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Abstract.
In CRYPTO’16, a new family of tweakable lightweight block ciphers - SKINNY was
introduced. Denoting the variants of SKINNY as SKINNY-n-t, where n represents
the block size and t represents the tweakey length, the design specifies t ∈ {n, 2n, 3n}.
In this work, we evaluate the security of SKINNY against differential cryptanaly-
sis in the related-tweakey model. First, we investigate truncated related-tweakey
differential trails of SKINNY and search for the longest impossible and rectangle
distinguishers where there is only one active cell in the input and the output. Based
on the distinguishers obtained, 19, 23 and 27 rounds of SKINNY-n-n, SKINNY-n-2n
and SKINNY-n-3n can be attacked respectively. Next, actual differential trails for
SKINNY under related-tweakey model are explored and optimal differential trails of
SKINNY-64 within certain number of rounds are searched with an indirect searching
method based on Mixed-Integer Linear Programming. The results show a trend that
as the number of rounds increases, the probability of optimal differential trails is
much lower than the probability derived from the lower bounds of active Sboxes in
SKINNY.

Keywords: Lightweight Block Cipher · SKINNY · Impossible Differential Attack ·
Rectangle Attack · Related-Tweakey

1 Introduction
Ubiquitous computing is rapidly emerging as the new computing paradigm in information
technology sector. The mass development and deployment of pervasive devices such as
RFID tags, sensors, smartcards etc. promise many benefits such as lower implementation
costs, optimized performance and increased efficiency. At the same time, these devices
demand harsh costs constraints like lower memory availability, lower area requirements and
power constraints. Ensuring strong security from cryptographic point of view under such
circumstances becomes a striving issue. Lightweight cryptography is a field of cryptography
which encompasses the current state-of-the-art cryptographic algorithms that are tailored
for implementation in constrained environments and directly cater to the security concerns
of low cost devices. With the growing interest of the symmetric cryptographic community
in this field, several lightweight variants of traditional cryptographic primitives such as
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lightweight block ciphers (PRESENT [BKL+07], LED [GPPR11], SIMON [BSS+13] etc.),
lightweight hash functions (Spongent [BKL+11], Photon [GPP11], Quark [AHMN13] etc.)
and lightweight stream ciphers (Mickey [BD08], Grain [HJMM08], Trivium [CP08] etc.)
have been proposed and studied in literature to address the design and security goals of
lightweight ciphers.

In this work, we focus on the security analysis of SKINNY family of lightweight block
ciphers. Proposed by Beierle et al. in CRYPTO’16 [BJK+16b], the design of SKINNY has
many attractive features. Firstly, its design can be seen as a first step towards bridging
the gap between high operational efficiency vs. strong security. By careful analysis and
thorough investigation, the designers of SKINNY show how non-optimal but very light
internal crypto components can be combined together to provide a cipher which has
competitive performance as well as strong security guarantees in both single key as well as
related key settings. Secondly, inspired by the TWEAKEY framework [JNP14], SKINNY
replaces its key input with a tweakey input. This provides the users of SKINNY an added
advantage of enjoying the benefits of a tweakable block cipher.

The official SKINNY specification [BJK+16c] defines two block sizes, i.e., 64-bit and
128-bit. Depending on the block length n, the tweakey length t can be n, 2n or 3n.
Consequently, if we denote a variant of SKINNY as SKINNY-n-t, then the six variants
of SKINNY are - SKINNY-64-64, SKINNY-64-128, SKINNY-64-192, SKINNY-128-128,
SKINNY-128-256 and SKINNY-128-384. In the design document of SKINNY [BJK+16c],
the designers provide a detailed security evaluation of SKINNY against the traditional block
cipher cryptanalysis. However, unlike the differential and linear attacks, for which the lower
bounds on the number of active S-boxes under the single key as well as the related-tweakey
settings have been provided, for other attack types such as MITM, impossible differential,
integral attacks etc., the analysis has been restricted to single key model only. Moreover,
in these attacks, only SKINNY-n-n variants have been investigated. This motivates us to
analyze the security of all SKINNY variants under the related-tweakey model. We utilize
related-tweakey impossible differential and rectangle attacks for our analysis.

Related Work. In September’16, the designers of SKINNY announced a competition
where they invited the cryptographic community to cryptanalyse SKINNY-64-128 and
SKINNY-128-128 under the following categories [BJK+16a].

• SKINNY-64-128: 18- or 20- or 22- or 24- or 26-rounds

• SKINNY-128-128: 22- or 24- or 26- or 28- or 30-rounds

Following the announcement, several independent cryptanalytic results on SKINNY
(including ours) were reported within a short time span of each other. Under the single
tweakey settings, Tolba et al. [TAY16] demonstrated impossible differential attacks against
18, 20 and 22 rounds of SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n respectively.
In [SMB16], Sadeghi et al. investigated the security of SKINNY under zero-correlation
linear cryptanalysis and constructed 9 and 10-round distinguishers for the same. They also
reported 12-round impossible differential distinguishers for SKINNY-64 and SKINNY-128
under the related tweakey model. In [ABC+17], Ankele et al. analyzed SKINNY-64-128
and presented 21, 22 and 23-round related tweakey impossible differential attacks which
have a low time complexity but suffer from two limitations. Firstly, all their attacks have
data complexity beyond codebook. Secondly, the 22 and 23-round attacks shown require
certain tweakey bits to be public and at some specific cell positions. However, the position
of the public tweakey cells chosen in their attacks do not conform with that recommended
in the original SKINNY design document [BJK+16c], thus their attacks were shown on a
modified version of SKINNY-64/128.
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Our Contribution. Our main results are summarized in Table 1. We mainly focus on
attacks which have a data complexity below codebook and for which the whole tweakey
input is secret. For most of our attacks, we employ truncated differential trails to serve
our purpose. In all these results, we construct distinguishers where there is only one active
cell in the input and the output difference. Moreover, the position of the active cell has
been chosen such that maximum number of rounds can be extended in the forward and
backward direction from the distinguisher. Under these conditions, the distinguishers
so constructed are the longest. Based on the truncated distinguishers, 19, 23 and 27
rounds of SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n can be attacked respectively.
Additionally, extensions to the case where a tweak is used are discussed for SKINNY-n-2n
and SKINNY-n-3n under impossible attacks.

We also analyze actual differential trails for SKINNY under related-tweakey model.
Through our rectangle attacks based on the actual trails, it is shown that employing actual
differential trails help in getting longer distinguishers and sometimes better cryptanalytic
results. What’s more, optimal trails of SKINNY-64 within certain number of rounds show
a positive trend for the designers that as the number of rounds increases, the probability
of optimal differential trails is much lower than the probability derived from the lower
bounds of active Sboxes in SKINNY.

Table 1: Summary of cryptanalytic results on SKINNY

Vers. n Rounds Data† Time Memory Dist. Type Attack Ref.

n-n
64 19 261.47 263.03 256 Trunc. Diff. Imposs.

§ 3
128 19 2122.47 2124.60 2112 Trunc. Diff. Imposs.

n-2n
64 23 262.47 2125.91 2124 Trunc. Diff. Imposs.

§ 3
128 23 2124.47 2251.47 2248 Trunc. Diff. Imposs.

n-3n
64 27 263.5 2165.5 280 Trunc. Diff. Rect.

§ 4
128 27 2127 2351 2160 Trunc. Diff. Rect.
128 27 2112 2331 2144 Diff. Rect. § 5

† Attacks with a data complexity below codebook are focused.

Organization. This work is organized as follows. In Section 2, we provide a brief
description of SKINNY and its properties, followed by the important notations adopted
throughout the work. Section 3 gives details of the 23-round attack on SKINNY-n-
2n and results on other SKINNY variants under related-tweakey impossible differential
attack. Section 4 discusses the 22-round attack on SKINNY-n-2n using the related-tweakey
rectangle attack and presents results on other variants. In the above sections, truncated
differential trails are used for analysis. In Section 5, we investigate actual differential
characteristics for SKINNY and present related-tweakey rectangle attacks based on them.
Section 6 summarizes and concludes this paper.

2 Preliminaries

In this section, we first describe SKINNY and then mention the key notations and definitions
used in our cryptanalysis to facilitate better understanding.
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2.1 Description of SKINNY
The SKINNY block cipher adopts substitution-permutation network and elements of
TWEAKEY framework [JNP14] in its design. Represented as SKINNY-n-t, where, n/ t
denotes the block size/ tweakey size respectively, this block cipher has six variants namely
- SKINNY-64-64, SKINNY-64-128, SKINNY-64-192, SKINNY-128-128, SKINNY-128-256
and SKINNY-128-384. The number of rounds in each variant are 32, 36, 40, 40, 48 and 56
respectively. Both the 64-bit and 128-bit internal states are represented as 4× 4 array of
cells with each cell being a nibble in case of n = 64 bits and a byte in case of n = 128 bits.
The tweakey state is seen as a group of z 4 × 4 arrays, where, z = t

n and z ∈ {1, 2, 3}.
The arrays are marked as TK-1 / TK-1, TK-2 / TK-1, TK-2, TK-3 for z = 1 / 2 / 3
respectively. In all the cases, the cells are numbered row-wise as shown in Fig. 1. Each
round consists of 5 basic operations as shown in Fig. 2.

10 32

54 76

98 1110

1312 1514

Figure 1: Cell numbering in a
state of SKINNY

tki

Xi ZiYi

SC SRART
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⊕

Figure 2: ith round of SKINNY. Only the first two
rows (cells marked with ) in the round tweakey
tki are xor’ed in each round

1. SubCells (SC) - The non-linear substitution layer uses a 4-bit S-box in case of n = 64
bits and a 8-bit S-box in case of n = 128 bits. The maximal differential probability
of both 4-bit and 8-bit S-boxes is 2−2.

2. AddConstants (AC) - This step involves xoring three round constants to the first
three cells of the first column of an internal state.

3. AddRoundTweakey (ART) - In this step, the first two rows of the round tweakey (tki)
are xor’ed with the first two rows of the corresponding internal state. The round
tweakey (tki) is defined as:

• z = 1: tki = (TK-1)i
• z = 2: tki = (TK-1)i ⊕ (TK-2)i
• z = 3: tki = (TK-1)i ⊕ (TK-2)i ⊕ (TK-3)i

The tweakeys (TK-1)i, (TK-2)i and (TK-3)i for each round i are generated by a
tweakey scheduling algorithm.

4. ShiftRows (SR) - The linear shift rows operation performs circular right shift on each
row of the internal state. The number of shifts in each row j is j for 0 ≤ j ≤ 3 .

5. MixColumns (MC) - This linear transformation pre-multiplies each column of the
internal state by a 4× 4 binary matrix M shown below. The inverse MixColumns
operation (M−1) can be computed as shown below.

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 M−1 =


0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1


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Tweakey Scheduling Algorithm (TSA). - The tweakey schedule of SKINNY is a linear
scheduling algorithm. The tweakey input is first loaded with a n, 2n or 3n-bit tweakey
input. Accordingly, we have TK-1 with z = 1 or (TK-1, TK-2) with z = 2 or (TK-1,
TK-2, TK-3) with z = 3. The cells in each of these 4× 4 TK-m arrays (for m ∈ {1, 2, 3})
are numbered row-wise. The round tweakeys are then generated as follows:

• Permutation Phase: In this phase, a permutation P defined as:

P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

is first applied to each of the TK-m arrays as: TK-m[i] ← TK-m[P [i]] for all
0 ≤ i ≤ 15 depending on z = 1, 2 or 3.

• LFSR Update Phase: In this phase, all cells of the first two rows of TK-2 / (TK-2,
TK-3) for z = 2 / 3 respectively are individually updated using a 4-bit (if the cell is
a nibble) or a 8-bit (if the cell is a byte) LFSR. Note that TK-1 is not updated in
this phase.

The first two rows of each of the (TK-m)i arrays are used to generate the corresponding
round tweakey tki as discussed earlier. This process is repeated until all round tweakeys
have been generated.

Case when tweakey state comprises of both the key and the tweak bits. The SKINNY
specification allows the tweakey state to be filled with both tweak (public) and key (secret)
material with the condition that the key size should always be at least as big as the block
size. Further, the tweak material is loaded into TK-1 as recommended by the designers.
This work follows these recommendations in attacks where a tweak is used.

For complete details of the state updation process and the tweakey scheduling algorithm,
one can refer [BJK+16b].

2.2 Notations and Definitions
The following notations are followed throughout the rest of the paper.

c : Cell size, where c ∈ {4, 8}
n : Block size, where n ∈ {64, 128}
Rd : Rounds covered by the distingusiher
Rb : Rounds extended backward in the tweakey recovery phase
Rf : Rounds extended forward in the tweakey recovery phase
tki : Round tweakey of round i
Xi : State before SC, AC in round i
Yi : State before ART in round i
Zi : State before SR in round i
Wi : State before MC in round i
Row(j) : jth row, where, 1 ≤ j ≤ 4
Col(k) : kth column, where, 1 ≤ k ≤ 4
S : Substitution of Sbox
∆X : Difference in a state X
Xi[m] : mth cell of a state X in round i, where 0 ≤ m ≤ 15
Xi[p, . . . , r] : pth cell, . . . , rth cell of state X in round i, where 0 ≤ p, r ≤ 15

The time complexity of the attack is measured in terms of number of r-round SKINNY
encryptions required and the memory accesses. The memory complexity is measured in
units of 64-/128-bit SKINNY blocks required.
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In [BJK+16b], the designers of SKINNY define the adversarial model to be TK1,
TK2 and TK3 for the scenarios where an attacker can inject differences in the tweakey
state based on the respective SKINNY variants used. We follow the same notation in our
attacks.

2.3 Properties of SKINNY

Some interesting properties of SKINNY that were utilized during our attacks are as
follows:

1. The SKINNY MixColumns matrix is not an MDS matrix. Therefore, during the
tweakey recovery phase of an attack, sometimes it is not enough to know the values
of only the active cells in the output column of MC operation to determine the value
of the active cell in the input column, and vice versa. This leads to more cells need
to be guessed. To highlight this issue, consider Fig. 3.

SC

AC
ART SR MC

SC

AC
ART SR MC

SC

AC
ART SR MC

Both the difference and the value are needed

The difference is zero, but the value is needed
Additional key cell that need to be guessed

tk14

tk15

tk16 X16

Y14 Z14 W14 X15

Y15 Z15 W15

Y16 Z16 W16 X17

X14

X15 X16

Figure 3: Property of MixColumns of SKINNY

In this figure, we have a truncated differential trail with probability 1 from ∆X14 to
∆X17. Now, if we backtrack this trail from ∆X17, then to guarantee that there would
be only one-cell difference in ∆X14[8], it is necessary and sufficient to check whether
the 3 cell difference in ∆X15[2, 10, 14] leads to one cell difference in ∆W14[10] or not.
To this, knowledge of ∆X15[2, 10, 14] is required, and thus the differences as well as
actual state values at Y15[2, 10, 14](= W15[2, 8, 13]) are required. Now, if suppose,
values as well as differences in the active cells of the first column of X16 are known,
only ∆W15[8] can be computed. To compute W15[8], the value of X16[4] needs to be
known as well since W15[8] = X16[4]⊕X16[12]. This in turn leads to an additional
tweakey cell guess in tk16 as tk16[4] needs to be guessed to determine X16[4].
This requirement of guessing more cells serves as one of the factors in determining
the number of rounds covered in the tweakey recovery phase of our attacks.

2. The order of ART , SR and MC operations in any round can be changed by first
applying SR and MC operations and then xoring the intermediate state with an
equivalent round tweakey input. We denote this equivalent tweakey by tkeq =
MC(SR(tk)) as shown in Fig. 4.
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0 1 2 3

4 5 6 7

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

SR MC

tk tkeq

Figure 4: Reordering of ART , SR and MC operations in a round

3. The TSA of SKINNY is linear. Hence, if we know the value of differences injected
in the master tweakey, the exact differences in all the other round keys can be
determined.

4. Only the first two rows of each round tweakey are xor’ed with the intermediate state
in each round. Thus, the tweakey cells involved in the ith round will next appear in
(i+ 2)th round and so on. Moreover, in the tweakey schedule algorithm, the same
cell-wise permutation is applied synchronously (at the same time) to each of the
tweakey arrays and then each of the tweakey cells of the first two rows of TK-2 and
TK-3 are updated with LFSRs leading to a diffusion that only happens within cells.

5. Subtweakey difference cancellation. As noticed by the designers [BJK+16c], for
a given active tweakey cell, only a single subtweakey difference cancellation can
happen every 30 rounds for TK2, and two subtweakey difference cancellations for
TK3. Let us take TK2 as an example. Suppose that a single cell of TK-1 and
TK-2 are active and the cell position is in the first two rows. Let a1 and a2 be
differences of the active cells respectively. Then the subtweakey difference in the first
round is a1 ⊕ a2 at this cell, and in the (2i+ 1)th round, the subtweakey difference
is a1 + LFSRi2(a2) by ignoring the position permutation P . Since a1 and a2 are
non-zero differences, and the LFSR2 has a cycle of 15, then a single subtweakey
cancellation, i.e., a1 + LFSRi2(a2) = 0, can happen every 30 rounds. Under the case
of TK3 where a1, a2 and a3 are differences of the active cells, subtweakey difference
cancellations, i.e., a1 + LFSRi2(a2) + LFSRi3(a3) = 0 can happen at most twice
every 30 rounds. By combining Property 4 with subtweakey difference cancellations,
it is deduced that there can be three and five rounds of fully inactive internal states
for TK2 and TK3 respectively.

We also utilize the following Lemma in our attacks.

Lemma 1. For any given SKINNY S-box (c = 4 or 8) S and any non-zero input - output
difference pair (δin, δout ), there exists one solution y on average, for which the equation,
Si(y)⊕ Si(y ⊕ δin) = δout, holds true.

3 Related-Tweakey Impossible Differential Attack
In this section, we present our related-tweakey impossible differential attack on SKINNY.
We investigate truncated impossible differential trails of SKINNY under certain fixed
tweakey differences to mount our attacks. Impossible differential cryptanalysis was first
proposed independently by Biham et al. [BBS05] and Knudsen [Knu98]. The main idea
of this attack is to find an input difference that can never lead to a particular output
difference, i.e., the probability of such a differential trail is zero. Then, one can derive
the right key by discarding the keys which suggest this impossible differential. Under
related-tweakey settings, the development of this differential is studied for two encryptions
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under related-tweakeys, where the relation between the two secret tweakeys is assumed to
be known to the attacker.

Through our related-tweakey impossible differential attacks, 19, 23 and 27 rounds of
SKINNY under TK1, TK2 and TK3 are analyzed respectively. In this section, details of
the 23-round attack on SKINNY-n-2n are discussed and extended to the cases where part
of the tweakey is tweak. The attacks on other variants work in a similar manner and are
presented in Appendix B. The attack consists of two phases: Distinguisher construction
phase and Tweakey recovery phase.

3.1 Related-Tweakey Impossible Distinguisher
In this phase, we first construct a 14-round related-tweakey impossible distinguisher for
SKINNY-n-2n exploiting the subtweakey difference cancellation property (Property 5 ).
Our distinguisher is placed between Round 5 to Round 19. A 7.5-round related-tweakey
differential in the forward direction (having prob. 1) starting at Y5 (after the SC and AC
operations in Round 5) is concatenated to a 6.5-round related-tweakey differential (having
prob. 1) starting in the reverse direction from Y19 (before the ART operation in Round
19). The contradiction happens in Round 13 at X13[11]. The 14-round related-tweakey
impossible differential is:

(00b0 | 0000 | 0000 | 0000) 614r−−→ (0000 | 0000 | 00N0 | 0000)

where b denotes a fixed non-zero difference and N denotes any non-zero difference. The
entire impossible differential path along with the round tweakey differences is illustrated in
Fig. 5. The tweakey difference is only injected in one cell. The round tweakey differences
used in the rounds involved in the key recovery phase are shown in Table 2. According
to Property 5, for a given active cell, only a single subtweakey difference cancellation can
happen every 30 rounds for TK2. In our case, we let the only cancellation take place at
Round 7, i.e., h = 0. 1

Table 2: The round tweakey differences ∆tki used in the key recovery phase.

Round i Row(1) Row(2)
1 ( 0 d 0 0 ) ( 0 0 0 0 )
3 ( c 0 0 0 ) ( 0 0 0 0 )
5 ( 0 0 b 0 ) ( 0 0 0 0 )
19 ( a 0 0 0 ) ( 0 0 0 0 )
21 ( 0 0 e 0 ) ( 0 0 0 0 )
23 ( 0 0 0 0 ) ( f 0 0 0 )

We construct a 12-round distinguisher under TK1 and owing to the tweakey cancellations
16-round impossible distinguishers can be constructed under TK3. For more information
regarding the impossible distinguishers under TK1 and TK3, we refer the readers to
Appendix A.

3.2 Tweakey Recovery Attacks
In this section, we use the 14-round related-tweakey impossible differential distinguisher
constructed earlier to attack 23-rounds of SKINNY-n-2n using a pair of related-tweakeys.
Before the attack is explained, we introduce some more notations which are borrowed
from [BNS14]. Suppose an impossible differential (∆X 6−→ ∆Y ) has been constructed for

1As discussed earlier in Property 5, suppose the one-cell tweakey differences of (TK-1) and (TK-2)
are a1 and a2 respectively. If we set a1 ⊕ a2 = d = 5 and a1 ⊕ LFSR6

2(a2) = h = 0, then differences
a, b, c, d, e, f, h, r, s, t, v and w are determined accordingly. Actually, d can be any nonzero value.
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Figure 5: 14-round related-tweakey impossible distinguisher on SKINNY-n-2n.

E′ under a pair of related-tweakeys and is used to attack E = Ef ◦E′ ◦Eb. Through E−1
b

(Ef ), ∆X (∆Y ) is propagated to ∆in (∆out) with probability 1. Let cin (cout) be the
number of bit conditions that need to be verified for ∆in → ∆X (∆Y ← ∆out), and kin
(kout) is the key information involved in Eb (Ef ).

Consider the two secret related-tweakey inputs to be - (TK-1)1 || (TK-2)1 and (TK-
1)2 || (TK-2)2. Consider further the difference ∆ injected in round 1 subtweakey to be: ∆
= (0 d 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0), i.e., the related round 1 subtweakeys differ at the
2nd cell-position and the difference d is known to the attacker. The 14-round distinguisher
is extended 4.5 rounds at the top and 4.5 rounds in the bottom to cover 9 rounds in the
tweakey recovery phase as shown in Fig. 6. Here, E′ covers 14 rounds, Ef (Eb) covers 4.5
(4.5) rounds, cin = |∆in| = 7c, cout = 15c, |∆out| = 16c and |kin ∪ kout| = 31c where c is
the cell size.

As discussed in Section 2.3, the order of ART , SR and MC operations in round 1 can
be changed. Since, the design of SKINNY does not include a pre-whitening key, the input
difference atW1 (denoted as P eq in Fig. 6) can be considered as the plaintext difference and
the equivalent plaintexts so obtained can be rolled back to compute the actual plaintexts.
In the following discussion, we start our tweakey recovery attack at W1 and call the inputs
at this position as the plaintext inputs. In addition, we only pay attention to the values of
subtweakeys and sometimes omit the effect of subtweakey differences for simplicity, since
subtweakey differences are known to the attacker.

The steps of our attack are as follows:

Data collection Consider a pair of structures S1 and S2, where, each structure consists of
2|∆in| = 27c plaintexts and for each plaintext pair P1 ∈ S1 & P2 ∈ S2, P1 ⊕ P2 = (0
0 N 0 | N N 0 N | N 0 N 0 | 0 N 0 0), where N denotes any cell value. The total
number of possible plaintext pairs is 22|∆in| = 214c. Invert back the plaintexts in
S1 and S2 by one keyless round to get the original plaintexts. Encrypt the pool S1
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under (TK-1)1 || (TK-2)1 and the pool S2 under (TK-1)2 || (TK-2)2 to obtain the
corresponding ciphertexts. For each ciphertext pair, check whether n− |∆out| bits
are zero or not and discard it if false.2 Generate 2x such pair of structures and repeat
this for each pair of structures. Note that, in the attack of SKINNY-n-2n, more
than one pair of structures are used and the case which requires less than one pair of
structures is discussed latter. In total, M = 2x+2|∆in|−n+|∆out| = 2x+14c plaintext
pairs are expected to remain. This step requires a total of 2x+|∆in|+1 = 2x+7c+1

encryption calls.

Tweakey recovery For each of the M pairs as shown in Fig. 6:3

(a) Compute ∆X23[10, 12, 14] from the knowledge of the ciphertext pair values as
computing these cells do not require any tweakey information. Due to MC
operation on the active nibbles of Col(1) and Col(3) of W22, it can be seen that
∆X23[0] = ∆X23[4] = ∆X23[12] and ∆X23[6] = ∆X23[10]⊕∆X23[14] and thus
can be determined. From this information, X23[0], Y23[0] and thus tk23[0] can
be found using Lemma 1 as ∆Y23[0] is known from the ciphertexts. Similarly,
the tweakey cells tk23[4, 6] can also be derived. Guess tk23[1, 2, 3, 5, 7]. Compute
Z22 and ∆Z22[0-4, 6-9, 11-12, 14-15]. The time complexity of this step is M ·25c

one-round encryptions and a total of M · 25c tests need to be done in the next
step.

(b) Compute ∆X22[8, 11, 12, 14, 15] from the knowledge of Z22 and ∆Z22 known
cells. Due to MC operation on the active nibbles of Col(1, 3, 4) of W21,
∆X22[0, 2, 4, 6, 7] can be determined as - ∆X22[0] = ∆X22[12], ∆X22[4] =
∆X22[8]⊕∆X22[12], ∆X22[2] = ∆X22[6] = ∆X22[14] and ∆X22[7] = ∆X22[11]⊕
∆X22[15]. Use this information and the known differences of ∆Z22 to derive
tk22[0, 2, 4, 6, 7] by using Lemma 1. Guess tk22[1, 3, 5]. Compute Z21 and
∆Z21 as shown in Fig. 6. The time complexity of this step is M · 28c one-round
encryptions and a total of M · 28c tests need to be done in the next step.

(c) Compute ∆X21[10, 12, 14] from the knowledge of Z21 and ∆Z21 known cells.
Check if ∆X21[10] = ∆X21[14]. This acts as one-cell filter. As ∆X21[0] =
∆X21[4] = ∆X21[12] and ∆X21[2] = ∆X21[10], use this information and the
known differences of ∆Z21 to derive tk21[0, 2, 4] by using Lemma 1. At this
stage, the attacker can uniquely determine (TK-1)1[0, 1, 7] and (TK-2)1[0, 1, 7]
from the knowledge of tk21[0, 2, 4] and tk23[2, 4, 6] . This helps her to determine
tk1[0, 1, 7] and tk3[2]. This step has a time complexity of M · 28c one-round
encryptions and the number of tests left for the next step is M · 27c.

(d) Since tkeq1 [0, 1, 4, 5, 8, 12, 13] is known from the previous steps, we can compute
X2[0, 1, 4, 5, 8, 12, 13] and thus, Y2[0, 1, 4, 5, 8, 12, 13]. From this, ∆Y2[5, 8] can
be computed. Check if ∆Y2[5] = ∆Y2[8] or not. This acts as a one-cell filter.
Also, since ∆Y2[2] = ∆Y2[8] (due to MC−1 operation on Col(3) of X3), use
this information and the plaintext difference to derive tk1[2] by using Lemma 1.

2In this attack, this step is skipped as n = |∆out|. In our 19-round attack on SKINNY-n-n, this step is
not skipped.

3In Fig. 6, we have shown what kind of information in the state cells (only difference or only value or
difference as well as value) is required to verify the differential path from ∆Y19 → ∆C and ∆Y5 → ∆P .
For example, consider rounds 19 to 23. During the key recovery phase, we proceed by collecting those key
guesses for which the given ciphertext pair follows the differential trail from ∆Y19 → ∆C (represented
by the greyed out cells). This is done by checking in each round whether ∆Xi+1 leads to the required
difference ∆Wi or not for 19 ≤ i ≤ 23. Starting from ∆C, to calculate ∆Xi in each round i, we need to
know the difference and the state values in the active cells of the corresponding ∆Yi’s. For computing the
required state values of Yi’s in each round i, we need to know the state values of cells (which may not
be differentially active) as well as the key values in the subsequent rounds (round i+ 1 till round 23) on
which the Yi’s are dependent. In Fig.6, the struck out cells in the state cells represent that information.
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Figure 6: 23-round attack against SKINNY-n-2n. The colored cells in each round tweakeys
represent the cells, the values for which should be known to verify the differential path.
During our attack, some of these tweakey cells are guessed and some of them are derived
from the information that we have at each step of the attack.

At this stage, the attacker can uniquely determine (TK-1)1[2] and (TK-2)1[2]
and compute tk1[2] and tk21[6]. The time complexity of this step is M · 27c and
the number of tests left for the next step is M · 26c.

(e) Guess tk21[3, 5]. Compute ∆Z20 and Z20[0, 4, 8, 12]. Compute ∆X20[8, 12].
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Now, since ∆X20[0] = ∆X20[12] and ∆X20[4] = ∆X20[8]⊕∆X20[12] (due to
MC operation on Col(1) of W19), tk20[0, 4] can be derived using Lemma 1. The
knowledge of ∆X20[4] also allows her to compute ∆W19[0]. Check if ∆W19[0] =
a or not where, the difference a is known to the attacker. We obtain a filter of
one cell. At this stage, the attacker can uniquely determine (TK-1)1[4, 6, 8, 15]
and (TK-2)1[4, 6, 8, 15]. This allows her to compute tk1[4, 6] and tk2[1, 2]. This
step has a time complexity of M · 28c one-round encryptions and the number of
tests left after this step is M · 27c.

(f) Guess tk1[5] and compute ∆Y2[10]. Since, ∆Y2[7] = ∆Y2[10] and from the
plaintexts ∆X2[7] is known, determine X2[7] and thus tkeq1 [7] = tk1[3]. At this
stage, the attacker can uniquely determine (TK-1)1[3, 5] and (TK-2)1[3, 5] and
thus, the full tkeq1 (and tk1) is known to her. This allows her to compute tk3[3, 7]
and full Y2 state (value as well as difference). As per the MC−1 definition,
∆W2[12] = ∆X3[0]⊕∆X3[12]. Since, ∆W2[12] (= ∆Y2[13]) and ∆X3[12] (=
∆W2[4] = ∆Y2[7])are known to the attacker, she can compute ∆X3[0]. Since,
∆Y3[0] = c is also known to her, X3[0] can be determined. Using X3[0], W2[0]
= X3[0] ⊕ W2[8] ⊕ W2[12] can be determined. This helps the attacker to
derive tk2[0] (At this stage, the attacker can uniquely determine (TK-1)1[9]
and (TK-2)1[9] and compute tk4[2]). Further, X3[12] = W2[0] ⊕W2[8] can
also be computed. This allows her to compute Y3[12] and ∆Y3[12]. It can be
easily verified that ∆Y3[12] = ∆Y3[6] = ∆Y3[9] (due to MC−1 operation on
Col(4) of X4). It can also be observed that ∆X3[6] = ∆Y2[5] and ∆X3[9] =
∆Y2[4] due to MC−1 operation in Round 3. Thus, X3[6, 9] and Y3[6, 9] can be
determined. Now, X3[6] = W2[2] and W2[2] is already known to the attacker as
W2[2] = Y2[2]⊕ tk2[2]. Hence, a one-cell filter is obtained. Using X3[9], obtain
W2[5] and derive tk2[4]. Attacker can now uniquely determine (TK-1)1[10] and
(TK-2)1[10]. This step has a time complexity of M · 28c one-round encryptions
and the number of tests left after this step is M · 27c.

(g) Compute X3[2] = W2[2] ⊕W2[10] ⊕W2[14]. Guess tk2[3, 7]. This allows the
attacker to compute X3[3, 7, 8, 15]. Through this, she can then further compute
X4[2, 15], ∆X4[15] and ∆Y4[15]. Now, ∆Y4[15] = ∆X5[2] (due to MC−1

operation on Col(3) of X5). As, ∆Y5[2] = b is already known to her, using
S-box equations she can compute X5[2]. Now, S(X4[8]) = X5[2]⊕ S(X4[2])⊕
tk4[2]⊕ S(X4[15]). Since, the right hand side of the equation is known to the
attacker, she can determine X4[8]. This allows her to computeW3[8] and further
X3[10]. Once X3[10] is known, W2[6] can be determined which in turn helps in
calculating tk2[5]. The time complexity of this step is M · 29c and the number
of tests verifying the impossible distinguisher is M · 29c, i.e., for each pair there
are 29c 31-cell keys on average that verify the impossible distinguisher and are
wrong.

The time complexity of analyzing M pairs is M · 29c. The total number of tweakeys
left is:

TKrem = 2|kin∪kout|(1− 2−(cin+cout))M = 231c(1− 2−22c)2x+14c

(1)

Suppose (1− 2−(cin+cout))M = 2−g, 1 < g ≤ |kin ∪ kout|, which means g-bit key ma-
terial is recovered, then we have M = 2cin+coutgln2 since (1 − 2−(cin+cout))M ≈
e−M2−(cin+cout) . We also know that, M = 2x+2|∆in|−n+|∆out|, therefore, 2x =
2cin+cout+n−2|∆in|−|∆out| ×gln2, and thus the data complexity is D = 2x+|∆in|+1 =
2cin+cout+n+1−|∆in|−|∆out|gln2.

Brute force For the tweakeys that remain, we guess the remaining tweakey cells (1 cell)
and exhaustively search the TKrem×2c = 22n−g tweakeys to find the correct tweakey.
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Attack Complexities. The attack described above requires a data complexity of D =
2cin+cout+n+1−|∆in|−|∆out|gln2 = 2n+1−cgln2 chosen plaintexts. The total time complexity
is the summation of the time consumption of all the steps:

T = D +M · 29c + TKrem · 2c.

The memory complexity is the storage for one structure and wrong keys. For c = 4, we
set g = 4, then D = 262.47, M · 29c = 2125.47, TKrem · 2c = 2124, T = 2125.91 and the
memory complexity is 2124. For c = 8, we set g = 16, then D = 2124.47, M · 29c = 2251.47,
TKrem · 2c = 2240, T = 2251.47 and the memory complexity is 2248.

Attack where tweak is used. Suppose a w-bit tweak is used. The tweak is loaded
into the first w bits of the first tweakey state TK-1, followed by the key material. For
0 ≤ w ≤ 9c, we have |kin ∪ kout| = 2n− w − c < 2n− w and the above attack still has a
time complexity below 22n−w, so our 23-round attack on SKINNY-n-2n is valid in such
cases. For 9c < w ≤ 12c, we still have |kin ∪ kout| = 2n− w − c < 2n− w, but the time
complexity of the tweakey recovery phase is higher than 22n−w. For w = 9c, the results
are as follows. For c = 4, we set g = 3, then D = 262.06, T = 290.03 and the memory
complexity is 288. For c = 8, we set g = 6, then D = 2123.06, T = 2179.03 and the memory
complexity is 2176.

For SKINNY-n-n and SKINNY-n-3n, our results are as shown in Table 3. For more
information regarding the impossible distinguishers under TK1 and TK3, we refer the
readers to Appendix A. The 19-round attack of SKINNY-n-n and the 27-round attack of
SKINNY-n-3n is presented in Appendix B.

Table 3: Results of related-tweakey impossible differential attack on SKINNY

Model Version #Rounds Rd Rb Rf Data Time Memory
TK1 64-64 19 12 4.5 2.5 261.47 263.03 256

128-128 19 12 4.5 2.5 2122.47 2124.60 2112

TK2 64-128 23 14 4.5 4.5 262.47 2125.91 2124

128-256 23 14 4.5 4.5 2124.47 2251.47 2248

TK3 64-192 27 16 6.5 4.5 263.53 2189 2184

128-384 27 16 6.5 4.5 2126.03 2378 2368

Attack where less than one pair of structures is used. In our 23-round attack on
SKINNY-n-2n, a total of M · 2n−|∆out| plaintext- ciphertext pairs were obtained (out of
which M ciphertext pairs were left after ciphertext sieving) and M · 2n−|∆out| > 22|∆in|.
Therefore, more than one structure was required to carry out the attack. However, in
some cases, M · 2n−|∆out| ≤ 22|∆in| (e.g., in case of our 27-round attack on SKINNY-
n-3n discussed in Appendix B) and thus one structure is enough. In this case, D =
2
√
M · 2n−|∆out|. In a nutshell,

D =
{

2cin+cout+n+1−|∆in|−|∆out|gln2 if M · 2n−|∆out| > 22|∆in|,

2
√

2cin+cout+n−|∆out|gln2 if M · 2n−|∆out| ≤ 22|∆in|.

In the impossible distinguishers constructed in [ABC+17], the impossible differentials
always start and end with a fully passive state in the distinguisher construction phase.
Therefore, cin = |∆in| and cout = |∆out| for these distinguishers. Then, the above formula
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of data complexity can be simplified as:

D =
{

2n+1gln2 if |∆in| < n+ log2gln2,
2
√

2cin+ngln2 if |∆in| ≥ n+ log2gln2.

From this formula, it is thus learnt that the data complexity will always be beyond
codebook, i.e., D > 2n for the impossible differential attacks presented in [ABC+17].

4 Truncated Related-Tweakey Differential Trails and Rect-
angle Attacks

In the last section, we constructed impossible distinguishers by connecting two truncated
differential trails which propagate forward and backward with probability 1 under one
related-tweakey. In this section, boomerang (rectangle) distinguishers are constructed by
combining two truncated differential trails which propagate forward and backward with
probability 1 under two distinct related-tweakeys.

This section first gives a brief introduction of boomerang attacks and rectangle attacks,
and then presents rectangle distinguishers of SKINNY based on which 17, 22 and 27 rounds
of SKINNY can be attacked under TK1, TK2 and TK3 respectively.

4.1 Boomerang and Rectangle Attack
Boomerang attack, proposed by David Wagner in FSE 1999 [Wag99], allows an attacker
to concatenate two short differential trails. This proves beneficial in cases where long
differential trails have a very low probability or it is difficult to search a long differential
trail. In the basic setting of the attack, the block cipher is treated as a cascade of two
sub-ciphers E0 and E1, each having a high probability short differential of its own. These
differentials are then combined in a chosen plaintext and ciphertext attack setting to first
construct a boomerang distinguisher and then use the distinguisher to recover the secret
key.

Suppose E0 covers the first l rounds of encryption and E1 covers the rest (r− l) rounds
of encryption. Let us further suppose, there exists a differential α→ β through E0 with a
high probability p. Similarly, there exists a differential δ → γ through (E1)−1 which has a
high probability q. The boomerang attack then proceeds as follows:

1. Consider two plaintexts X, Y such that Y = X ⊕ α. Obtain their corresponding
ciphertexts X ′′, Y ′′ respectively.

2. The probability that E0(X)⊕ E0(Y ) = X ′ ⊕ Y ′ = β is p.

3. Obtain, Z ′′ = X ′′ ⊕ δ and W ′′ = Y ′′ ⊕ δ. If we apply (E1)−1 to each of the pairs
(X ′′, Z ′′) and (Y ′′, W ′′), then with probability q2, (E1)−1(X ′′) ⊕ (E1)−1(Z ′′) =
X ′ ⊕ Z ′ = γ and (E1)−1(Y ′′)⊕ (E1)−1(W ′′) = Y ′ ⊕W ′ = γ.

4. Then, the following statement holds true: With probability pq2, (E1)−1(Z ′′) ⊕
(E1)−1(W ′′) = β. This is because (E1)−1(Z ′′) ⊕ (E1)−1(W ′′) = Z ′ ⊕W ′ = (Z ′ ⊕
X ′)⊕ (X ′ ⊕ Y ′)⊕ (Y ′ ⊕W ′) = γ ⊕ β ⊕ γ = β.

5. Thus, with probability p2q2, E−1(Z ′′)⊕ E−1(W ′′) = Z ⊕W = α.

6. Now if, (pq) > 2−n/2, then a valid distinguisher is constructed. This is because, for
a random permutation, the expected probability that Z ⊕W = α is 2−n.
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Therefore, if p2q2 is sufficiently large, then the boomerang distinguisher can effectively
distinguish between E(·) and a randomly chosen permutation, given a sufficient number of
adaptive chosen plaintexts and ciphertexts. The plaintexts (X, Y , Z, W ) together are
termed as a quartet and satisfy the following property:

X ⊕ Y ⊕ Z ⊕W = 0.
The basic boomerang attack explained above requires adaptive chosen plaintexts and

ciphertexts. Later, Kelsey et al. [KKS00] developed amplified boomerangs which are pure
chosen-plaintext attacks. In the case of amplified boomerang attacks, the attacker chooses
certain amount of plaintext pairs and lets the oracle encrypt them. Any two pairs form
a quartet (X,Y, Z,W ), and the difference γ before E1 holds with probability 2−n for a
quartet. Thus one can expect a right quartet where X ′′ ⊕ Z ′′ = Y ′′ ⊕W ′′ = δ with
probability 2−np2q2. For a random permutation the expected probability is 2−2n, so if
2−np2q2 > 2−2n, a distinguisher can be constructed. In [BDK01], Biham et al. made
further improvements which allow any value of β and γ to occur as long as β 6= γ and
renamed the attack as rectangle attack. As a result, the probability of the right quartet is
increased to 2−np̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ).

4.2 Related-Tweakey Rectangle Distinguishers
Our distinguisher takes the advantage of the differential cancellation behavior of the
tweakey schedule to cover as many rounds as possible. Fig. 7 is a description of the
generalized related-tweakey rectangle distinguisher.

For the sake of generalization, the distinguisher begins at round R and the subtweakey
difference a is constant. As shown in Fig. 7, an input difference will transform to any
possible output difference which is denoted by N . The notation ? means that we are
not sure whether the cell is active or not. There is only one active tweakey cell in both
the upper and the lower truncated differential trails. In the following discussion we take
SKINNY-64 as an example, where each cell is a nibble.

In a typical rectangle distinguisher, usually, two differential trails are constructed, i.e.,
α→ β and γ ← δ. Note that in the related-tweakey case, we specify a tweakey difference
∆1 for the upper trail α→ β and a tweakey difference ∆2 for the lower trail γ ← δ. The
position of the active tweakey cell is chosen by the rule that the truncated differential
trail from round R + 2z to round R + 2z + 3 is the optimal differential trail as well as the
truncated differential trail from round R+ 2z + 7 to round R+ 2z + 4.

The α ∆1−−→ β differential trail begins with a state difference α that contains one active
cell in a carefully chosen position relating to the key state permutation. At Round R, a
tweakey difference of one cell position is introduced to cancel the state difference. Therefore,
we will have 2z − 1 rounds of fully non-active internal state in the subsequent encryption
process, e.g., we have 5 rounds of fully non-active internal states for TK3.

At round R+ 2z, the key state introduces a cell difference a to the internal states with
the corresponding related-tweakey difference. The introduced internal difference continues
to diffuse for four rounds according to the round function of SKINNY. At round R+ 2z+ 2,
another tweakey difference a is introduced, which complicates the diffusion of the difference
pattern through rounds.

Similarly, at the bottom of the distinguisher the input difference δ (with the same
value as the tweakey difference a) of the differential trail γ ∆2←−− δ is cancelled out by the
tweakey difference ∆2 which results in 2z − 1 rounds of fully inactive internal states. At
round R+ 2z + 7, difference a is inserted by the subtweakey difference and continues to
propagate for 4 rounds just as in the upper trail α ∆1−−→ β.

A rectangle distinguisher will work as long as the two upper trails α ∆1−−→ β as well as
the two lower trails γ ∆2←−− δ agree with each other (note that β 6= γ). Here we denote the
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Figure 7: Description of the generalized related-tweakey rectangle distinguisher
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two upper trails as α ∆1−−→ β1 and α ∆1−−→ β2 respectively. Similarly, we denote the two lower
trails as γ1

∆2←−− δ and γ2
∆2←−− δ. Thus, a rectangle distinguisher will succeed as long as

β1 = β2 and γ1 = γ2 while β 6= γ are satisfied.
Instead of considering specific differential trails with high probability, we focus on all

possible differential trails, which means the output difference β of the upper trail α ∆1−−→ β
can take any possible value. We employ the same strategy when analyzing the differential
probability of the lower trail γ ∆2←−− δ, i.e., γ1 and γ2 can be any possible values.

Thus, the probability of the upper trail α ∆1−−→ β of the related-tweakey rectangle
distinguisher is4 ∑

β1,β2
Pr(α

∆1−−→ β1)·Pr(α
∆1−−→ β2)·Pr(β1 = β2) = (2−3.9)7·2−2.4 = 2−29.7.

Similarly, the probability of the lower trail γ ∆2←−− δ of the related-tweakey rectangle
distinguisher is

∑
γ1,γ2

Pr(γ1
∆2←−− δ) · Pr(γ2

∆2←−− δ) · Pr(γ1 = γ2) = (2−3.9)6 · 2−4 = 2−27.4.
The total probability of the related-tweakey rectangle distinguisher would be 2−29.7·2−27.4 =
2−57.1. To be consistent with conventional notations, we define p̂2q̂2 =

∑
β1,β2

Pr(α
∆1−−→

β1) · Pr(α
∆1−−→ β2) · Pr(β1 = β2) ·

∑
γ1,γ2

Pr(γ1
∆2←−− δ) · Pr(γ2

∆2←−− δ) · Pr(γ1 = γ2).
The generalized related-tweakey distinguisher works for both SKINNY-64 and SKINNY-

128 although we need to adjust the probability of the distinguisher for distinctive versions
in use, which is an easy work. Particularly, the distinguisher is more effective on larger
tweak size, e.g., the distinguisher consists of 19 rounds for TK3 while has only 15 rounds
for TK2.

Discussion. In order to take full advantage of the tweakey differential cancellation prop-
erty, the position of the active tweakey cell is determined cautiously taking into account
two main factors. Firstly, the tweakey difference ought to offset the state difference at
the beginning of the distinguisher, resulting in 2z − 1 rounds of fully non-active rounds.
Secondly, the truncated differential trail formed due to the tweakey difference should have
at most 8 active cell positions at the meeting point, otherwise, the distinguisher won’t
work. With these requirements, we searched all the possible active cell positions of the
tweakey and found 5 positions for the upper truncated differential trail and 4 positions for
the lower truncated differential trail that satisfy our requirements.

The above distinguisher is constructed using one of the optimal truncated trails covering
maximum number of rounds and having minimal probability. Moreover, the chosen active
tweakey position also ensures that the truncated differential trails in the extended rounds
of the tweakey recovery process are optimal (enabling maximum rounds to be covered),
indicating that it is the best distinguisher under all the considertations.

Experimental verification of the distinguisher. The validity of our distinguishers is
verified with an experiment on SKINNY-64-128 which aims at finding a right quartet
for the 14-round boomerang distinguisher with probability 2−40. The result shows that
averagely there is one right quartet among 235.7 trials. The experiment not only verifies
the correctness of our distinguishers but also demonstrates that the probability of our
distinguishers are not overestimated. One of the right quartets obtained and more details
of the experiment is shown in Appendix C.

4We use 1/15 = 2−3.9 to compute the probability of two output difference (i.e., β1 and β2) of the
truncated differential to collide rather than a general 2−4. In the attack, the actual tweakey difference
value at round R+ 2z + 3 results in 6 rather than 8 possible output differences. Thus, the corresponding
probability would be 1/6 = 2−2.4 rather than 1/8 = 2−3.
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4.3 Key Recovery Algorithm Based on Related-Tweakey Rectangle
Distinguishers

Our algorithm for using related-tweakey rectangle distinguisher in a key recovery attack is
adapted from Biham et al.’s algorithm [BDK02] where in their rectangle key recovery attack
there is no key difference. Note that this adapted key recovery algorithm is applicable
to other block ciphers under related-tweakey (-key) model as long as the key schedule is
linear.

We continue to use the notations and conventions of boomerang and rectangle attacks.
The cipher E is expressed as E = Ef ◦ E′ ◦ Eb where, E′ = E1 ◦ E0 is the rectangle
distinguisher and Eb and Ef are the rounds extended in the backward and forward direction
of the distinguisher respectively (as shown in Fig. 8).

P1

P2

P3

P4

C1 C3

C2 C4

X Z

Y W

X’

Y’

Z’

W’

X”

Y”

Z”

W”

!

"

#1

!’

$1

"’

!’

$2

"’

#2

!

"

Eb

E0

E1

Ef

K1

K2

K3

K4

Figure 8: Key recovery model of related-tweakey rectangle attack

In a related-tweakey rectangle attack, the quartet of (P1, P2, P3, P4) as plaintexts and
(C1, C2, C3, C4) as ciphertexts is encrypted with four related-tweakeys (K1,K2,K3,K4)
which are related to each other through specific tweakey differences. Let the input difference
α of the distinguisher diffuse in the backward direction of the cipher E over several rounds
(which is Eb section of E) with the related-tweakey difference ∆1 and all the possible
output differences α′ (which are the actual plaintext differences) corresponding to α be
stored in a set Ub. Likewise, let the output difference δ of the distinguisher diffuse to
several rounds in the forward direction of the cipher with a related-tweakey difference ∆2
and all the possible output differences δ′(which are the actual ciphertext differences) be
stored in a set Uf .

Before we continue we introduce some additional notations. Let Vb be the space spanned
by the values in Ub. Let rb = log2|Vb| and tb = log2|Ub|. Let mb be the the number of
subtweakey bits involved in Eb that affect the plaintext difference while encrypting plaintext
pairs whose difference after Eb is α. Similarly, we define Uf , Vf , rf , tf ,mf for Ef , i.e., Uf is
the set of ciphertext differences that may cause a difference δ before Ef under the tweakey
difference ∆2, Vf is the space spanned by values of Uf and rf = log2|Vf |, tf = log2|Uf |.
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mf is the number of subtweakey bits involved in Ef that affect the ciphertext difference
while decrypting pairs whose difference before Ef is δ. Suppose the master key is of k bits.

Our algorithm proceeds as follows:

1. Let K1 be the secret key and K2 = K1⊕∆1, K3 = K1⊕∆2 and K4 = K1⊕∆1⊕∆2.
Create y =

√
s · 2n/2−rb/p̂q̂ structures of 2rb plaintexts each, where s is the expected

number of right quartets. Encrypt these y structures with K1,K2 respectively.
Similarly, create y structures of 2rb plaintexts each and encrypt these y structures
with K3,K4 respectively.

2. Initialize a list of 2mb+mf counters, each of which corresponds to a (mb +mf )-bit
subkey guess.

3. Under each key there are M = y2rb ciphertexts. Denote the ciphertext sets under
Ki, i ∈ {1, 2, 3, 4} by Li, i ∈ {1, 2, 3, 4}. Process (L1, L3) and (L2, L4) independently.
Insert the L1 ciphertexts into a hash table H1 according to the n − rf ciphertext
bits that are set to 0 in Vf . Then for each ciphertext in L3, try to find collisions of
this ciphertext and ciphertexts in H1. If a ciphertext pair from L1 and L3 agrees on
the n− rf bits, check whether the ciphertext difference is in Uf . Do the same for
(L2, L4).

4. For each collision (C1, C3) ∈ L1 × L3 that is obtained from Step 3, denote Ci’s
structure under Kj by SKj

Ci
and attach to C1 the index of SK3

C3
. For each collision

(C2, C4) ∈ L2 × L4, attach to C2 the index of SK4
C4

.

5. In each structure S under K1,K2, we search for two ciphertexts C1 ∈ SK1 , C2 ∈ SK2

which are attached to some other structures under K3 and K4 respectively. Once
we find such a pair, we first check that structures that C1 and C2 are attached to
are same or not and whether the corresponding plaintext difference P1 ⊕ P2 is in Ub.
We also check the difference of the plaintexts which P1 and P2 are related to.

6. For all the quartets that pass Step 5, denote by (P1, P2, P3, P4) the plaintexts of a quar-
tet and by (C1, C2, C3, C4) the corresponding ciphertexts under (K1,K2,K3,K4).
Increment the counters of (mb + mf )-bit subkeys which satisfy that EK1

b (P1) ⊕
EK2
b (P2) = EK3

b (P3)⊕EK4
b (P4) = α and (EK1

f )−1(C1)⊕(EK3
f )−1(C3) = (EK2

f )−1(C2)
⊕(EK4

f )−1(C4) = δ.

7. Output the subkeys corresponding to top 2mb+mf−h hits, i.e., we recover h bits
information of the key in previous steps. We guess the remaining k − mb − mf

tweakey bits and exhaustively search the 2k−h keys to find the correct one.

The data complexity of the attack is D = 4M chosen plaintexts. The time complexity
of Step 1 is D encryptions. The time complexity of Step 2 is only 2mb+mf memory access
using suitable data structures.

Step 3 requires 2M memory access for the insertion of both (L1, L3) and (L2, L4) and
thus 4M memory accesses in total. The total number of colliding pairs for both (L1, L3)
and (L2, L4) is M2 · 2rf−n. We keep all the 2tf values of Uf in a hash table H2, and
thus, the check requires one memory access for each colliding pair obtained from H1. This
requiresM2 ·2rf−n memory accesses for both (L1, L3) and (L2, L4). Out of the 2rf possible
differences for a colliding pair, only 2tf differences are in Uf . In total, about M2 · 2tf−n
colliding pairs are in Uf for both (L1, L3) and (L2, L4). The time complexity of this step
is 4M + 2 ·M2 · 2rf−n memory accesses.

Step 4 requires one memory access for each pair remained after Step 3. The time
complexity is 2 ·M2 · 2tf−n memory accesses.
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Step 5 searches for possible quartets. In structures under K1 (or K2), there are
M2 · 2tf−n attachments which distribute over y structures. Therefore in each structure
K1 (or K2), we have about M2 · 2tf−n/y = M · 2tf +rb−n attachments on average. In the
same structure under K1 and K2, there are (M · 2tf +rb−n)2/y pairs of (C1, C2) where the
ciphertexts say C3 and C4 that C1 and C2 are related to are also in the same structure, i.e.
M2 · 22tf +2rb−2n possible quartets (C1, C2, C3, C4) under (K1,K2,K3,K4). Suppose that
the corresponding plaintext is (P1, P2, P3, P4). We check that both P1 ⊕ P2 and P3 ⊕ P4
are in Ub. The filtering process is achieved by creating a hash table of 2tb differences of
Ub and checking whether the differences of P1 ⊕ P2 and P3 ⊕ P4 are in the hash table.
The probability that both P1 ⊕P2 and P3 ⊕P4 are in Ub is 2(tb−rb)×2, so M2 · 22tf +2tb−2n

quartets will be left. In total this step takes M2 · 22tf +2rb−2n(1 + 2tb−rb) memory accesses.
Step 6 deduces the right subkey from the remaining quartets. Note that a right quartet

satisfies EK1
b (P1) ⊕ EK2

b (P2) = EK3
b (P3) ⊕ EK4

b (P4) = α and key differences ∆1, ∆2
are chosen in advance and known. With these two key differences, K2,K3,K4 can be
computed from K1. A right quartet must agree on the mb bits of K1. There are 2tb
possible input differences that may lead to α difference after Eb. Therefore, 2mb−tb subkeys
on average take one of the differences in Ub to α. For two pairs in a quartet, they agree
on (2mb−tb)2/2mb = 2mb−2tb subkeys for Eb. Do the same analysis for Ef part with the
corresponding ciphertexts, and we get 2mf−2tf subkey suggestions for Ef . Each remaining
quartet suggests 2mb+mf−2tb−2tf subkeys. There are M2 · 22tf +2tb−2n · 2mb+mf−2tb−2tf =
M2 ·2mb+mf−2n hits. For a wrong key, there are M2 ·2−2n (< 1/16) hits5, while for a right
key there are s (e.g., s = 4) hits. Using hash tables, this step can be implemented with
M2 ·22tf +2tb−2n ·2mb−tb ·2+M2 ·22tf +2tb−2n ·2mf−tf ·2 = M2 ·2tb+tf−2n+1(2mb+tf +2mf +tb)
memory accesses.

Step 7 requires a time complexity of 2k−h encryptions.
Overall, the complexities of the rectangle attack are as follows.

• Data complexity: D = 4M chosen plaintexts, where M =
√
s · 2n/2/p̂q̂ and s is the

expected number of right quartets.

• Time complexity: 4M + 2 ·M2 ·2rf−n+ 2 ·M2 ·2tf−n+M2 ·22tf +2rb−2n(1 + 2tb−rb) +
M2 · 2tb+tf−2n+1(2mb+tf + 2mf +tb) memory accesses and 2k−h encryptions.

• Memory complexity: 4M + 2tb + 2tf + 2mb+mf .

Further Explanation of Data Complexity At first, we construct y structures of 2rb

plaintexts each, all of which are encrypted with K1,K2,K3 and K4 respectively. In each
structure, there are roughly 2rb · 2rb = 22rb pairs of plaintexts keyed by K1 and K2 (or
K3 and K4) that satisfy the input difference α′. After the Eb encryption process, only
22rb/2rb = 2rb pairs that hold the difference of α will remain. Then there are y2rb pairs that
satisfy the input difference of the rectangle distinguisher in total for K1 and K2 as well as
forK3 andK4. Thus, the number of possible quartets is y2rb ·y2rb = y222rb . The number of
right quartets s can then be deduced as s = y222rb ·2−np̂2q̂2 which means y =

√
s·2n/2−rb/p̂q̂.

Therefore, the data complexity would be D = 4M = 4y2rb = 4
√
s · 2n/2/p̂q̂.

Success Probability According to [Sel08], the success probability of differential analysis
is

Ps =
∫ ∞
√

sSN −Φ−1(1−2−h)√
SN +1

φ(x)dx,

where SN is the signal-to-noise ratio and SN = 2−np̂2q̂2

2−2n in rectangle attacks.

5D = 4M < 2n, then M2 · 2−2n < 2−4.
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4.4 Related-Tweakey Rectangle Attacks
This subsection takes SKINNY-64-128 as an example to illustrate our attacks and the
attack works similarly for other versions so we just provide the results.

The following Fig. 9 depicts a dedicated attack of 22 rounds SKINNY-64-128 using
the 15-round related-tweakey rectangle distinguisher and extending 3.5 rounds before and
after the distinguisher.

In the attack, we choose the cell position and the value of the tweakey difference such
that a distinguisher with the optimal probability can be obtained. As there is no whitening
key added before the first round, when retrieving the subtweakey, we can attack one round
for free. The subtweakey bits that affect the input difference α of the distinguisher are
marked specially in each round and shown in Table 4.

Table 4: The round tweakey differences ∆tki used in the key recovery phase.

Round i Row(1) Row(2)
2 ( b 0 0 0 ) ( 0 0 0 0 )
4 ( 0 0 a 0 ) ( 0 0 0 0 )
19 ( 0 0 0 0 ) ( 0 0 c 0 )
21 ( 0 0 0 0 ) ( 0 d 0 0 )

Specifically, rb = log2(154) = 15.6, tb = log2(153) + log26 = 14.3, mb = 10c = 40,
rf = log2(158) = 31.3, tf = log2(157) + log28 = 30.3 and mf = 8c = 32. As we
have analyzed previously, the probability of the related-tweakey rectangle distinguisher is
p̂2q̂2 = (2−3.9)7 · 2−2.4 · (2−3.9)6 · 2−4 = 2−57.1.

The total data complexity for 22-round SKINNY64-128 is D = 4 ·
√
s · 2n/2/p̂q̂ =

4 ·
√
s · 232 · 228.5 =

√
s · 262.5, i.e. if we choose s = 4, the data complexity would be 263.5.

The time complexity required is 2110.9 memory access and 2108 encryptions, and the memory
complexity is 263.5. If we reduce the related-tweakey rectangle distinguisher by one round,
i.e., a 14-round distinguisher, the data complexity and time complexity could be highly
reduced. The probability of the 14-round distinguisher is p̂2q̂2 = (2−3.9)3 · (2−3.9)6 · 2−4 =
2−39.1. Using the same tweakey recovery procedure to extend the distinguisher 3.5
rounds at both sides of the distinguisher, the data complexity for 21-round attack is
D = 4 ·

√
s ·2n/2/p̂q̂ = 4 ·

√
s ·232 ·219.5 =

√
s ·253.5 = 254.5 (with s = 4). The corresponding

time complexity is 293.9 memory access and 288 encryptions, and the memory complexity
is 254.5.

Table 5 summarizes the results of related-tweakey rectangle attacks on all versions of
SKINNY. It shows that the attack is more effective on TK2 and TK3 versions which is
consistent with the fact that the attack takes advantage of the key schedule of SKINNY,
e.g., 27 rounds of SKINNY-64-192 can be covered. Besides, we can see that the attack
covers the same rounds whatever the block size is (64-bit or 128-bit).

5 Related-Tweakey Differential Trails and Rectangle At-
tacks

In the previous sections, truncated differential trails are investigated and used to attack
reduced versions of SKINNY. This section focuses on differential trails of SKINNY. In the
specification of SKINNY [BJK+16b], the authors only gave lower bounds on the number
of differential active Sboxes in SKINNY. It is not clear whether exact differential trails
satisfying the lower bounds exist or not, especially for SKINNY-128 which employs a
differentially non-optimal 8-bit Sbox. This section sheds some light on it and gives some
good related-tweakey differential trails for both SKINNY-64 and SKINNY-128 on which
boomerang distinguishers can also be constructed.
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Table 5: Results of related-tweakey rectangle attack on SKINNY

#Rounds Rd Rb Rf Data Time Memory Ps

TK1 64-64 17 11 3.5 2.5 254.5 255.7 254.5 97.72%
128-128 17 11 3.5 2.5 2107 2113 2107 97.72%

TK2 64-128 21 14 3.5 3.5 254.5 293.9 254.5 97.72%
64-128 22 15 3.5 3.5 263.5 2110.9 263.5 94.03%
128-256 22 15 3.5 3.5 2127 2235.6 2127 95.37%

TK3 64-192 27 19 4.5 3.5 263.5 2156.5 280 91.56%
128-384 27 19 4.5 3.5 2127 2351 2160 93.11%

5.1 Strategies for Finding Differential Trails
In this section our aim is to find optimal differential trails for SKINNY-64 and good
differential trails for SKINNY-128 in a reasonable time. It is challenging to directly find
optimal differential trails, even for block ciphers using 4-bit Sboxes, so we propose an
indirect method for finding optimal differential trails for SKINNY-64, which is described
as follows.

1. For an r-round SKINNY-64, find all truncated differential trails with AS = ASmin
active Sboxes, where ASmin denotes the minimal number of active Sboxes of truncated
differential trails;

2. Based on the truncated differential trails, search for a best differential trail, namely
the trail with the highest probability. If the best differential trail obtained has
probability p = 2−2ASmin−i, i ∈ {0, 1, 2}, then this trail must be the optimal trail for
an r-round SKINNY-64; otherwise, go to Step 3;

3. For AS = ASmin + 1 to b−log2p/2c, find all truncated differential trails with AS
active Sboxes. Based on the truncated differentials, search for a best differential trail
with probability p′. If p > p′, let p = p′. Until p = 2−2AS−i, i ∈ {0, 1, 2} is satisfied,
then the trail related to p is the optimal trail for an r-round SKINNY.

Following the designers of SKINNY [BJK+16b], we generate a Mixed-Integer Linear
Programming (MILP) model to get truncated differential trails. Basic ideas of converting
a differential searching problem into inequalities over integers are introduced in [MWGP11,
SHS+13, SHW+14]. Once the active pattern, i.e., a truncated differential trail is given,
the search for finding the optimal trail with MILP solvers is greatly sped up. In this way
optimal differential trails can be found for SKINNY-64 as long as the number of truncated
differential trails that needs to be traversed is reasonable, say less than 5000.

However, for SKINNY-128, 8-bit Sboxes are too heavy for Mixed-Integer Linear
Programming solvers, so a dedicated searching algorithm is used after obtaining a truncated
differential trail with the minimal number of active Sboxes. Our idea of our algorithm is
that given a truncated differential trail, there exists a few free active master tweakey bytes
for which we could traverse all their nonzero values. Once the master tweakey difference
is fixed, the round tweakey differences can be calculated since the key schedule is linear.
With the round tweakey differences known, it is easy to find differential trails or verify
there is no differential trails following the active pattern. In the search for differential trails
of SKINNY-128, only a few truncated differential of minimal number of active Sboxes are
considered.
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5.2 Results of Differential Trails

Table 6 lists the results of SKINNY-64 from 6 rounds to 13 rounds under related-tweakey
model. For each of TK1, TK2 and TK3, the first line shows the number of minimal active
Sboxes; the second line presents the probability p1 of best trails following the truncated
differentials with the minimal number active Sboxes; and the last line shows the probability
p2 of optimal trails6. Under TK1, differential trails with probability 2−2ASmin are found
in all cases. However, under TK2, and TK3, as the number of rounds increases, the
probability of the optimal trail is much lower than 2−2ASmin .

Table 6: Bounds on the number of active Sboxes and probability of trails in SKINNY-64
under related-tweakey models

#rounds 6 7 8 9 10 11 12 13
TK1 ASmin 6 10 13 16 23 32 38 41

−log2p 12 20 26 32 46 64 76 82
TK2 ASmin 2 3 6 9 12 16 21 25

−log2p1 4 6 12 20 None† 35 49 55
−log2p2 4 6 12 20 28 35 48 55

TK3 ASmin 0 1 2 3 6 10 13 16
−log2p1 0 2 4 6 12 20 28 43
−log2p2 0 2 4 6 12 20 28 38

† No solution is found for all truncated differentials with the
minimal number of active Sboxes.

For SKINNY-128, only the cases that are promising in rectangle attacks are considered
and the results are shown in Table 7. Note that the highest probability for the 8-bit
Sbox used in SKINNY-128 is also 2−2. As can be seen from the results that to make the
total number of active Sboxes lower, the average probability of each Sbox is also much
lower. For example, the minimal number of active Sboxes of 9-round SKINNY-128-256 is
9, and following one of the truncated differential that satisfies this bound, the best trail
has probability 2−34.42. While extending an 8-round trail with 6 active Sboxes one round
back, we get a 9-round trail with 10 active Sboxes and probability 2−20.

Table 7: Bounds on the number of active Sboxes and probability of trails in SKINNY-128
under related-tweakey models

#rounds 6 7 8 9 10 11 12
TK1 ASmin 6 10 13

−log2p 12 20 54(36)‡
TK2 ASmin 6 9

−log2p 12 34.42(20)
TK3 ASmin 6 10 13

−log2p 12 21 62.83(37)
‡ The values in parentheses are the probability of r-round differential trails
obtained by extending a (r − 1)-round differential trail.

These results show a trend that it is not likely to reach the bounds of 2−2ASmin as the
number of rounds increase for both SKINNY-64 and SKINNY-128.

6For TK1, the second line and the third line are identical, so only one line is kept.
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5.3 Related-Tweakey Rectangle Attacks
Based on differential trails in the previous subsection, rectangle distinguishers can be
constructed. We follow the notations in Section 4. Suppose E′ = E1 ◦E0 is the rectangle
distinguisher. The probability of the upper trail for E0 under tweakey difference ∆1 (resp.
lower trail for E1 under ∆2) Pr(α ∆1−−→ β) ( resp. Pr(γ ∆2−−→ δ)) is denoted by p (resp.

q). If multiple trails are considered for E0 or E1, we denote
√

ΣiPr2(α ∆1−−→ βi) (resp.√
ΣjPr2(γj

∆2−−→ δ)) by p̂ (resp. q̂). In the tweakey recovery attack, the same notations of
E = Ef ◦E1 ◦E0 ◦Eb, mb, rb, tb,mf , rf and tf are used, and the number of right quartets
s is set to be 4 and the success probability of attacks in this section is greater than 95%.
Under TK1 where the key size is as large as the block size, the rectangle attack does not
work as well as under TK2 and TK3. Thus, in this section only distinguishers under TK2
and TK3 are presented, together with the tweakey recovery attacks using the adapted key
recovery algorithm in Section 4.3.

5.3.1 21-Round attack on SKINNY-64-128

We construct a 17-round rectangle distinguisher by combining an 8-round upper trail and
a 9-round lower trail. Details of these two trails are shown in Table 12. For E0, if we
fix the input difference and the tweakey difference according to the 8-round trail, there
are 5477 trails which belong to 1563 differentials, and p̂ = 2−7.15. Similarly for E1, if
we fix the output difference and the tweakey difference according to the 9-round trail,
there are 24 trails which belong to 6 differentials, and q̂ = 2−17.21. By extending 3 rounds
backward and one round forward, we get following parameters: rb = 13c, tb = 8c,mb = 10c,
rf = 12c, tf = 7c,mf = 4c where c = 4 is the cell size. Using the adapted key recovery
algorithm, a 21-round version of SKINNY-64-128 can be attacked with data complexity
of D = 259.36 chosen plaintexts, time complexity of 2115.72 memory accesses and 2108

encryptions, and memory complexity of 259.36 blocks. The probability of success is 97.59%.

5.3.2 22-Round attack on SKINNY-128-256

Following the truncated differentials with the minimal number of active Sboxes, we
found an 8-round trail of probability 2−12 and a 9-round trail of probability 2−34.42. By
extending the 8-round trail one round backward, we get a 9-round trail with probability
2−20 which is higher than the probability of the 9-round trail obtained directly from a
9-round truncated differential with the minimal number of active Sboxes. These two
9-round trails are displayed in Table 13. We choose the 9-round trail with probability
2−34.42 for E0 and the other one with probability 2−20 for E1. If the output difference
and the tweakey difference are fixed, there are 25 trails with the same probability for
E1, so q̂ = 2−17.5 and p̂q̂ = pq̂ = 2−51.92 for the 18-round rectangle distinguisher. Using
the distinguisher from Round 4 to Round 21, we can attack 22 rounds with following
parameters: rb = 14c, tb = 8c,mb = 10c, rf = 12c, tf = 8c,mf = 5c where c = 8 is the cell
size. Figure 10 gives a visualized view of the key recovery attack. Using the adapted key
recovery algorithm, a 22-round version of SKINNY-128-256 can be attacked with data
complexity of D = 2118.92 chosen plaintexts, time complexity of 2250.84 memory accesses
and 2248 encryptions, and memory complexity of 2120 blocks.

5.3.3 26-Round attack on SKINNY-64-192

The best 11-round related-tweakey differential trail for SKINNY-64-192 has probability
2−20 as shown in Table 14. The same trail is used for both E0 and E1 to get a 22-round
distinguisher. If we fix input difference (output difference) and the tweakey difference,
there are many trails. Taking 5000 trails into consideration, p̂ = 2−14.51, q̂ = 2−12.96.
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Figure 10: Tweakey recovery attack of 22-round SKINNY-128-256 using a 18-round
related-tweakey rectangle distinguisher from Round 4 to Round 21

By extending 2 rounds backward and 2 rounds forward, we get following parameters:
rb = 13c, tb = 8c,mb = 6c, rf = 16c, tf = 13c,mf = 12c where c = 4. Consequently, 26
rounds of SKINNY-64-192 can be attacked with data complexity of D = 262.47 chosen
plaintexts, time complexity of 2160.94 memory accesses and 2154 encryptions, and memory
complexity of 272 blocks.

5.3.4 27-Round attack on SKINNY-128-384

The 11-round related-tweakey differential trail for SKINNY-128-384 we found has probabil-
ity 2−21, and with the same input difference and output difference there are two trails of
the same probability. By extending this 11-round differential trail backward for one round
we get a 12-round trail with probability 2−37. We connect the 11-round trail and the
12-round trail to get a 23-round rectangle distinguisher. Using the boomerang switching
technique [BK09] at the meeting point of two trails, four Sboxes of the lower trail can be
saved. If we fix the tweakey difference and the output difference, there are 28 trails with
the same probability, thus q̂ = 2−25. Since p̂ = 2−21, p̂q̂ = 2−45. By extending 2 rounds
backward and 2 rounds forward, we get following parameters: rb = 13c, tb = 8c,mb = 6c,
rf = 16c, tf = 13c,mf = 12c where c = 8. Thus, a 27-round SKINNY-128-384 can be
attacked with data complexity of D = 2112 chosen plaintexts, time complexity of 2300

memory accesses and 2331 encryptions, and memory complexity of 2144 blocks.

Experimental verification of the distinguishers. In order to verify that no contradiction
happens at the meeting point of the two trails of our distinguishers, experiments are
mounted to search for right quartets where the distinguishers are reduced to two middle
rounds, i.e. the last round of the upper trail and the first round of the lower trail. In this
way, right quartets can be found practically as long as there exists no contradiction at the
meeting point. As a result, right quartets are obtained for all four distinguishers in this
section, and the time complexity for finding a right quartet is much lower than expected.
More details of the experiments are shown in Table 11.

Results of related-tweakey rectangle attacks on SKINNY-n-2n and SKINNY-n-3n
are summarized in Table 8. As can be seen that even though differential trails based
rectangle distinguishers cover more rounds compared with rectangle distinguishers based
on truncated differential trails as in Table 5, the total number of rounds attacked is not
necessarily more.

6 Conclusion
This paper analyzes the security of SKINNY under related-tweakey settings using impossible
differential and rectangle attacks which have a data complexity below codebook. The
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Table 8: Results of related-tweakey rectangle attacks on SKINNY-n-2n and SKINNY-n-3n

Model Version #Rounds Rd Rb Rf Data Time Memory Ps

TK2 64-128 21 17 3 1 259.36 2115.72 259.36 97.59%
128-256 22 18 3 1 2118.92 2251.03 2120 97.72%

TK3 64-192 26 22 2 2 262.47 2160.95 272 95.56%
128-384 27 23 2 2 2112 2331 2144 97.72%

results show that 19, 23 and 27 rounds of SKINNY-n-n/2n/3n can be attacked respectively
with truncated differential trails. This paper also analyzes the security of SKINNY using
actual differential trails and presents results for the rectangle attacks under TK2 and
TK3. For SKINNY-128, better attack complexities are obtained (in terms of data and
memory) compared to truncated differential trails. For SKINNY-64, the results show a
trend that as the number of rounds increases, the probability of optimal differential trails
is much lower than the probability derived from lower bounds of active Sboxes in SKINNY.
Another interesting outcome of this work shows that the increased number of rounds in
the distinguisher may not necessarily lead to more rounds attacked.
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A Truncated Impossible Differentials
Table 9 lists all the truncated impossible differentials we found under both single-tweakey
model and related-tweakey models. These truncated impossible differentials are found by
reusing the Mixed Integer Linear Programming model as in Section 5.

Table 9: Truncated impossible differentials

Model (active cell position in input, active cell position in output)
SK (12, 8), (13, 8), (12, 11),(14, 9), (14, 11), (15, 10)

11 rounds (12, 9), (13, 9), (13, 10),(15, 8), (14, 10), (15, 11)
Model (active cell position in key, active cell position in output)
TK1 (8, 8), (9, 10), (13, 8), (10, 9), (12, 10), (13, 11)

12 rounds (9, 9), (10, 8), (13, 9), (14, 9), (14, 10), (15, 10)
TK2 (8, 8), (12, 9), (14, 8), (10, 10), (12, 10), ( 9, 8)

14 rounds (8, 9), (14, 9), (15, 9), (11, 10), (15, 10), (14, 11)
TK3 (9, 8), (12, 9), (10, 10), ( 8, 10), (15, 8), (12, 8)

16 rounds (9, 9), (10, 9), (11, 10), (13, 10), (11, 9), (12, 11)
Model active cell position in key
TK1

12 rounds
TK2 8, 9, 10, 11, 12, 13, 14, 15

14 rounds
TK3

16 rounds

Note that, in the specification of SKINNY [BJK+16c], the authors state that there are
16 such truncated impossible differentials under single-tweakey model where only one cell
is active in both the input and output, while we could only find 12.

For related-tweakey models, no result is reported in [BJK+16c]. Our impossible
differentials under related-tweakey model start with a fully passive state and a master key
with only a special active cell which makes the first 2z− 1 subtweakeys have no active cells
and end with one active cell after the SubCells operation of Round r where r is the number
of rounds in the distinguisher. Therefore, in Table 9 each truncated impossible differential
is represented with a tuple. As can be seen, there are 12 such impossible differentials under
TK1/TK2/TK3 with 12/14/16 rounds. Table 9 also lists all the impossible differentials
that start as well as end with a fully passive state.

B Related Tweakey Impossible Differential Attack for SKINNY-
n-n and SKINNY-n-3n

In this section, we present the details of our 19-round attack on SKINNY-n-n using related
tweakey impossible differential attack. After that we just list out the parameters and
results of SKINNY-n-3n.

B.1 SKINNY-n-n
Our 12-round distinguisher is placed between Round 5 to Round 17. A 6.5-round related-
tweakey differential in the forward direction (having prob. 1) starting at Y5 (after the
SC and AC operations in Round 5) is concatenated to a 5.5-round related-tweakey
differential (having prob. 1) starting in the reverse direction from Y17 (before the ART
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Figure 11: 19-round attack against SKINNY-n-n.

operation in Round 17). The contradiction happens in Round 12 at X12[12]. The 12-round
related-tweakey impossible differential is:

(0a00 | 0000 | 0000 | 0000) 612r−−→ (0000 | 0000 | 0N00 | 0000)

where a denotes a fixed non-zero difference and N denotes any non-zero difference. This
12-round distinguisher is extended 4.5 rounds at the top and 2.5 rounds in the bottom to
cover 7 rounds in the tweakey recovery phase as shown in Fig. 11. Following the notations
explained in Section 3.2, here E′ covers 12 rounds, Ef (Eb) covers 2.5 (4.5) rounds, and
cin = |∆in| = 8c, cout = 7c, |∆out| = 8c and |kin ∪ kout| = 14c where c is the cell size. The
steps of our tweakey recovery phase are as follows:

Data collection Consider a pair of structures S1 and S2, where, each structure consists of
2|∆in| = 28c plaintexts and for each plaintext pair P1 ∈ S1 & P2 ∈ S2, P1 ⊕ P2 =
(0 N 0 N | N 0 N N | 0 N 0 N | N 0 0 0), where N denotes any cell value. The
total number of possible plaintext pairs is 216c. Invert back the plaintexts in S1 and
S2 by one keyless round to get the original plaintexts. Encrypt the pool S1 under
(TK-1)1 and the pool S2 under (TK-1)2 to obtain the corresponding ciphertexts.
For each ciphertext pair, check whether n − |∆out| = 8c bits are zero or not, i.e.,
∆W19[1, 2, 3, 4, 10, 11, 12, 14] should be zero. Generate 2x such pair of structures
and repeat this for each pair of structures. In total there are 2x+2|∆in| = 2x+16c

plaintext pairs. This step requires 2x+|∆in|+1 = 2x+8c+1 encryptions. Out of the
total 2x+16c ciphertext pairs, M = 2x+2|∆in|−n+|∆out| = 2x+8c pairs are expected
to remain. With the help of a hash table, this step takes a memory complexity of
2|∆in| = 28c.7

Tweakey recovery For M pairs:
7For each pair of structures under (TK-1)1 and (TK-1)2, insert the messages of one structure into a

hash table according to the the value of W19[1, 2, 3, 4, 10, 11, 12, 14], and then use messages in the other
structure to find message pairs under the related tweakeys such that W19[1, 2, 3, 4, 10, 11, 12, 14] are equal
by searching the built hash table. An attacker can do this for each structure pair. In this way, the time
complexity is equal to the data complexity, and the memory complexity remains to be the size of one
structure.
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(a) Check whether ∆X19[9] = ∆X19[13] holds. Since ∆X19[1] = ∆X19[13] and
∆Y19[1] is known from the ciphertexts, use Lemma 1 to compute X19[1], Y19[1]
and tk19[1]. Compute ∆X19[15]. Since ∆X19[3] = ∆X19[7] = ∆X19[15], and
∆Y19[3], ∆Y19[7] are known from the ciphertexts, compute tk19[3], tk19[7]. This
step takes a time complexity of M and the number of tests left for the next
step is M · 2−c.

(b) Guess tk19[2]. Using tk19[2], compute W18[14],∆W18[14] and then compute
X18[15],∆X18[15]. Since ∆Y18[11] can be computed from ∆X19[1, 5, 13] and
∆X18[11] = ∆X18[15] ⊕ a, Y18[11] can be recovered by Lemma 1, and then
tk19[5] also. Similarly, ∆X18[3] = ∆X18[15], ∆Y18[3], Z18[3] can be computed
from X19,∆X19, so tk18[3] can be calculated by solving the equation of the
Sbox. This step takes a time complexity of M and the number of tests left for
the next step is M .

(c) With tk1[0] = tk19[2], tk1[6] = tk19[5], compute ∆W2[5],∆W2[9], and check
whether ∆W2[5] = ∆W2[9] or not. This is a one-cell filter. Since ∆Y2[1] =
∆W2[5] and ∆X2[1] is known from the plaintexts, tk1[2] can be computed by
solving the equation of the Sbox. With tk1[0], tk1[3] = tk19[7], ∆W2[3],∆W2[15]
can be computed. Since ∆W2[7] = ∆W2[11] = ∆W2[3] + ∆W2[15], and
∆X2[6],∆X2[9] are known from the plaintexts, tk1[2], tk1[4] can be computed.
Now ∆W2[3, 7, 11, 15] is known as well as W2[3, 7, 11, 15], if the equivalent sub-
tweakey is applied after MC. Since tk2[3] = tk18[3] is known, ∆Y3[7] can be
computed and it can be checked whether ∆Y3[7] = a. This is a one-cell filter.
Similarly, ∆Y3[15] can be computed. Again, since ∆Y3[5] = ∆Y3[8] = ∆Y3[15],
and ∆X3[5],∆X3[8] are known from the plaintexts, tk2[1], tk2[7] can be calcu-
lated by solving the equations of the Sbox. This step takes a time complexity
of M and the number of tests left for the next step is M · 2−2c.

(d) With tk19[4] = tk1[2], tk18[7] = tk2[7], compute ∆X18[7], X18[7] and check
whether ∆X18[7] = a. This is a one-cell filter. This step takes a time complexity
of M · 2−2c and the number of tests left for the next step is M · 2−3c.

(e) Guess tk2[2], tk2[4], tk2[6] and compute ∆Y5[1] and check whether ∆Y5[1] = a.
This step takes a time complexity of M and the number of tests verifying the
impossible distinguisher is M · 2−c, i.e., for each pair there is 2−c 14-cell key on
average that verifies the impossible distinguisher and is wrong.

The total number of tweakeys left is:

TKrem = 214c(1− 2−15c)M (2)

Brute force For the tweakeys that remain, we guess the other two tweakey cells and
exhaustively search the TKrem × 22c tweakeys to find the correct tweakey.

Attack Complexities. The time complexity of the tweakey recovery phase isM . Following
the formulas derived in Section 3.2, the data complexity of the attack is D = 2n+1−cgln2
chosen plaintexts and the total time complexity is:

T = D +M + TKrem × 22c.

The memory complexity is the storage for one structure and wrong keys. For, c = 4,
we set g = 2, then D = 261.47,M = 260.47, TKrem × 22c = 262, T = 263.03 and the
memory complexity is 256. For, c = 8, we set g = 4, then D = 2122.47,M = 2121.47,
TKrem × 22c = 2124, T = 2124.60 and the memory complexity is 2112.
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Table 10: One of the quartets of the 15-round boomerang distinguisher of SKINNY-64-128

K1 ed19 f85b 920d 6862 8953 f24b fd90 8f60
∆1 00e0 0000 0000 0000 00f0 0000 0000 0000
∆2 0000 0e00 0000 0000 0000 0d00 0000 0000
P1, C1 8ae9 28a6 9000 0000 0b08 912a e543 25e0
P2, C2 8af9 28a6 9000 0000 a4c8 c51b bc2c 646b
P3, C3 993a cad5 00b8 af00 0b08 912a e541 25e0
P4, C4 994a cad5 00b8 af00 a4c8 c51b bc2e 646b

B.2 SKINNY-n-3n

A 16-round distinguisher E′ is placed between Round 7 to Round 21 to attack 27 rounds
of SKINNY-n-3n. In the attack, |kin ∪ kout| = 46c, cin = 16c, |∆in| = 16c, cout = 15c,
|∆out| = 16c. Less than one structure is used. Suppose 2m messages are generated
under two related-tweakey respectively. Then M = 22m,D = 2m+1 = 2 ·

√
M . Suppose

(1− 2−(cin+cout))M = 2−g. Then M = 2cin+coutgln2. The time complexity is

T = D +M · 2|kin∪kout|−(cin+cout) + 23n−g.

For c = 4, set g = 3, then D = 215.5c+1√gln2 = 263.53, T = 2189, memory complexity
is 2184. For c = 8, set g = 6, then D = 215.5c+1√gln2 = 2126.03, T = 2378, memory
complexity is 2368.

Attack where tweak is used. Suppose a w-bit tweak is used. The tweak is loaded into
the first w bits of the first tweakey state TK − 1, followed by the key material. For
0 ≤ w ≤ 10c, we have |kin ∪ kout| = 3n− w − 2c < 2n− w and the above attack still has
a time complexity below 23n−w, so 27-round SKINNY-n-2n is valid in such cases. For
w = 10c, results are as follows. For c = 4, we set g = 3, then D = 263.53, T = 2149 and the
memory complexity is 2144. For c = 8, we set g = 6, then D = 2126.03, T = 2298 and the
memory complexity is 2288.

C Boomerang Quartets
Even though rectangle distinguishers are used to attack SKINNY, our experiment works
on a boomerang distinguisher of SKINNY-64-128, since a rectangle distinguisher is valid as
long as the corresponding boomerang distinguisher is valid. What’s more, the probability of
a rectangle distinguisher is 2−np2q2, while the probability of the corresponding boomerang
is p2q2 which is more practical for verification.

The experiment is implemented in standard C programming language. We aim at
finding at least one right quartet that follow our related-tweakey boomerang distinguisher
within 1/p2q2 tested quartets. For the 13-round distinguisher, one right quartet is found
among a total of 212 tested quartets while the estimated probability of the distinguisher is
2−27. In total we found 210.2 right quartets in a searching space of 220 quartets. For the
14-round distinguisher, 34 right quartets are found in a searching space of 240.8, while the
estimated probability is 2−40. One of the right quartets is displayed in Table 10.

Note that our distinguisher starts from AddConstant instead of SubCells. According to
our 14-round distinguisher, the plaintext difference is simply one cell difference of position
2 (we choose 1 as the actual difference value) so as to the ciphertext difference whose
active cell position is 12 (we choose 2 as the actual difference value).

D Differential Trails
In this section, we list the differential trails used in rectangle attacks in Section 5. Each
cell (byte or nibble) of zero difference is denote by ‘0’ and each non-zero cell is given
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in hexadecimal, ordered from left to right. ∆K is the master tweakey difference. For
each round, input/output differences of the Sbox layer, as well as the the round tweakey
difference are presented.

Table 11: Verification for distinguishers in Sect. 5 where distinguishers are reduce to two
rounds.

Versions (p̂q̂)−2 #Trials on average†
SKINNY-64-128 28.42 16.08
SKINNY-64-192 216.30 184.52
SKINNY-128-256 215.98 3.67‡
SKINNY-128-384 219.04 29.67
† In each case, the average number is calculated over
10000 samples.
‡ One reason why the numbers in this column are much
smaller than expected may be that some active Sboxes
can be saved as the authors of [BK09] explained. In
short, it is unlikely to overestimate the probability of
the distinguishers with (p̂q̂)2.

Table 12: Trails for SKINNY-64-128
8-round upper trail p = 2−12 9-round lower trail q = 2−20

∆K 0,0,0,0, 0,0,0,0, 6,0,0,0, 0,0,0,0 0,0,c,0, 0,0,0,0, 0,0,0,0, e,0,0,0
0,0,0,0, 0,0,0,0, 9,0,0,0, 0,0,0,0 0,0,f,0, 0,0,0,0, 0,0,0,0, b,0,0,0

R1 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,2
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,8 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,3
0,0,0,0, 0,0,0,0 0,0,3,0, 0,0,0,0

R2 0,0,8,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,3,0, 0,0,0,0, 0,0,3,0
0,0,5,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,d,0, 0,0,0,0, 0,0,c,0
0,0,5,0, 0,0,0,0 0,0,0,0, 0,0,9,0

R3 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,c,0,0, 0,0,0,0, 0,0,0,4, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,2,0,0, 0,0,0,0, 0,0,0,2, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 2,0,0,0

R4 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,2,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,1,0,0

R5 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R6 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,b,0 0,0,0,0, 0,0,0,0

R7 0,0,0,0, 0,0,0,0, 0,0,0,b, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,4,0,0

R8 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,1,0,0 0,0,0,0, 0,0,0,0, 0,0,4,0, 0,0,0,0
0,8,0,0, 0,0,0,0, 0,8,0,0, 0,8,0,0 0,0,0,0, 0,0,0,0, 0,0,2,0, 0,0,0,0
0,0,0,0, 0,c,0,0 0,0,0,0, 0,0,0,2

R9 2,0,0,0, 0,0,0,0, 0,0,0,0, 2,0,0,0
6,0,0,0, 0,0,0,0, 0,0,0,0, 5,0,0,0
0,0,0,d, 0,0,0,0
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Table 13: Trails for SKINNY-128-256
9-round lower trail q = 2−20 9-round upper trail p = 2−34.42

∆K fc,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,cc,0, 0,0,0,0, 0,0,0,0, ff,0,0,0
ff,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,f3,0, 0,0,0,0, 0,0,0,0, 9f,0,0,0

R1 80,0,0,0, 0,0,01,0, 0,01,0,0, 01,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0a
03,0,0,0, 0,0,20,0, 0,20,0,0, 20,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,3f
03,0,0,0, 0,0,0,0 0,0,3f,0, 0,0,0,0

R2 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,20 0,0,0,0, 0,0,3f,0, 0,0,0,0, 0,0,3f,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,80 0,0,0,0, 0,0,41,0, 0,0,0,0, 0,0,e3,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,c0,0

R3 0,0,80,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,e3,0,0, 0,0,0,0, 0,0,0,81, 0,0,0,0
0,0,02,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,2a,0,0, 0,0,0,0, 0,0,0,2a, 0,0,0,0
0,0,02,0, 0,0,0,0 0,0,0,0, 0,2a,0,0

R4 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,2a,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,80,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,80,0

R5 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R6 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R7 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,04,0 0,0,0,0, 0,55,0,0

R8 0,0,0,0, 0,0,0,0, 0,0,0,04, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,55,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,01, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,01,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,01

R9 0,01,0,0, 0,0,0,0, 0,01,0,0, 0,01,0,0 01,0,0,0, 0,0,0,0, 0,0,0,0, 01,0,0,0
0,20,0,0, 0,0,0,0, 0,20,0,0, 0,20,0,0 20,0,0,0, 0,0,0,0, 0,0,0,0, 20,0,0,0
0,0,0,0, 0,0c,0,0 0,0,0,ff, 0,0,0,0

Table 14: Trails for SKINNY under TK3
11-round trail for SKINNY-64 p = 2−20 11-round trail for SKINNY-128 q = 2−21

∆K 0,a,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,aa,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,2,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,e6,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,d,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,cf,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0

R1 0,2,0,0, 1,0,0,0, 0,0,0,1, 0,0,1,0 0,20,0,0, 10,0,0,0, 0,0,0,10, 0,0,10,0
0,5,0,0, b,0,0,0, 0,0,0,b, 0,0,b,0 0,83,0,0, 40,0,0,0, 0,0,0,40, 0,0,40,0
0,5,0,0, 0,0,0,0 0,83,0,0, 0,0,0,0

R2 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,b,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,40,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,04,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R3 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 04,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
8,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 01,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
8,0,0,0, 0,0,0,0 01,0,0,0, 0,0,0,0

R4 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R5 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R6 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R7 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R8 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R9 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,8,0 0,0,0,0, 0,0,01,0

R10 0,0,0,0, 0,0,0,0, 0,0,0,8, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,01, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,4, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,20, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R11 0,4,0,0, 0,0,0,0, 0,4,0,0, 0,4,0,0 0,20,0,0, 0,0,0,0, 0,20,0,0, 0,20,0,0
0,2,0,0, 0,0,0,0, 0,2,0,0, 0,2,0,0 0,80,0,0, 0,0,0,0, 0,80,0,0, 0,80,0,0
0,0,0,0, 0,5,0,0 0,0,0,0, 0,83,0,0
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