Rotational-XOR Cryptanalysis of Reduced-round SPECK

Yunwen Liu, Glenn De Witte, Adrián Ranea, Tomer Ashur

COSIC, KU Leuven, Belgium

FSE, March 2018

The Block Cipher Family SPECK

• ARX ciphers designed by the NSA in 2013

The Block Cipher Family SPECK

- ARX ciphers designed by the NSA in 2013
- Block size 2n bits, n = 32/48/64/96/128

The Block Cipher Family SPECK

- ARX ciphers designed by the NSA in 2013
- Block size 2n bits, n = 32/48/64/96/128
- Key size mn bits, m = 2, 3, 4

SPECK versions	32/64	48/96	64/128	96/144	128/256
Diff. char.	9	11	15	16	19

SPECK versions	32/64	48/96	64/128	96/144	128/256
Diff. char.	9	11	15	16	19
Lin. trail	9	10	13	15	16

• Best attacks: differential cryptanalysis [Din14][FWG+16]

SPECK versions	32/64	48/96	64/128	96/144	128/256
Diff. char.	9	11	15	16	19
Lin. trail	9	10	13	15	16

- Best attacks: differential cryptanalysis [Din14][FWG+16]
- Rotational cryptanalysis [BSS+17]

[Din14] I. Dinur. Improved differential cryptanalysis of round-reduced SPECK. SAC 2014

[FWG+16] K. Fu, M. Wang, Y. Guo, S. Sun and L. Hu. MILP-based automatic search algorithms for differential and linear trails for SPECK. FSE 2016

[BSS+17] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L. Wingers. Notes on the design and analysis of SIMON and SPECK, eprint 2017/560

SPECK versions	32/64	48/96	64/128	96/144	128/256
Diff. char.	9	11	15	16	19
Lin. trail	9	10	13	15	16
Ours	12	15	13	13	13

- Best attacks: differential cryptanalysis [Din14][FWG+16]
- Rotational cryptanalysis [BSS+17]

[Din14] I. Dinur. Improved differential cryptanalysis of round-reduced SPECK. SAC 2014

 $[{\sf FWG+16}]$ K. Fu, M. Wang, Y. Guo, S. Sun and L. Hu. MILP-based automatic search algorithms for differential and linear trails for SPECK. FSE 2016

[BSS+17] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L. Wingers. Notes on the design and analysis of SIMON and SPECK, eprint 2017/560

• A novel statistical cryptanalysis proposed at FSE 2017 [AL16]

 $[{\rm AL16}]$ T. Ashur and Y. Liu. Rotational cryptanalysis in the presence of constants. ToSC 2016

- A novel statistical cryptanalysis proposed at FSE 2017 [AL16]
- Constants involved in ARX ciphers

 $[{\rm AL16}]$ T. Ashur and Y. Liu. Rotational cryptanalysis in the presence of constants. ToSC 2016

- A novel statistical cryptanalysis proposed at FSE 2017 [AL16]
- Constants involved in ARX ciphers
- Combine rotational cryptanalysis with differential cryptanalysis

 $\left[AL16\right]$ T. Ashur and Y. Liu. Rotational cryptanalysis in the presence of constants. ToSC 2016

- A novel statistical cryptanalysis proposed at FSE 2017 [AL16]
- Constants involved in ARX ciphers
- Combine rotational cryptanalysis with differential cryptanalysis

 $\left[AL16\right]$ T. Ashur and Y. Liu. Rotational cryptanalysis in the presence of constants. ToSC 2016

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

 $\gamma = 1: \ x \lll 1 \to \overleftarrow{x}$

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

 $\gamma = 1: \ x \lll 1 \to \overleftarrow{x}$

• Applied to SPECK32/64 reduced to 7 rounds

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

 $\gamma = 1: \ x \lll 1 \to \overleftarrow{x}$

- Applied to SPECK32/64 reduced to 7 rounds
- An RX-characteristic in the key schedule

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

 $\gamma = 1 : \ x \lll 1 \to \overleftarrow{x}$

- Applied to $\operatorname{SPECK32}/64$ reduced to 7 rounds
- An RX-characteristic in the key schedule
- An RX-characteristic in the round function under a weak-key space

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

 $\gamma = 1 : \ x \lll 1 \to \overleftarrow{x}$

- Applied to $\operatorname{SPECK32}/64$ reduced to 7 rounds
- An RX-characteristic in the key schedule
- An RX-characteristic in the round function under a weak-key space
- Proof-of-concept

Define a pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

 $\gamma = 1: \ x \lll 1 \to \overleftarrow{x}$

- Applied to $\operatorname{SPECK32}/64$ reduced to 7 rounds
- An RX-characteristic in the key schedule
- An RX-characteristic in the round function under a weak-key space
- Proof-of-concept

• Widely adopted in cryptanalysis

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs
- Tools currently available:

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs
- Tools currently available:
 - Optimised search algorithms: ARXTools, YAARX

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs
- Tools currently available:
 - Optimised search algorithms: ARXTools, YAARX
 - ► MILP + Sage : [ST17], [SHW+14]

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs
- Tools currently available:
 - Optimised search algorithms: ARXTools, YAARX
 - ► MILP + Sage : [ST17], [SHW+14]
 - ► CP: [SGL+17]

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs
- Tools currently available:
 - Optimised search algorithms: ARXTools, YAARX
 - ► MILP + Sage : [ST17], [SHW+14]
 - ▶ CP: [SGL+17]
 - SAT/SMT: CryptoSMT, etc

[SGL+17] S. Sun, D. Gerault, P. Lafourcade, Q. Yang, Y. Todo, K. Qiao, and L. Hu. Analysis of AES, Skinny, and others with constraint programming. ToSC 2017 [SHW+14] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES (L) and other bit-oriented block ciphers. ASIACRYPT 2014 [ST17] Y. Sasaki, and Y. Todo. New impossible differential search tool from design and cryptanalysis aspects. EUROCRYPT 2017

- Widely adopted in cryptanalysis
- Estimate possible attacks in designs
- Tools currently available:
 - Optimised search algorithms: ARXTools, YAARX
 - ► MILP + Sage : [ST17], [SHW+14]
 - ► CP: [SGL+17]
 - SAT/SMT: CryptoSMT, etc
- Challenge: find an efficient method to encode the cryptographic problem

[SGL+17] S. Sun, D. Gerault, P. Lafourcade, Q. Yang, Y. Todo, K. Qiao, and L. Hu. Analysis of AES, Skinny, and others with constraint programming. ToSC 2017 [SHW+14] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES (L) and other bit-oriented block ciphers. ASIACRYPT 2014 [ST17] Y. Sasaki, and Y. Todo. New impossible differential search tool from design and cryptanalysis aspects. EUROCRYPT 2017

RX-difference v1

A pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x\oplus a_1,(x\lll \gamma)\oplus a_2)$

RX-difference v1

A pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

$$(x \oplus a_1, (x \lll \gamma) \oplus a_2)$$

equivalent to

 $(\tilde{x}, (\tilde{x} \ll \gamma) \oplus (a_1 \ll \gamma) \oplus a_2)$

RX-difference v1

A pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

$$(x \oplus a_1, (x \lll \gamma) \oplus a_2)$$

equivalent to

 $(\tilde{x}, (\tilde{x} \ll \gamma) \oplus (a_1 \ll \gamma) \oplus a_2)$

RX-difference v2

The RX-difference of a pair (x_1, x_2) :

$$\Delta_{\gamma}(x_1, x_2) = x_1 \oplus (x_2 \lll \gamma)$$

RX-difference v1

A pair with $((a_1, a_2), \gamma)$ -Rotational-XOR difference:

 $(x \oplus a_1, (x \lll \gamma) \oplus a_2)$

equivalent to

 $(\tilde{x}, (\tilde{x} \ll \gamma) \oplus (a_1 \ll \gamma) \oplus a_2)$

RX-difference v2

The RX-difference of a pair (x_1, x_2) :

$$\Delta_{\gamma}(x_1, x_2) = x_1 \oplus (x_2 \lll \gamma)$$

Given an RX-difference δ , an RX-pair is $(x, (x \ll \gamma) \oplus \delta)$.

Propagation Rules of RX-differences

• Linear operations

Propagation Rules of RX-differences

- Linear operations
- Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$

Propagation Rules of RX-differences

- Linear operations
- Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$

$$X = x \oplus a_1$$
$$Y = y \oplus b_1$$
$$Z = X \boxplus Y$$
$$d_x = \overleftarrow{a_1} \oplus a_2$$
$$d_y = \overleftarrow{b_1} \oplus b_2$$
$$d_z = \overleftarrow{\Delta_1} \oplus \Delta_2$$

Propagation Rules of RX-differences

- Linear operations
- Modular addition

 $\overleftarrow{(x \oplus a_1) \boxplus (y \oplus b_1) \oplus \Delta_1} = (\overleftarrow{x} \oplus a_2) \boxplus (\overleftarrow{y} \oplus b_2) \oplus \Delta_2$

$$X = x \oplus a_1$$

$$Y = y \oplus b_1$$

$$Z = X \boxplus Y$$

$$d_x = \overleftarrow{a_1} \oplus a_2$$

$$d_y = \overleftarrow{b_1} \oplus b_2$$

$$d_z = \overleftarrow{\Delta_1} \oplus \Delta_2$$

$$\overleftarrow{Z} \oplus d_z = (\overleftarrow{X} \oplus d_x) \boxplus (\overleftarrow{Y} \oplus d_y)$$

Propagation Rules of RX-differences

- Linear operations
- Modular addition

RX-difference propagation in modular addition

Assume that input RX-differences are $d_x, d_y, \, {\rm output} \, {\rm RX-difference}$ is $d_z.$ Then,

$$\begin{aligned} &\Pr[(d_x, d_y) \to d_z] = \\ &1_{(I \oplus SHL)(\delta_x \oplus \delta_y \oplus \delta_z) \oplus 1 \preceq SHL((\delta_x \oplus \delta_z)|(\delta_y \oplus \delta_z))} \cdot 2^{-|SHL((\delta_x \oplus \delta_z)|(\delta_y \oplus \delta_z))|} \cdot 2^{-3} \\ &+ 1_{(I \oplus SHL)(\delta_x \oplus \delta_y \oplus \delta_z) \preceq SHL((\delta_x \oplus \delta_z)|(\delta_y \oplus \delta_z))} \cdot 2^{-|SHL((\delta_x \oplus \delta_z)|(\delta_y \oplus \delta_z))|} \cdot 2^{-1.415}, \end{aligned}$$

where

$$\delta_x = L'(d_x), \delta_y = L'(d_y), \delta_z = L'(d_z).$$

Search for RX-characteristics in the key part and data part

SMT file – Modular Addition

SMT file – Modular Addition

Condition 1

 $(I \oplus SHL)((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 b^r \oplus \Delta_1 d^r) \oplus 1$ $\leq SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))$ $w_r = |SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))| + 3$

SMT file – Modular Addition

Condition 1

$$(I \oplus SHL)((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 b^r \oplus \Delta_1 d^r) \oplus 1$$

$$\preceq SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))$$

$$w_r = |SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))| + 3$$

Condition 2

$$(I \oplus SHL)((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 b^r \oplus \Delta_1 d^r) \leq SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r)) w_r = |SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))| + 1.415$$

SMT file – Modular Addition

Condition 1

$$(I \oplus SHL)((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 b^r \oplus \Delta_1 d^r) \oplus 1$$

$$\preceq SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))$$

$$w_r = |SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))| + 3$$

Condition 2

$$(I \oplus SHL)((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 b^r \oplus \Delta_1 d^r) \leq SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r)) w_r = |SHL(((\Delta_1 a^r \gg \alpha) \oplus \Delta_1 d^r)|(\Delta_1 b^r \oplus \Delta_1 d^r))| + 1.415$$

Total weight of a characteristic $W_{data} = \sum_{r} w_{r}$

SMT file - Linear operations

SMT file - Linear operations

$$\Delta_1 d^r \oplus \Delta_1 k^r \oplus \Delta_1 a^{r+1} = 0$$

$$\Delta_1 a^{r+1} \oplus (\Delta_1 b^r \lll \beta) \oplus \Delta_1 b^{r+1} = 0$$

SMT file - Linear operations

$$\Delta_1 d^r \oplus \Delta_1 k^r \oplus \Delta_1 a^{r+1} = 0$$

$$\Delta_1 a^{r+1} \oplus (\Delta_1 b^r \lll \beta) \oplus \Delta_1 b^{r+1} = 0$$

Repeat the process for the key part, the total weight of an RX-characteristic is ${\cal W}_{key}$

SMT file - Linear operations

 $\Delta_1 d^r \oplus \Delta_1 k^r \oplus \Delta_1 a^{r+1} = 0$ $\Delta_1 a^{r+1} \oplus (\Delta_1 b^r \lll \beta) \oplus \Delta_1 b^{r+1} = 0$

Repeat the process for the key part, the total weight of an RX-characteristic is ${\cal W}_{key}$

SMT file – Objective functions

 $\min W_{data}$

 $\min W_{key}$

• Optimise the key part and data part together

- Optimise the key part and data part together
 - Inefficient
 - Set coefficients for the weights

- Optimise the key part and data part together
 - Inefficient
 - Set coefficients for the weights
- Aim: Find a characteristic covering more rounds

- Optimise the key part and data part together
 - Inefficient
 - Set coefficients for the weights
- Aim: Find a characteristic covering more rounds
- Set constraints in the weight of the data part, no constraints on key part

- Optimise the key part and data part together
 - Inefficient
 - Set coefficients for the weights
- Aim: Find a characteristic covering more rounds
- Set constraints in the weight of the data part, no constraints on key part
- Fix the RX-characteristic in the data part, optimise the key part to better weak-key space

- Optimise the key part and data part together
 - Inefficient
 - Set coefficients for the weights
- Aim: Find a characteristic covering more rounds
- Set constraints in the weight of the data part, no constraints on key part
- Fix the RX-characteristic in the data part, optimise the key part to better weak-key space
- Other strategy?

No $\operatorname{MINIMIZE}$ function in SAT/SMT, set the bound for objective function

Binary search

No $\operatorname{MINIMIZE}$ function in SAT/SMT, set the bound for objective function

• Binary search on [0, 32]

- Binary search on [0, 32]
- Red interval indicates the bounds for current objective function

- Binary search on [0, 32]
- Red interval indicates the bounds for current objective function
- Search in [0,16],

- Binary search on [0, 32]
- Red interval indicates the bounds for current objective function
- Search in [0, 16], if solution found, search [0, 8],

- Binary search on [0, 32]
- Red interval indicates the bounds for current objective function
- Search in $\left[0,16\right]$, if solution found, search $\left[0,8\right]$, otherwise $\left[16,24\right]$

- Binary search on [0, 32]
- Red interval indicates the bounds for current objective function
- Search in $\left[0,16\right]$, if solution found, search $\left[0,8\right]$, otherwise $\left[16,24\right]$
- Terminate after the red interval collapsed

RX-characteristics found in SPECK

RX-characteristics found in SPECK

Version	Rounds	Data Prob.	Key Class Size	Ref.
32/64	9	2^{-30}	2^{64}	[Din14]
32/64	10	$2^{-19.15}$	$2^{28.10}$	This paper
32/64	11	$2^{-22.15}$	$2^{18.68}$	This paper
32/64	12	$2^{-25.57}$	$2^{4.92}$	This paper
48/96	10	2^{-40}	2^{96}	[Din14]
48/96	11	2^{-45}	2^{96}	[FWG+ 16]
48/96	11	$2^{-24.15}$	$2^{25.68}$	This paper
48/96	11	$2^{-23.15}$	$2^{14.93}$	This paper
48/96	12	$2^{-26.57}$	$2^{43.51}$	This paper
48/96	13	$2^{-31.98}$	$2^{24.51}$	This paper
48/96	14	$2^{-37.40}$	$2^{0.34}$	This paper
48/96	15	$2^{-43.81}$	$2^{1.09}$	This paper

RX-characteristics found in SPECK

RX-characteristics found in SPECK

Version	Rounds	Data Prob.	Key Class Size	Ref.
64/128	14	2^{-60}	2^{128}	[Din14]
64/128	15	2^{-62}	2^{128}	[FWG+16]
64/128	13	$2^{-37.98}$	$2^{21.92}$	This paper
96/144	13	2^{-84}	2^{144}	[Din14]
96/144	16	2^{-87}	2^{144}	[FWG+16]
96/144	13	$2^{-37.98}$	$2^{37.92}$	This paper
128/256	14	2^{-112}	2^{256}	[Din14]
128/256	19	2^{-119}	2^{256}	[FWG+16]
128/256	13	$2^{-31.98}$	$2^{182.51}$	This paper

[Din14] I. Dinur. Improved differential cryptanalysis of round-reduced SPECK. SAC 2014

[FWG+16] K. Fu, M. Wang, Y. Guo, S. Sun, and L. Hu. MILP-based automatic search algorithms for differential

and linear trails for SPECK. FSE 2016

• An improved definition of RX-difference

- An improved definition of RX-difference
- Automatic search technique on RX-cryptanalysis

- An improved definition of RX-difference
- Automatic search technique on RX-cryptanalysis
- Distinguishers found in SPECK family, under weak-key classes

- An improved definition of RX-difference
- Automatic search technique on RX-cryptanalysis
- Distinguishers found in SPECK family, under weak-key classes
- RX-characteristics cover more rounds than differential characteristics, and the probability is relatively high.

- An improved definition of RX-difference
- Automatic search technique on RX-cryptanalysis
- Distinguishers found in SPECK family, under weak-key classes
- RX-characteristics cover more rounds than differential characteristics, and the probability is relatively high.

https://gitlab.esat.kuleuven.be/Adrian.Ranea/ArxPy

- An improved definition of RX-difference
- Automatic search technique on RX-cryptanalysis
- Distinguishers found in SPECK family, under weak-key classes
- RX-characteristics cover more rounds than differential characteristics, and the probability is relatively high.

https://gitlab.esat.kuleuven.be/Adrian.Ranea/ArxPy

Thank You!