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Abstract. In this paper we formulate a SAT/SMT model for Rotational-XOR (RX)
cryptanalysis in ARX primitives for the first time. The model is successfully applied
to the block cipher family Speck, and distinguishers covering more rounds than
previously are found, as well as RX-characteristics requiring less data to detect. In
particular, we present distinguishers for 10, 11 and 12 rounds for Speck32/64 which
have better probabilities than the previously known 9-round differential characteristic,
for a certain weak key class. For versions of Speck48, we present several distinguishers,
among which the longest one covering 15 rounds, while the previously best differential
characteristic only covered 11.
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1 Introduction
Simon and Speck are two families of lightweight block ciphers designed by the United
States National Security Agency (US NSA) and published in 2013 [BSS+15]. The Speck
family was designed using the ARX structure, meaning that the only operations used
are modular addition, cyclic rotation, and exclusive or (XOR). The family includes 10
members, differing in their block and key sizes. Indeed, due to their claimed efficiency, the
two ciphers were the subject of extensive research, and are promoted as candidates into
various standards.

Rotational cryptanalysis is a related-key chosen plaintext cryptanalytic technique
suggested by Khovratovich et al. in [KN10, KNP+15]. In essence, when using rotational
cryptanalysis, the adversary asks for the encryption of a pair of plaintexts, where one
plaintext is obtained through a cyclic rotation of the other. This is done under two
related keys which are also a rotational pair. Khovratovich et al. showed that the
rotational relation between the two inputs is preserved with some probability through
the ARX operations. A countermeasure proposed against rotational cryptanalysis is to
XOR round dependent constants, which skews the propagation probability. Some works
[BDPVA13, ANWOW13, FLS+10] overcame this by employing ad-hoc approaches that
avoid the round constants [BDPVA13] or using an internal pattern within the constants
[FLS+10].
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Related work. Since its publication in 2013, Speck has received a number of cryptanaly-
ses, most of which focus on statistical analyses such as differential and linear cryptanalysis.
In order to find good distinguishers, a study line, leading to a series of new methods and
ideas, is the automated search of differential and linear characteristics in ARX ciphers. The
core idea is to find a shortest path in a weighted directed acyclic graph. The approaches
to solve the problem can be classified into

• Programs with advanced searching strategy, cf. [BV14, BVLC16, YZW15, AB16];

• Mixed integer linear programming, cf. [FWG+16];

• Constraint programming, including SAT (Boolean Satisfiability Problem) and SMT
(Satisfiability Modulo Theories), cf. [KLT15, LWR16, DWAL17].

As a cryptanalytic method with wide applications on ARX primitives, rotational
cryptanalysis was not evaluated on Speck until a new method to deal with the constants
was proposed in FSE 2017 [AL16]. Ashur and Liu presented a general method for integrating
the XOR of round constants into the analysis by combining rotational with differential
cryptanalyses. They used Speck32/64 to exemplify their approach, but did not aim to
extend existing attacks. Since the round constants in Speck are injected through the
key schedule, finding an RX characteristic for the key schedule suggests the existence of
a weak-key class following the proposed RX-characteristic. Once a key from this class is
chosen, a set of RX-differences is injected into the state, which can be used to trace the
evolution of an RX-characteristic through the cipher. To test their theory, they presented
a limited application of the technique by constructing a distinguisher for a small number
of rounds in Speck32/64.

Our contributions. This paper extends [AL16] by using an automated tool to systemat-
ically search for good RX characteristics in Speck. We present extended characteristics
for Speck 32/64 and Speck48/96 which are, to the best of our knowledge, the longest
characteristics for these versions of Speck. For Speck96/144 we present a characteristic
matching the length of the already published differential characteristic, but with a much
smaller data complexity. In some of the cases, the size of the weak-key class may seem
small at first. However, we stress that the search strategy we employed favoured reducing
the data complexity over increasing the size of the weak-key class and therefore, other
tradeoffs between the data complexity and the weak-key class are possible.

Organisation. The rest of the paper is organised as follows: We recall notations and the
theory of Rotational-XOR cryptanalysis in section 2. In section 3, the automatic search of
RX-characteristics is formulated, and the strategy of the search for optimal solutions is
discussed. We present the characteristics found for different versions of Speck in section 4.
section 5 concludes the paper.

2 Preliminaries

2.1 Notations

We denote an n-bit vector by x = (xn−1, . . . , x1, x0) ∈ F2n , and the Hamming weight of x
is denoted by |x|. The bits (xn−1, . . . , x1) of x are denoted by L(x). A left (resp. right)
circular rotation by the amount γ is x≪ γ (resp. x≫ γ). A left shift by 1 is denoted
by SHL, and (I ⊕ SHL)(x) = x ⊕ SHL(x). 1x�y is the characteristic function which
evaluates to 1 when ∀i : xi ≤ yi, 0 ≤ i < n, otherwise to 0.
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Figure 1: One round of Speck

2.2 A Brief Description of SPECK1

Speck is a family of lightweight block ciphers designed by the NSA in 2013 [BSS+15].
A member of the family is denoted by Speck2n/mn, where the block size is 2n for
n ∈ {16, 24, 32, 48, 64}, and the key size is mn for m ∈ {2, 3, 4}, depending on the desired
security.

The round function of Speck receives two words x(i) and y(i), and a round key k(i),
all of size n, and outputs two words of size n, x(i+1) and y(i+1), such that

(x(i+1), y(i+1)) = Fk(i)(x(i), y(i)) = (fk(i)(x(i), y(i)), fk(i)(x(i), y(i))⊕ (y(i) ≪ β)),

where fk(i)(·, ·) is
fk(i)(x(i), y(i)) = ((x(i) ≫ α)� y(i))⊕ k(i).

The Speck key schedules algorithm uses the same round function to generate the round
keys. Let K = (l(m−2), ..., l(0), k(0)) be a master key for Speck2n, where l(i), k(0) ∈ F2n .
The sequence of round keys k(i) is generated as

k(i+1) = fct(l(i), k(i))⊕ (k(i) ≪ β)

for
l(i+m−1) = fct(l(i), k(i)),

with ct = i the round number starting from 0.
The rotation offset (α, β) is (7, 2) for Speck32, and (8, 3) for the larger versions. A

single round of Speck with m = 4 is depicted in Figure 1. For more details, we refer
the interested reader to the original design [BSS+15] and to the recently published design
rationale [BSS+17].

In SAC 2014, Dinur [Din14] proposed attacks on all versions of Speck, where dedicated
key recovery techniques were combined with the best differential characteristics known
by that time. Later, the attacks on Speck with block size larger than 32 were further
improved with the discovery of new differential distinguishers [BVLC16, FWG+16].

1The description of Speck is lifted from [AL16] as is allowed by the license under which ToSC is
published.
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2.3 Rotational-XOR cryptanalysis
In [AL16], the notion of Rotational-XOR difference is proposed for Rotational-XOR
cryptanalysis. It defines the relation between a pair of bit-strings x1 = (x ≪ γ) ⊕
a1 and x2 = x ⊕ a2. We use a slightly different notation in the sequel with x and
x′ = ((x⊕ a1)≫ γ)⊕ a2.

Definition 1. A Rotational-XOR difference (or RX-difference in short) with rotational
offset γ of two bit-strings x and x′ is defined as

∆γ(x, x′) = x⊕ (x′≪ γ).

Since the rotation and XOR are linear operations, the propagation of an RX-difference
is similar to that of an XOR-difference through the linear operations of an ARX primitive.
For the modular addition, the propagation of RX-differences is non-deterministic and
characterised into the following proposition.

Proposition 1 ([AL16]). Suppose that x, y ∈ F2n are independent uniform random
variables, z = x� y. Let Γx = ∆1(x, x′), Γy = ∆1(y, y′) and Γz = ∆1(z, z′) be constants
in F2n , which are the RX-differences. Then,

Pr[((x⊕ Γx)≫ 1)� ((y ⊕ Γy)≫ 1) = (z ⊕ Γz)≫ 1]
= 1(I⊕SHL)(δx⊕δy⊕δz)⊕1�SHL((δx⊕δz)|(δy⊕δz)) · 2−|SHL((δx⊕δz)|(δy⊕δz))| · 2−3

+ 1(I⊕SHL)(δx⊕δy⊕δz)�SHL((δx⊕δz)|(δy⊕δz)) · 2−|SHL((δx⊕δz)|(δy⊕δz))| · 2−1.415, (1)

where
δx = L(Γx), δy = L(Γy), δz = L(Γz).

In words: the probability that the input RX-differences Γx and Γy propagate to the out-
put RX-difference Γz through modular addition is given by Proposition Proposition 1. In
the rest of this paper we only consider RX-differences with γ = 1. Note that when the con-
stants ΓX = Γy = Γz = 0, Proposition Proposition 1 predicts the case for normal rotational
cryptanalysis with rotation amount 1, i.e., Pr[(x≫ 1)� (y≫ 1) = z≫ 1] = 2−2.145.

2.4 The Boolean Satisfiability Problem
A boolean formula is an expression consisting of boolean variables taking the values TRUE
or FALSE, and the logic operators AND, OR and NOT. A boolean formula is satisfiable if
there exists an assignment of the variables that makes the formula TRUE. For example
the boolean formula a AND (NOT b) is satisfiable since the assignment (a, b) = (TRUE,
FALSE) evaluates the entire formula to TRUE.

The boolean satisfiability (SAT) problem is the problem of determining whether a
boolean formula is satisfiable. In general, the SAT problem is NP-complete [Coo71], which
implies that no known algorithm solves SAT in polynomial time (with respect to the
number of variables). In practice, SAT solvers can handle instances with thousands (and
sometimes even millions) of variables [ZM02].

A generalization of the SAT problem is the satisfiability modulo theories (SMT)
problem. Basically, SMT formulas can be expressed with richer languages (theories) than
boolean formulas. In particular, a formula in the bit-vector theory can contain bit-vectors
(a vector of boolean variables) and the usual operations of bit-vectors such as bitwise
operations (XOR, OR, AND, etc.) arithmetic operations (addition, multiplication, etc.),
cyclic operations and so on. A common approach in SMT solvers [GD07, BB09] is to
translate the SMT instance into a SAT instance and solve it using a SAT solver.

In addition to richer langauges, SMT solvers also support an objective function. This
function is an additional constraint forcing a variable to satisfy certain conditions. For
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example, through an objective function, an adversary can ask the solver for solutions not
exceeding some probability for the RX-characteristics.

2.5 Attack Models

As an extension of rotational cryptanalysis, RX-cryptanalysis works in the related-key
chosen-plaintext model. In this model an adversary can obtain data encrypted under two
different keys with a known relation, for plaintexts selected by the adversary.

Speck presentes a unique challenge to RX-cryptanalysis due to its non-linear key
schedule. Wheres in a linear key-schedule, the propogation of RX-characteristics can be
predicted with probability 1, only probabalistic predictions can be made for a non-linear
key-schedule. When we model the key schedule in section 3, Proposition Proposition 1 is
used to predict the propogation probability, which may lead to non-integer values for the
size of the weak-key class.

In addition, some of the distinguishers presented in Table 1 require more data than
what is allowed by the weak-key class (An attack using a weak-key class of size |K| cannot
have time complexity larger than |K|). These results are marked with †† in the table and
can only be used in the open-key model, i.e., in addition to being in the weak-key class
and knowing the relation between the two related-keys, the adversary also knows the key
values.

This constraint is not required for entries in the table where the number of required
plaintext pairs is smaller than the number of weak-keys, and such attacks can be executed
in the closed-key model.

3 Automated Search for RX-characteristics

Previous work concerning Speck modeled differential and linear cryptanalysis as SAT/SMT
or MILP problems. We continue this line of research by writing the problem of finding
good RX-characteristics using the SMTLIB [BFT16] language, then converting it into a
SAT problem using STP [GD07] and solving it using the same tool.

We now explain our model using the notation of Figure 2.

∆1a
r ∆1b

r

≫ α

≪ β
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r+1

∆1k
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Figure 2: Notation of the RX-differences in Speck. Left: Round function. Right: Key
schedule
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Since the key schedule of Speck reuses the same round function as the cipher itself, it
is sufficient to only model the round function. The most difficult part of the model is the
modular addition which is non-linear. We use two mutually exclusive constraints:

(I⊕SHL)((∆1a
r ≫ α)⊕∆1b

r⊕∆1d
r)⊕ 1 � SHL(((∆1a

r ≫ α)⊕∆1d
r)|(∆1b

r⊕∆1d
r)) (2)

or

(I ⊕ SHL)((∆1a
r ≫ α)⊕∆1b

r ⊕∆1d
r) � SHL(((∆1a

r ≫ α)⊕∆1d
r)|(∆1b

r ⊕∆1d
r)) (3)

The cost wr is calculated as

wr =
{
|SHL(((∆1a

r≫ α)⊕∆1d
r)|(∆1b

r ⊕∆1d
r))|+ 3,when Constraint (2) holds

|SHL(((∆1a
r≫ α)⊕∆1d

r)|(∆1b
r ⊕∆1d

r))|+ 1.415,when Constraint (3) holds.

Then, the linear operations are modeled as follows:

∆1a
r+1 = ∆1d

r ⊕∆1k
r,

∆1b
r+1 = (∆1b

r≪ β)⊕∆1a
r+1.

Our objective function is defined as∑
r

wr ≤ p.

Starting from Figure 2 each operation is replaced with the appropriate constraint(s).
This is repeated for each round of the round-reduced cipher, where the output constraints
of a round are treated as the input constraints of the next one. A target value is set for the
objective function and the program is given as input to the STP tool [GD07] which searches
for a solution satisfying all constraints. When the STP tool finishes, the target value is
replaced with a new one according to the search strategy described in subsection 3.1, and
the STP tool is called again until the search is complete.

3.1 Search Strategy
We now describe our search method. For each version of Speck, we model the propagation
of RX-differences through both the round function and the key schedule. Since Speck
uses a non-linear key schedule, an RX-characteristic over the key schedule is akin to a
weak-key class. The RX-difference of each subkey is injected into the state and affects the
round’s input RX-difference.

Our program works in two phases:

3.1.1 Phase 1 - finding a good RX-characteristic over the data part.

The program starts by searching for an RX-characteristic covering the data part of the
cipher (i.e., the left side of Figure 2) with probability not larger than 2−n/2, and the key
schedule part with probability at most 2−mn for mn the length of the key (i.e., ensuring
that at least one weak-key exists on average). If a solution adhering to these constraints is
found, the objective function for the data part is updated and an RX-characteristic with
probability not larger than 2−n/4 is sought.

If the program cannot find a solution with probability at most 2−n/2, the objective
function for the data part is relaxed and the program searches for an RX-characteristic
with probability at most 2−1.5n/2. This binary search (over the exponent for the data part)
is repeated until no further improvements are possible.
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Algorithm 1 Find an optimal RX-characteristic of r rounds for Speck32/64.
Input: T+

d ,T−d ,T+
k ,T−k .

Output: The probability of an optimal RX-characteristic of r rounds.
1: T+

d ← 32, T−d ← 0, T+
k ← 64, T−k ← 0

2: T−d ≤Wd ≤ T+
d , T−k ≤Wk ≤ T+

k

3: while T+
d 6= T−d do

4: if The problem is satisfiable then
5: T+

d ← T+
d /2

6: else
7: T−d ← T+

d /2
8: end if
9: T−d ≤Wd ≤ T+

d

10: end while
11: while T+

k 6= T−k do
12: if The problem is satisfiable then
13: T+

k ← T+
k /2

14: else
15: T−k ← T+

k /2
16: end if
17: T−k ≤Wk ≤ T+

k

18: end while
19: return 2−Wd , 2−Wk

3.1.2 Phase 2 - increasing the size of the weak-key class.

After the best RX-characteristic (in terms of its probability) is found, the program sets
to increase the size of the weak-key class. Suppose ζ0 is the probability for the RX-
characteristic found in Phase 1, the objective functions in Phase 2 are set such that
the program finds RX-characteristics with probability at most ζ0 for the data part, and
probability at most 2−mn/2 for the key schedule (i.e., the right part of Figure 2). In a
binary search not unlike that of Phase 1, the best RX-characteristic for the key schedule is
improved, under the constraint that this RX-characteristic can support an RX-characteristic
for the data part with probability at most ζ0.

When the program can no longer improve the probability for the key’s RX-characteristic,
it outputs both RX-characteristics. Using this algorithm it is guaranteed that the data RX-
characteristic have optimal probability, and that the corresponding key RX-characteristic
allows for a non-empty weak key class. The Algorithm is more formally described in
Algorithm 1.

3.2 Additional Search Strategies

Note that, for purposes of obtaining a large number of rounds, the above search strategy
prefers RX-characteristics with high probability in the data part over large weak-key
classes. Some readers may prefer different tradeoffs, which can be obtained by minor
modifications to the code we provide in [Wit17].

In particular, the reviewers of this paper asked for examples where the size of the
weak-key class is larger than the required data complexity. We have therefore ran several
experiments with the additional constraint that ζ0 · ζ1 < 2−2·n where ζ0 is as before, ζ1 is
the probability for finding a weak-key, and 2 · n is the block size.
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Table 1: Comparison of RX-characteristics with γ = 1 and previous differentials for
different versions of Speck. Entries marked with † were found through the adjusted search
strategy. Entries marked with †† can only be used in the open-key model.

Version Rounds Data Prob. Key Class Size Ref.
32/64 9 2−30 264 [Din14]
32/64 10 2−19.15 228.10 This paper
32/64 11†† 2−22.15 218.68 This paper
32/64 12†† 2−25.57 24.92 This paper
48/96 10 2−40 296 [Din14]
48/96 11 2−45 296 [FWG+16]
48/96 11 2−23.15 214.93 This paper
48/96 11† 2−24.15 225.68 This paper
48/96 12 2−26.57 227.5 This paper
48/96 12† 2−26.57 243.51 This paper
48/96 13†† 2−31.98 224.51 This paper
48/96 14†† 2−37.40 20.34 This paper
48/96 15†† 2−43.81 21.09 This paper
64/128 14 2−60 2128 [Din14]
64/128 15 2−62 2128 [FWG+16]
64/128 13†† 2−37.98 221.92 This paper
96/144 13 2−84 2144 [Din14]
96/144 16 2−87 2144 [FWG+16]
96/144 13†† 2−37.98 237.92 This paper
128/256 14 2−112 2256 [Din14]
128/256 19 2−119 2256 [FWG+16]
128/256 13 2−31.98 2182.51 This paper

4 RX-characteristics found in SPECK
With the model discussed in section 3 and the search strategy described in subsection 3.1,
we present an overview of the distinguishers found in Table 1.

4.1 RX-characteristics of SPECK32/64
Table 2 shows the RX-characteristic covering 11 and 12 rounds found by our program.
The best published characteristic so far covered 9 rounds of Speck with probability 2−30.
Our 10-round characteristic has a much better probability of 2−19.15 for a weak-key class
of size 228.10. The table also shows that even our 12-round characteristic has probability of
2−25.57 which is still higher than the previously known 9-round differential characteristic,
although ours works for a weak-key class of about 30 keys.

We extended our search to 13-round characteristics and found that none exist, suggesting
that a 12-round RX-characteristic is the longest possible one.

4.2 RX-characteristics of SPECK48/96
We found RX-characteristics covering up to 15 rounds for Speck48/96, some of the
characteristics are shown in Table 3 and Table 4. The distinguishers extend the previously
best differential characteristic which covers 11 rounds with probability 2−45. Note that the
sizes of the weak key class for the 14- and 15-round characteristics are marginal. However,
due to resource constraints we killed the program before it completed its search. Hence,
the characteristics presented in this subsection are not guaranteed to be optimal in length
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Table 2: A 11-round (left) and 12-round (right) RX-characteristic in Speck32/64.

Round RX-difference RX-difference
in Key in Input

0 0000 (0000||0000)
1 0000 (0000||0000)
2 0000 (0000||0000)
3 0001 (0000||0000)
4 0000 (0000||0000)
5 0003 (0000||0000)
6 0200 (0000||0000)
7 0205 (0200||0200)
8 0801 (0000||0800)
9 2001 (0000||2000)
10 AA0B (0000||8000)
11 (2A0B||2A09)

Prob. 2−45.32 2−22.15

Round RX-difference RX-difference
in Key in Input

0 0000 (0050||2000)
1 0100 (8000||0000)
2 0001 (0000||0000)
3 0000 (0000||0000)
4 0001 (0000||0000)
5 0000 (0000||0000)
6 0001 (0000||0000)
7 0200 (0000||0000)
8 0206 (0200||0200)
9 0800 (0000||0800)
10 2001 (0000||2000)
11 A40E (0000||8000)
12 (240E||240C)

Prob. 2−59.08 2−25.57

Table 3: 12-round (left) and 13-round (right) RX-characteristics in Speck48/96.

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000001 (000000||000000)
9 010010 (000001||000001)
10 100089 (000010||000018)
11 8904de (000080||000040)
12 (09049e||09069e)

Prob. 2−52.49 2−26.57

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000000 (000000||000000)
9 010018 (000001||000001)
10 1000f1 (000018||000010)
11 880801 (080080||080000)
12 c04911 (000000||400000)
13 (004911||004913)

Prob. 2−71.49 2−31.98

(i.e., 16-round RX-characteristics may exist) nor in probability (i.e., RX-characteristics
with higher probabilities or a larger weak-key class may exist for the same number of
rounds). In addition, the probabilities of the round function part in the 14- and 15-round
characteristics are relatively high, which may imply that distinguishers with larger weak
key classes can be found with a different trade-off.

4.3 RX-characteristics of SPECK96/144

A 13-round RX-characteristic is found for Speck96/144 as shown in Table 5.
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Table 4: 14-round (left) and 15-round (right) RX-characteristics in Speck48/96.

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000000 (000000||000000)
9 010018 (000000||000000)
10 1000e0 (010019||010019)
11 680021 (0801e8||000120)
12 000009 (000900||000000)
13 202844 (000000||000000)
14 (202844||202844)

Prob. 2−95.66 2−37.40

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000001 (000000||000000)
9 010011 (000001||000001)
10 100080 (000010||000018)
11 990391 (000089||000049)
12 480103 (000248||000000)
13 000301 (000100||000100)
14 91101d (000000||000800)
15 (91181d||91581d)

Prob. 2−94.91 2−43.81

Table 5: A 13-round RX characteristic for Speck96/144.

Round RX-difference in Key RX-difference in Input
0 000000020801 (000002080000||000000000001)
1 000000000008 (000000000000||000000000008)
2 000000000240 (000000000000||000000000040)
3 000000000000 (000000000200||000000000000)
4 000000000000 (000000000000||000000000000)
5 000000000000 (000000000000||000000000000)
6 000000000001 (000000000000||000000000000)
7 000000000010 (000000000000||000000000000)
8 07000000001E (000000000003||000000000003)
9 390000000001 (000000000018||000000000000)
10 090100000010 (010000000000||010000000000)
11 100800000091 (080000000010||000000000010)
12 767707000425 (000000000080||000000000000)
13 (F67707000425||F67707000425)

Prob. 2−106.08 2−37.98
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4.4 Experimental Verification
The characteristics above were partially verified empirically. For 10-round and 11-round
characteristics we generated a key uniformly and its respective RX-related-key. We then
executed the key expansion algorithm and tested whether the key characteristic is followed.
Once a weak key was found, we encrypted 232 plaintexts, and measured the probability
that the RX characteristic is satisfied. For the larger versions, we injected key differences
artificially and only tested the probability of the RX characteristics over the cipher part.
The results matched the theoretical predictions.

5 Conclusion
In this paper we presented for the first time a SAT/SMT model for RX-cryptanalysis of
ARX primitives. We tested the model on various versions of Speck and obtained longer
distinguishers than previously published. For Speck32/64 we presented distinguishers for
10,11 and 12 rounds with respective probabilities of 2−19.15, 2−22.15, and 2−25.57 working for
weak-key classes of size 228.10, 218.68, and 24.92, respectively. For versions of Speck48, we
presented several distinguishers, the longest of which works for 15 rounds with probability
2−43.81 and it works for weak key class of size 21.09.

Further work may search for longer distinguishers on all versions of Speck except
Speck32/64. In addition, different tradeoffs can still be found for all versions by setting
different tradeoffs between the objective functions for the data complexity and the size of
the weak-key class. The SAT/SMT model we developed can readily be used for other ARX
constructions, possibly with a linear key schedule which eliminates the need to consider
weak-key classes.
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