improved Differential Bounds
(3) Boomerang Attacks

- Boomerang Switich
- Search for Trails

4. Conclusion

Introduction of Boomerang attacks

- $E=E_{1} \circ E_{0}$
- Two trails $\alpha \xrightarrow{E_{0}} \beta, \gamma \xrightarrow{E_{1}} \delta$ with probabilities p and q respectively
- A right quartet can be obtained with probability $p^{2} q^{2}$
- Choose $P_{1}, P_{2}=P_{1} \oplus \alpha$
- $C_{1}=E\left(P_{1}\right), C_{2}=E\left(P_{2}\right)$
- Let $C_{3}=C_{1} \oplus \delta, C_{4}=C_{2} \oplus \delta$
- $P_{3}=E^{-1}\left(C_{3}\right), P_{4}=E^{-1}\left(C_{4}\right)$
- Test $P_{3} \oplus P_{4}=\alpha$

Boomerang Switch

Figure: The ladder switch in a toy three S-box block [BK09].

An Example of the Boomerang Switch

10-round distinguisher of Deoxys-BC-384

R	X	K	Y	Z	p_{r}
5	$\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$	$\begin{array}{llll} 69 & 00 & 00 & 00 \\ 00 & \text { bb } & 00 & 00 \\ 00 & 00 & d 2 & 00 \\ 00 & 00 & 00 & 69 \end{array}$	$\begin{array}{llll} 69 & 00 & 00 & 00 \\ 00 & \text { bb } & 00 & 00 \\ 00 & 00 & d 2 & 00 \\ 00 & 00 & 00 & 69 \end{array}$	$\begin{aligned} & \text { ** } 000000 \\ & \text { ** } 000000 \\ & \text { ** } 000000 \\ & \text { ** } 000000 \end{aligned}$	1 1
6	$\begin{aligned} & \text { ** } 000000 \\ & \text { ** } 000000 \\ & \text { ** } 000000 \\ & \text { ** } 000000 \end{aligned}$	$\begin{array}{llll} 00 & 10 & 00 & 00 \\ 00 & 9 e & 00 & 00 \\ 00 & 8 e & 00 & 00 \\ 00 & 8 e & 00 & 00 \end{array}$	$\begin{aligned} & \text { ** } 100000 \\ & \text { ** 9e } 0000 \\ & \text { ** 8e } 0000 \\ & \text { ** 8e } 0000 \end{aligned}$		1
5	$\begin{aligned} & \hline 00 * * * * * * \\ & * * 00 * * * * \\ & * * * * 00 * * \\ & * * * * * * * * \end{aligned}$	$\begin{array}{llll} \hline 00 & \text { ee } & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 11 \end{array}$		$\begin{aligned} & \hline 00 \text { ** } * * * * \\ & 00 \text { ** } * * * * \\ & 00 \text { ** } * * * * \\ & 00 \text { ** } * * * * \end{aligned}$	1
6	$\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 9 e & 00 & 00 \\ 00 & 0 a & \text { ab } & 00 \\ 00 & 00 & 93 & 7 a \end{array}$	$\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 0 & 00 & 00 \\ 00 & 00 & 93 & 00 \\ \hline \end{array}$	$\begin{aligned} & \hline 00000000 \\ & 009 \mathrm{e} 0000 \\ & 0000 \text { ab } 00 \\ & 0000007 \mathrm{c} \end{aligned}$	$\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 68 & 00 & 00 & 00 \\ 01 & 00 & 00 & 00 \\ \text { b9 } & 00 & 00 & 00 \end{array}$	2^{-6}

Properties of Truncated Differential Trails

- A few degrees of freedom are left for the master tweakey difference.
- Once the master tweakey difference is fixed, many active bytes of the state are also fixed.

Search for Differential Trails

- Define two types of S-box

Type i the input and output differences are determined.
Type ii the input or output differences are not determined but some constraints are imposed by the subtweakey differences.

- Given a truncated differential trail

Boomerang Distinguishers

Deoxys-BC-256				Deoxys-BC-384			
R_{1}, R_{2}	\#AS	$p q$	$\hat{p}^{2} \hat{q}^{2}$	R_{1}, R_{2}	$\# \mathrm{AS}$	$p q$	$\hat{p}^{2} \hat{q}^{2}$
4,4	6	2^{-36}	2^{-72}	5,5	4	2^{-24}	2^{-42}
5,4	9	2^{-61}	2^{-122}	6,5	9	2^{-60}	2^{-120}
5,5	16	2^{-106}	2^{-212}	6,6	15	2^{-98}	2^{-196}
6,5	20	2^{-136}	2^{-265}	7,6	20	2^{-134}	2^{-268}

Boomerang Attacks

Deoxys internal primitives

	number of rounds	tweak size	key size	time	data	memory	attack type	ref.
Deoxys-BC-256	$8 / 14$	128	128	$\leq 2^{128}$	-	-	MitM	[JNPS16]
	$\leq 8 / 14$	128	128	$\leq 2^{128}$	-	-	differential	[JNPS16]
	$9 / 14$	128	128	2^{118}	2^{117}	2^{117}	rectangle	this
	$10 / 14$	$t<52$	$k>204$	2^{204}	$2^{127.58}$	$2^{127.58}$	rectangle	this
Deoxys-BC-384	$8 / 16$	128	256	$\leq 2^{256}$	-	-	MitM	[JNPS16]
	$12 / 16$	128	256	2^{127}	2^{127}	2^{125}	rectangle	this
	$13 / 16$	$t<114$	$k>270$	2^{270}	2^{127}	2^{144}	rectangle	this

Deoxys AE schemes

Deoxys-I-128-128	$9 / 14$	-	128	2^{118}	2^{117}	2^{117}	rectangle	this
Deoxys-II-128-128	-	-	128	-	-	-	-	-
Deoxys-I-256-128	$12 / 16$	-	256	2^{236}	2^{126}	2^{124}	rectangle	this
Deoxys-II-256-128	-	-	256	-	-	-	-	-

Outline

(1) Introduction

(2) Improved Differential Bounds

(3) Boomerang Attacks
4. Conclusion

Conclusion

- Two improved lower bounds for the number of active S-boxes for Deoxys-BC under the related-tweakey setting
- Algorithm for searching exact differential trails for Deoxys-BC
- Improved attacks on Deoxys-BC and Deoxys

A Misunderstanding

Byte permutation h in the Tweakey Schedule

$$
\left(\begin{array}{rrrrrrrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
1 & 6 & 11 & 12 & 5 & 10 & 15 & 0 & 9 & 14 & 3 & 4 & 13 & 2 & 7 & 8
\end{array}\right)
$$

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

1	5	9	13
6	10	14	2
11	15	3	7
12	0	4	8

7	11	15	3
0	4	8	12
13	1	5	9
10	14	2	6

Thank you for your attention!

Thank all the group members at ASK 2016 for fruitful discussion.

