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Abstract. In this paper, a platform named Peigen is presented to evaluate security,
find efficient software/hardware implementations, and generate cryptographic S-boxes.
Continuously developed for decades, S-boxes are constantly evolving in terms of the
design criteria for both security requirements and software/hardware performances.
Peigen is aimed to be a platform covering a comprehensive check-list of design
criteria of S-boxes appearing in the literature. To do so, the security requirements
are first intensively surveyed, existing tools of S-boxes are then comprehensively
compared, and finally our platform Peigen is presented. The survey part is aimed
to be a systematic reference for the theoretical study of S-boxes. The platform is
aimed to be an assistant tool for the experimental study and practical use of S-boxes.
Peigen not only integrates most of the features in existing tools, but also equips with
functionalities to evaluate new security-related properties, improves the efficiency of
the search algorithms for optimized implementations in several aspects. With the
help of this powerful platform, many interesting observations are made in-between
the security notations, as well as on the S-boxes used in the existing symmetric-
key cryptographic primitives. Peigen will become an open platform and welcomes
contributions from all parties to help the community to facilitate the research and
use of S-boxes.
Keywords: S-box · Survey · Design criteria · Implementation criteria · New platform

1 Introduction
The substitution-box, or S-box for short, is commonly used in the design of symmetric
cryptography primitives to offer non-linearity. In general, an S-box is a nonlinear mapping
defined on Fn2 → Fm2 , which takes as input a value of n bits and outputs a value of
m bits. For instance, the data encryption standard (DES) S-boxes are mappings with
(n = 6,m = 4) and the advanced encryption standard (AES) S-box is a permutation with
(n = m = 8). S-boxes have two key aspects: the security strength and the performance in
software/hardware. In many cases, the two merits conflict, and hence trade-offs are made
to fit the overall design’s priorities.

The security requirements for S-boxes, depending on the design strategy of the overall
primitive, evolve over time. Each security requirement corresponds to a goal of resisting
some cryptographic attacks, e.g., the high algebraic degree of an S-box can be used as
arguments against algebraic attacks such as integral attacks. As new attacks are devised,
new properties are added into the pool of S-box security requirements, e.g., invariant
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subspace attacks [LAAZ11, GJN+16] against PRINTcipher [KLPR10] and Midori [BBI+15]
triggered research/constraints on the combination of S-boxes and round constants, which
did not exist before 2011. Meanwhile, not all security requirements have to be fulfilled
by every design, since some attacks can be resisted by other design components, e.g.,
round constants can be used to break symmetry and to resist slide attacks. Thus, there
is a trade-off between the subset of the required security properties for S-boxes and the
complexity of other components of the overall primitive.

The implementation aspects of S-boxes cover both software and hardware. There are
several ways to implement S-boxes in software depending on the platform and resources
available. One common method is the table-lookup, which pre-computes a Look-Up Table
(LUT) by exhausting all possible input values and storing the outputs in a table. The
S-box is subsequently performed by accessing the table, usually indexed by the input
values. The LUT method is subject to cache-timing attacks [Ber05]. To resist them, there
are (close to) constant-time implementation methods such as algebraic implementations
and bitsliced implementations. Both express the S-box by its algebraic form, and hence
the execution time is independent of the input value. The difference is that bitsliced
implementations usually take multiple parallel inputs and process all simultaneously by
utilizing long registers such as streaming SIMD extensions (SSE) registers, by which the
relative performance per input can be significantly improved.

Depending on the target use, the most commonly known Integrated Circuits (ICs)
are Application Specific IC (ASIC) and Field Programmable Gate Array (FPGA). The
implementation and performance of S-boxes on either IC can be very different. On
both types of IC, there are also different ways of optimization, which will result in very
different performance. For example, on ASIC and FPGA, there is the so-called serialized
implementation aiming for smallest area occupied, and the depth optimized implementation
usually taking a relatively larger area but resulting in higher frequency and throughput.

To make a better trade-off between the security and performance, there is a line
of research developing tools for finding the optimal implementations. Given an S-box,
Osvik [Osv00] tried to find the software implementation optimized in terms of CPU cycles.
Given an S-box, Guo et al. [GJN+16] proposed a method to find an implementation in
ASIC optimized in terms of circuit depth. Given an S-box and the cost of each unit
operation, Jean et al. [JPST17] built a tool named LIGHTER to find implementations with
small area in ASIC or with small number of instructions in Software. More related works
are listed in Table 5.

Our contributions. Constant efforts are made by our community to research S-boxes, in
the hope of providing the best design choices to yield ciphers that are not only strong
enough to resist attacks but also efficient to be of practical use. Such efforts include those
made to remedy the situation after occasional bursts of striking attacks, and those made
to seek the best possible instances to enrich the portfolio of design candidates. In this
paper, we combine results achieved by these efforts. We first follow the line of research in
developing design criteria for S-boxes. Rich results have been obtained by our community
in this line. Some earlier results turned out to be fundamental theories, while some newly
proposed notions need to be further developed. We try to provide a comprehensive exhibit.
The main line of our exhibition follows the line of attacks. Many known results proposed or
implied criteria for avoiding each type of attack. Some criteria can generally apply to any
S-box based designs whereas others assume a particular type of round function structure.
Both types are taken into account in this paper to form a comprehensive check list for
designers. Besides the security, we consider the S-box criteria to be efficiently implemented.
One aspect we also considered are equivalent classes for the S-box and the link between
different classes. These will help the designers to identify the search space of the S-box
that satisfies certain criteria. A huge amount of previous research on S-boxes makes our
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exhibit quite long. However, integration of the many criteria appearing in the long history
of S-box design will be useful for future S-box designers and researchers.

In the later part of this paper, we follow the line of research in developing tools for
evaluating and implementing S-box. We start by comprehensively surveying the state-of-
the-art in tool development. We found that different tools are written in different languages
with different interfaces. Some of them are not publicly accessible. Each tool focuses on its
target criteria, thus we need to use/implement multiple tools to evaluate multiple criteria,
which is already non-trivial. In particular, security and implementation aspects are hard
to consider simultaneously. This motivates us to present a platform named Peigen for
evaluating the security properties, finding optimal implementations for given S-boxes, and
generating all suitable S-boxes when the security and performance requirements are given.

Peigen is built upon existing tools. After making a comprehensive comparison, we
decide to build Peigen using the implementation model of LIGHTER proposed by Jean
et al. [JPST17]. More explicitly, Peigen was built on the basis of a sub-module of
LIGHTER which is for finding software/hardware implementations that are good in terms of
Bitslice Gate Complexity (BGC), Gate Equivalent Complexity (GEC), and Multiplicative
Complexity (MC), for 4-bit bijective S-boxes. Peigen inherits all functionalities provided
by LIGHTER, and at the same time, improves the search efficiency using algorithmic-level
optimizations, e.g., the composition and concatenation method and the pre-computation
mechanism. Therefore, Peigen is more efficient for a large set of S-boxes. Besides
supporting 4-bit S-boxes, Peigen supports n-bit S-boxes, where 3 ≤ n ≤ 8 (but still only
feasible for finding implementations for 3- and 4-bit S-boxes).

Most importantly, compared with LIGHTER, Peigen is more versatile: Besides finding
implementations good in terms of BGC, GEC, and MC, Peigen can also find implementations
good in terms of circuit depth (Depth); Apart from finding good implementations, Peigen
can also evaluate security-related properties and identify equivalence relationships; Besides,
Peigen can generate new S-boxes fulfilling given security-related and/or performance-
related criteria. Here, we summarize the advantages and limitations of Peigen.

Peigen has rich functionalities which are of three aspects:

1. Evaluation: given a set of n-bit S-boxes (3 ≤ n ≤ 8 if not otherwise stated), Peigen
evaluates most of their security-related properties (e.g., Differential Distribution
Tables (DDT), Boomerang Connectivity Tables (BCT), Linear Approximation Tables
(LAT), Algebraic Normal Forms (ANF), Auto-Correlation Tables (ACT), Linear
Structures (LS), (v, w)-linearity, a table representation of VS(u) for all u indicating
the appearance of monomials in the ANFs of x 7→ πv(S(x)) for v ∈ Fn2 , and many
detailed criteria related to these tables. Given n-bit S-boxes, Peigen evaluated
their equivalence relations, including Permutation-XOR equivalence (PXE), linear
Equivalence (LE), Affine Equivalence (AE). Besides, for a given 4-bit S-box, it can
partition its AE-class into PXE-classes.

2. Implementation: given a set of n-bit S-boxes and the specific implementation
configuration (available gates and costs for each gate), Peigen can generate im-
plementations which are good in terms of Bitslice Gate Complexity (BGC), Gate
Equivalent Complexity (GEC), Multiplicative Complexity (MC), and Depth Complexity
(Depth).

3. Generation: given a set of criteria together with a set of S-boxes, Peigen fil-
ters out good S-boxes fulfilling the set of criteria; given merely a set of criteria,
Peigen generates new S-boxes fulfilling the set of criteria (both security-related and
implementation-related properties).

In addition to the many features, Peigen is developed with efficiency, expandability
and compatibility in mind. It is very efficient when evaluating the security properties
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even for a large set of n-bit S-boxes for 3 ≤ n ≤ 8. When finding implementations and
generating new n-bit S-boxes, it is more efficient than existing tools for n = 3, 4. Although,
it only supports 3 ≤ n ≤ 8-bit S-boxes, which is mainly because of the application of
specific optimization tricks, it can be extended to support larger n.

The main limitation of Peigen is that, it supports but often is infeasible to find
implementations and generating n-bit S-boxes for 5 ≤ n ≤ 8, except for very lightweight
5-bit S-boxes.

Utilizing the platform, we make some interesting observations on the inter-link between
some security and performance merits. Besides developing the platform, we provide
algorithmic improvement over previous tools, which allows us to find better S-boxes or
better S-box implementations than previous tools.

Roadmap. The rest of the paper is organized as follows. Section 2 gives the necessary
preliminaries and notations used in this paper. Section 3 lists all possible design criteria
including security and performance considerations. Section 4 presents our tool Peigen,
followed by some evaluation results in Section 5. Finally, Section 6 discusses some open
problems and concludes the paper. Some notations are postponed to the Appendix.

2 Preliminaries and Notations
2.1 Notations
We list some notations used in this section as follows. A complete list of notations can be
found in Appendix A.

⊕,
⊕

and +,
∑ To make a distinction, we use ⊕,

⊕
to represent addition and

summation of Fn2 , and use +,
∑

to represent addition and
summation of Z.

a
A binary vector, for a ∈ Fn2 , a = (a1, a2, . . . , an) where ai ∈ F2
is the coordinate of a with index i.

wt(a) The Hamming weight (or simply, weight) of a binary vector
a ∈ Fn2 , wt(a) ,

∑n
i=1 ai.

supp(a) The support of a binary vector a ∈ Fn2 is the set of all labels i
such that ai 6= 0.

a · b The inner product of two binary vectors a, b ∈ Fn2 ,
a · b ,

⊕n
i=1 ai · bi.

2.2 Preliminaries
Boolean functions are very common and useful mathematical tools used to design and
analyze symmetric-key cryptographic primitives. The cryptographic criteria measured on
Boolean functions are closely related to criteria measured on symmetric-key primitives,
especially for S-boxes. Thus, in the following sections, to introduce criteria on S-boxes, we
usually first provide some definitions and criteria measurements on Boolean functions.

Boolean functions. A Boolean function in n binary variables maps from Fn2 into F2.
There are 22n n-bit Boolean functions in total. Let f : Fn2 → F2 be a Boolean function. It
can be represented in several ways.

Directly, we can use truth tables. We sometimes use f to directly denote its value
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vector [Can16], which is the vector corresponding to all values taken by f when we use the
lexicographical order on the inputs. Since there are 2n inputs, the value vector of f is in
F2n

2 . The n-variate Boolean function f is said to be balanced if the Hamming weight of its
value vector wt(f) equals 2n−1, i.e., the output is uniformly distributed. Balancedness is
generally a basic requirement for Boolean functions used in cryptographic primitives.

Mathematically, we can use multi-variate polynomials. A conventional form to represent
a Boolean function is the algebraic normal form.

Definition 1 (Algebraic Normal Form (ANF) of a Boolean function [Can16]). A Boolean
function f : Fn2 → F2 can be uniquely represented by an n-variate polynomial over F2,
named the algebraic normal form of f :

f(x1, . . . , xn) =
⊕
u∈Fn2

αu

n∏
i=1

xuii , where αu ∈ F2.

This representation is essentially an element of F2[x1, · · · , xn]/(x2
1 ⊕ x1, · · · , x2

n ⊕ xn).

To compute the ANF of a given value vector f , or to recover the value vector from its
ANF, one can use the following transformation equations between these two representations:

αu =
⊕
x�u

f(x), and f(x) =
⊕
u�x

αu,

where, x satisfies the relationship x � u if and only if xi ≤ ui for all 1 ≤ i ≤ n. This
transformation between the coefficients of the ANF and the value vector is essentially a kind
of binary Möbius transform. Both directions can be computed using a divide-and-conquer
butterfly algorithm whose implementation involves simple AND, SHIFT, and XOR operations
and can be very fast [Car10b, Can16].

The most well-understood types of Boolean functions are the linear Boolean functions
x 7→ α · x, which can be denoted by ϕα for α ∈ Fn2 . Note that, the algebraic normal
form of a linear Boolean function is ϕα(x1, . . . , xn) =

⊕n
i=1 αi · xi. Together with their

complements, they form the set of all affine Boolean functions An , {ϕα(x1, . . . , xn) =⊕n
i=1 αi · xi ⊕ α0 | a0, . . . , an ∈ F2} [CCCF01].

Vectorial Boolean Functions and S-boxes. In specifications of cryptographic algorithms,
the S-box is usually specified by using a LUT (see Table 7), because from the implementation
point of view, the size of the domain of an S-box is relatively small and the S-box usually
operates on local groups of bits among the whole state, and is relatively complex to describe
mathematically (unless intrinsically designed from mathematical primitives).

However, from the cryptanalysis point of view, mathematical descriptions are very
important. Specifically, representation in ANF allows us to manipulate them and to deeply
study their properties by using algebra theories.

Mathematically, an S-box mapping n bits to m bits can be described as a vectorial
Boolean function in n input variables and with m output bits:

S : Fn2 → Fm2 .

Similar to a Boolean function, a vectorial Boolean function can also be uniquely
represented in its algebraic normal form (ANF), which is an n-variable polynomial repre-
sentation. Different from the ANF of a Boolean function in which the coefficients are in
F2, coefficients in this polynomial are in Fm2 . Formally, we have

Definition 2 (Algebraic Normal Form (ANF) of a vectorial Boolean function [Car10b]).
A vectorial Boolean function S : Fn2 → Fm2 can be uniquely represented by an n-variable
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polynomial, named the algebraic normal form of S:

S(x1, . . . , xn) =
⊕
u∈Fn2

αu

n∏
i=1

xuii , where αu ∈ Fm2 .

Conventionally, we have:

Definition 3 (Coordinates of S [Nyb94]). An S-box S with m output bits has m coor-
dinates, denoted as Sei for 1 ≤ i ≤ m, where Sei is the Boolean function in n binary
variables and represents the i-th output bit of S:

Sei : Fn2 → F2,

where {ei}i<m is the standard basis for Fm2 .

Definition 4 (Components of S [Nyb94]). An S-box S with n input bits and m output
bits has 2m components, which are the linear combinations of its m coordinates, and can
be denoted as Sλ for λ ∈ Fm2 :

Sλ : Fn2 → F2

x 7→ λ · S(x)

where a · b is the inner product of a and b, i.e.,
⊕n

i=1 ai · bi. In particular, S0 is the null
function and the m coordinate functions Sei form the basis of the linear space containing
all Sλ.

The terms components and coordinates of S are some-times confused (some studies use
them synonymously). However, they need to be distinguished because some important
properties of the S-box cannot be described merely by using the term coordinates, as
shown by e.g., [Nyb91, Nyb94].

See Figure 6 for an example of the ANFs of the coordinates and components of an
S-box.

Similar to the balancedness of Boolean functions, the balancedness of vectorial Boolean
functions is generally a basic requirement for them to be used in cryptographic primitives.
A vectorial Boolean function S : Fn2 → Fm2 is said to be balanced if its outputs are uniformly
distributed, or more precisely, it takes every value of Fm2 the same number 2n−m of times.
The balancedness of a vectorial Boolean function is characterized by the balancedness of
its component functions:

Proposition 1 ([Car10b]). A vectorial Boolean function S : Fn2 → Fm2 is balanced if and
only if all its non-trivial component functions are balanced.

The balanced vectorial Boolean functions mapping Fn2 to itself, namely the n-bit
permutations, are of particular importance for the design of block ciphers and hash
functions. This is because most S-boxes used in block ciphers are permutations.

3 S-box Design Criteria
In this section, we provide a check-list of S-box design criteria. This does not mean that a
chosen S-box must fulfill all the criteria, but rather, when a designer trades some criteria
for other benefits, the designer should carefully consider any undesired property caused
by invalidating a design criterion and should check whether other components in the
design could remedy the weakness without too much cost. The art of these trade-offs has
been shown in several designs. A popular example is KECCAK, in which the non-linear
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component seen as a 5-bit S-box is not strong if assessed using the criteria listed in Sect. 3.1
and 3.2 (e.g.,, differential uniformity, linearity, algebraic degree). However, assessed using
the implementation criteria listed in Sect. 3.3, it is superior. We view this as follows: the
design choice of KECCAK S-box trades some security for performance, while the carefully
designed linear layer, the just right combination between different components, and the
number of rounds remedy the weakness of the non-linear layer.

Design criteria for S-boxes can be extended into design criteria for round functions of
the entire algorithm. It is usually feasible to apply the criteria for the S-box to a small
number of rounds, e.g., two rounds, which is useful to find potential weaknesses of the
design.

Criteria we focus on are those for which simple1 transformations on the S-boxes leave
them invariant. For other criteria, we just list them and do not take them as general,
because they can be easily changed under simple transformation (e.g., the number of
fixed-points, the number of nonlinear terms in their ANF).

3.1 General Security Criteria (common for all types of linear layer)
Criteria listed in this subsection are general for all cipher designs based on S-boxes. We
say that these criteria are general because they are imposed to resist widely applicable
attacks.

The invention of the two most powerful attacks – differential attack [BS90] and linear
attack [Mat93] – imposes conventional criteria on the design of S-box (e.g., differential
uniformity and linearity described in detail in the sequel). One can see, in the design
rationale of most block ciphers and hash functions using S-boxes, the commonly and clearly
listed criteria for S-boxes are differential uniformity and linearity (e.g., Serpent [RA98],
Luffa [DCSW08], PRESENT [BKL+07], PRINCE [BCG+12]). For these criteria, the
designers have to concern and evaluate carefully even though one can make a little trade-
off, e.g., in KECCAK [BDPVA] and GIFT [BPP+17]. Usually, all other components of
the cipher are linear, and linear computations propagate differences and correlations in
a deterministic manner. The non-linear S-box is the only source of uncertainty for the
propagation of differences and correlations. The feasibility of both differential and linear
attacks mainly depends on the local statistical property of the S-boxes, which can be
extended to the entire cipher and finally reveals relations among plaintexts, ciphertexts,
and the fixed secret key. Thus, the primary design criteria for S-box are to provide
resistance against differential and linear attacks.

Besides, non-statistical attacks, e.g., algebraic attacks, also impose (general or detailed)
criteria for the S-box design. Some criteria (e.g., algebraic degree) are so general that they
make sense to resist several attacks under different names; other criteria (e.g., differential
branch number) are relatively narrowed to be meaningful regarding some particular attacks
on particular ciphers.

We list general criteria in this subsection and defer the description of special criteria
for specific designs to the next subsection.

3.1.1 Resistance to Differential Attack

The differential attack [BS90] exploits the non-uniform distribution of the output differ-
ences when the inputs are chosen with a fixed difference. Although linear components
can efficiently diffuse differences, they cannot help to reduce the non-uniformity regard-
ing differences. Thus, a uniform differential distribution mainly comes from non-linear
components.

1“simple” is in the sense that they are easy to be analyzed cryptographically, e.g., XOR constant,
bit-permutation, linear, and affine transformations.
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Definition 5 ([Nyb91]). The derivative function (or simply, derivative) of a Boolean
function f to the direction a ∈ Fn2 is defined as:

Daf : Fn2 → F2

x 7→ f(x⊕ a)⊕ f(x), a ∈ Fn2

The number of inputs satisfying the derivative equation f(x ⊕ a) ⊕ f(x) = b of a
Boolean function f at a ∈ Fn2 and b ∈ F2 is defined as:

δf (a, b) , #{x ∈ Fn2 | f(x)⊕ f(x⊕ a) = b} = #{Daf
−1(b)},

where Daf
−1(b) means the set of preimages of b under the derivative function Daf .

Definition 6 (Perfect nonlinear Boolean function [MS89]). A Boolean function f : Fn2 →
F2 is perfect non-linear if for every nonzero vector a ∈ Fn2 , δf (a, 0) = δf (a, 1) = 2n−1.

Perfect nonlinearity implies an earlier design criterion for S-boxes, namely the strict
avalanche criterion (SAC). SAC is essentially a diffusion criterion. It requires the S-box
satisfies that, a change in a single input bit results in output changes with probability
1/2. Accordingly, SAC can be described as follows: for every vector a ∈ Fn2 and wt(a) = 1,
δf (a, 1) = 2n−1. Thus, perfect nonlinearity is a stronger requirement than SAC [MS89]. A
generalized criterion on SAC and perfect nonlinearity criterion is the propagation criterion
of degree k [PLL+90]. An n-variable Boolean function is said to satisfy the propagation
criterion of degree k (denoted by PC(k)), if when any i (1 ≤ i ≤ k) bits of the input are
changed, the output changes with probability 1/2. Thus, SAC is equivalent to PC(1), and
perfect nonlinearity implies PC(k) for 1 ≤ k ≤ n. A tool that can be used to test SAC
and PC for a Boolean function is the autocorrelation.

Definition 7 (Autocorrelation). The autocorrelation coefficient of a Boolean function
f : Fn2 → F2 on a ∈ Fn2 is defined by

rf (a) ,
∑
x∈Fn2

(−1)f(x)(−1)f(x⊕a) =
∑
x∈Fn2

(−1)f(x)⊕f(x⊕a).

Proposition 2 ([PLL+90]). A Boolean function f : Fn2 → F2 satisfies PC(k) if and only
if

rf (a) =
∑
x∈Fn2

(−1)f(x)⊕f(x⊕a) = 0 for 1 ≤ wt(a) ≤ k.

From these definitions and criteria on Boolean functions, we can extend to corresponding
definitions and criteria on vectorial Boolean functions (i.e., the S-boxes).

Definition 8 (Derivative of S [Nyb91]). For a vectorial Boolean function S : Fn2 → Fm2 ,
the derivative of S to the direction a ∈ Fn2 is defined as

DaS : Fn2 → Fm2
x 7→ S(x)⊕ S(x⊕ a)

The number of inputs satisfying the derivative equation S(x) ⊕ S(x ⊕ a) = b of a
vectorial Boolean function S at a ∈ Fn2 and b ∈ Fm2 is defined as [LP07]:

δS(a, b) , #{x ∈ Fn2 | S(x)⊕ S(x⊕ a) = b} = |DaS
−1(b)|.

If the number δS(a, b) is divided by the domain size, i.e., δS(a,b)
2n , this ratio provides

the probability that S(x)⊕ S(x′) = b if an input pair (x, x′) is chosen uniformly from the
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set of all input pairs with difference a. Thus, this ratio is widely used under the name
“differential probability” of the difference propagation (a, b) in S. The values of δS(a, b)
for all pairs (a, b) ∈ Fn2 × Fm2 can be arranged in a 2n × 2m table, named the differential
distribution table (DDT) of S, in which the element DDT(a, b) in row a and column b
is equal to δS(a, b). For those zero elements in DDT, i.e., δS(a, b) = 0, the difference
propagation (a, b) is called invalid, and input difference a and output difference b are said
to be incompatible through S. If S is a permutation, then for the value δS(a, b) to be
nonzero, either the input difference a and output difference b are both zero or nonzero.

Differential Uniformity. To get an impression on whether an S-box based cipher re-
sists differential attacks, one can estimate the maximum expected differential probability
(MEDP). A shortcut method to approximate MEDP is to compute the maximum differ-
ential probability of the S-box to the power of the minimum number of active S-boxes
(with nonzero difference propagation through the S-box) in the differential propagation
through the cipher. Thus, the maximum differential probability of the S-box is the most
manifest feature to identify the goodness of an S-box regarding differential attacks. The
corresponding maximum δS (multiply the maximum differential probability by 2n) is
named the differential uniformity (or uniformity for short) of an S-box. A well-known
example of the utility of the differential uniformity of an S-box is the proof of security
against the differential attack for AES: there are at least 25 active S-boxes for 4-round
AES, and the differential uniformity of the AES S-box is 2−6 × 28. Thus, the probability
of any differential trail can be upper bounded by using 2−6×25 [HLL+00, DR02]. The
differential uniformity is formally defined as:

Definition 9 (Differential Uniformity [Nyb93]). Let S be a vectorial Boolean function
S : Fn2 → Fm2 , the differential uniformity of S is defined as:

U(S) , max
a∈Fn2 \{0},b∈Fm2

δS(a, b).

If U(S) ≤ δ, S is called differentially δ-uniform.

We define UFreq(S) , #{(a, b) | δS(a, b) = U(S), a ∈ Fn2 \ {0}, b ∈ Fm2 } as the
frequency; the number of occurrences in the DDT of an S-box.

Low differential uniformity is advantageous for S-boxes. Those S-boxes reaching the
minimum possible differential uniformity are called – perfect non-linear S-boxes.

Definition 10 (Perfect Non-linear S-boxes [Nyb91]). A vectorial Boolean function S :
Fn2 → Fm2 is perfect non-linear if for every a ∈ Fn2 \ {0}, δS(a, b) = 2n−m for all b ∈ Fm2 .

Proposition 3 ([Nyb91]). A vectorial Boolean function S : Fn2 → Fm2 is perfect non-
linear if and only if all its non-trivial components are perfect non-linear in the sense of
Definition 6.

Proposition 4 ([Nyb91]). For a perfect non-linear S-box S : Fn2 → Fm2 , n ≥ 2m.

Accordingly, there is no perfect non-linear permutation. However, it is possible to be a
permutation (balanced) and at the same time be almost perfect non-linear.

Proposition 5 (Almost Perfect Non-linear S-boxes [NK92]). Let S be a vectorial Boolean
function S : Fn2 → Fn2 . Then, U(S) ≥ 2. Those n-bit S-boxes with U(S) = 2, i.e., reach the
minimum, are called almost perfect nonlinear (APN) functions.

The existence of n-bit APN permutation is implied by the existence of n-bit almost
Bent (AB) functions [CV94, Nyb93] when n is odd. However, when n is even, there is no
general conclusion on the existence of an APN permutation. As noted by Leander and
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Poschmann [LP07], there is no APN permutation on F4
2. For a 4-bit bijective S-box S, the

optimal U(S) is 4. It was conjectured for a long time that no APN permutation could
exist on Fn2 if n is even, until Dillon exhibited an APN permutation on F6

2 [BDMW10].
However, whether an APN permutation exists on Fn2 if n is even and n ≥ 8 is still an open
problem. Note that, as for 8-bit permutations, the AES S-box possesses the best known
differential uniformity, which is U(S) = 4.

Note that, differential uniformity is invariant under inversion and affine transforma-
tions [Nyb93]. The most general form of function equivalence that is known to preserve
differential uniformity is CCZ-equivalence which is a more general notion than affine
equivalence [CCZ98, CP18].

Differential Spectrum. Besides the maximum U , the frequency of the maximum UFreq
(or the number of zero entries in DDT) also impacts resistance against differential attacks,
e.g., multiple differential attacks and impossible differential attacks. More importantly,
the frequency in the DDT provides more accurate estimation of the maximum expected
differential probability than that provided merely by the differential uniformity [PSLL03].
In other words, S-boxes that have the same differential uniformity but different differential
spectra can perform differently in terms of resistance against differential attacks.

Thus, some design criteria impose restrictions on the differential spectra of the S-box.
More formally, we have

Definition 11 (Differential Spectrum [BCC10, CR15]). The differential spectrum of a
vectorial Boolean function S : Fn2 → Fm2 is the multiset

Dspec(S) , {δS(a, b) | a ∈ Fn2 \ {0}, b ∈ Fm2 }.

Differential spectrum is invariant under affine transformation, so the upper bound on
the MEDP computed by using a differential spectrum will be identical for affine equivalent
S-boxes. However, affine equivalent S-boxes can be in-equivalent regarding the MEDP
of the resulting cipher [CR15]. Thus, using information of the whole DDT of the S-box,
one could more accurately estimate the MEDP of the cipher and thus more accurately
evaluate the resistance against differential attacks.

This implies that the whole DDT of the S-box can be used in theoretically computing
the MEDP. Since the traditional differential attack merely drives exploitable differential
characteristics from the DDT of the S-box, two S-boxes with the same DDT (different
S-boxes can have the same DDT) are regarded as providing the same level of resistance
against differential attacks. Hence, it is reasonable to invent an equivalent relationship
between S-boxes. These are the two newly proposed notions – DDT-equivalent and γ-
equivalent on S-boxes [BCJS18]. The corresponding valuable work is to reconstruct the
class of DDT-equivalent S-boxes from a given DDT [BCJS18, DH18].

Note that in some papers, the DDT of an S-box also embeds the information of
correct input/output pairs supporting those differences. In fact, there are improved
differential attacks exploiting the real value of the correct pairs instead of using merely
the difference [SWW18]. That indicates that the approximation on MEDP obtained from
information of the DDT of the S-box is only a lower bound.

See Figure 2 for an example of the DDT, U , Dspec of a 4-bit S-box.

3.1.2 Resistance to Linear Attack

The linear attack [Mat93] exploits that for a cipher EK(P ) = C, there exists a linear
combination on the bits of plaintexts P , bits of the ciphertexts C, and bits of a key K,
which form a Boolean function that behaves non-randomly (unbalanced) on a random set
of P . The linear combination is called a linear approximation of the cipher (denoted by a
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triple (α, β, γ)), and is of the form:

α · P ⊕ β · C ⊕ γ ·K,

where α is a linear mask on the input (plaintext), β is a linear mask on the output
(ciphertext), γ is a linear mask on the round keys, and “·” denotes the inner product.
When we say “linear mask on X,” we mean that the mask is a binary vector, selects the bits
of X corresponding to its nonzero coordinates and sums (linearly combines) them together
(thus, it is essentially a linear Boolean function). The non-randomness is measured by
using the term bias, which is |Pr[α · P ⊕ β · C ⊕ γ · K = 0 | EK(P ) = C] − 1/2|. If a
function is linear, the bias is maximized, i.e., 1/2. If a function is random (balanced),
the bias is minimized, i.e., 0. Thus, the bias is an indicator of the randomness of the
linear approximation or say, distance from a linear function. It can be seen that linear
components in a cipher cannot provide bias for any linear approximation. Non-linear
components in a cipher are the source of biases for all possible linear approximations. As
S-boxes are generally the only non-linear components in most S-box based ciphers, the
biases of all linear approximations of the S-box are very important for resisting linear
attack.

For an n×m-bit S-box S, the linear approximations (denoted by the pair (α, β)) are
of the form α · x ⊕ β · S(x) = α · x ⊕ Sβ(x). The bias of a linear approximation (α, β)
of S is then εS(α, β) =

∣∣∣#{x|Sβ(x)=α·x}
2n − 1/2

∣∣∣. The values of εS(α, β) for all pairs (α, β)
can be arranged in a 2n × 2m table, named the linear approximation table (LAT) of S, in
which the element LAT(α, β) in row α and column β is equal to εS(α, β). As will be seen,
the biases of all linear approximations of S correspond to the Walsh spectrum of S, in
which the maximum absolute value is defined as the linearity of S. The linearity is thus a
consistent notion with the maximum bias of all linear approximations of the S-boxes.

Note that linearity and nonlinearity of vectorial Boolean functions are notions studied
by the community much earlier than the notion of biases of linear approximations. Earlier
(before the invention of the well-known linear attack on DES), a variety of criteria were
proposed to measure linearity and nonlinearity, in the common belief that measuring
linearity and nonlinearity enables some confusion ability of an S-box to be quantified.
The generally accepted criterion to measure nonlinearity of an S-box is defined as the
Hamming distance between the set of all its non-trivial components to the set of all affine
functions. Formally, we have the following definitions (beginning from definitions on
Boolean functions, we go through to generalized definitions on vectorial Boolean function,
i.e., S-boxes).

Definition 12 ([MS89, PLL+90]). The Hamming distance between two Boolean functions
f and g is the number of function values in which they differ. If we directly denote the
value vectors by f and g, then d(f, g) , wt(f ⊕ g).

Definition 13 (Nonlinearity of a Boolean function [MS89, CCCF01]). The nonlinearity
of a Boolean function f : Fn2 → F2 is the minimum Hamming distance between f and all
affine functions. Denote the set of all affine functions by A(n) = {ϕα, ϕα ⊕ 1 | ϕα : x 7→
α · x, α ∈ Fn2}, then we have,

NL(f) , min
g∈A(n)

d(f, g) = min
α∈Fn2

|wt(f ⊕ ϕα)| .

A very convenient tool to study nonlinearity and linearity is the Walsh transform,
which is actually an essential tool for studying (vectorial) Boolean functions.

Definition 14 ([PLL+90, CCCF01]). The discrete Fourier transform (a.k.a., Walsh
transform) at point 0 of the sign function (−1)f of a Boolean function f : Fn2 → F2 is
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denoted by
F(f) ,

∑
x∈Fn2

(−1)f(x).

According to definitions, we have F(f) = 2n − 2 wt(f).

Definition 15 ([PLL+90, CCCF01]). The Walsh transform (aka., Fourier transform) of
a Boolean function f : Fn2 → F2 is defined as:

Wf (α) ,
∑
x∈Fn2

(−1)f(x)⊕α·x, α ∈ Fn2

According to definitions, we have Wf (α) = F(f ⊕ ϕα) = 2n − 2 d(f, ϕα).
The value taken by the transform at point α is called the Walsh coefficient of f at point α.

Definition 16 ([PLL+90, CCCF01]). The Walsh spectrum (aka. Fourier spectrum) of a
Boolean function f : Fn2 → F2 is the multi-set

Wspec(f) , {Wf (α) | α ∈ Fn2}.

The extended Walsh spectrum of f is the multi-set of the absolute of the values inWspec(f).

Note that a (vectorial) Boolean function is completely specified by its Walsh coefficients.
From the truth table, there is a fast algorithm to compute all Walsh coefficients [Can16].

The Walsh transform of a Boolean function satisfies a primary theorem:

Proposition 6 (Parseval’s relation). For a Boolean function f : Fn2 → F2, the Walsh
transform of f satisfies: ⊕

α∈Fn2

Wf (α)2 = 22n.

Definition 17 ([Dob94]). The linearity of a Boolean function f : Fn2 → F2 is defined as

L(f) , max
α∈Fn2

|2n − 2 wt(f ⊕ ϕα)| = max
α∈Fn2

|Wf (α)| .

Accordingly, the nonlinearity and linearity of a Boolean function are related by:

NL(f) = 2n−1 − 1
2 max
α∈Fn2

|Wf (α)| = 2n−1 − 1
2 L(f).

From the Parseval relation, we have the following.

Proposition 7. For a Boolean function f : Fn2 → F2, the linearity (resp. nonlinearity) of
f satisfies:

L(f) ≥ 2n/2, and NL(f) ≤ 2n−1 − 2n/2−1.

The Boolean functions with linearity reaching the lower bound, i.e., with the highest
nonlinearity, are Bent functions.

Definition 18 (Bent Boolean function [MS89]). A Boolean function f : Fn2 → F2 is called
Bent function if and only if for every α ∈ Fn2 , |Wf (α)| = 2n/2.

As shown by Meier and Staffelbach [MS89], the class of perfect nonlinear Boolean
functions coincides with the class of Bent Boolean functions. Note that, Bent Boolean
functions only exist for even number of variables, they are not balanced, and their algebraic
degree is always upper bounded by n/2.

The generalization of these definitions on a Boolean function to that of a vectorial
Boolean function (S-box) is quite direct:
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Definition 19 (Walsh transform and Walsh spectrum of an S-box [Car10b]). The Walsh
transform of a vectorial Boolean function S : Fn2 → Fm2 is defined as:

WS(α, β) =WSβ (α) =
∑
x∈Fn2

(−1)β·S(x)⊕α·x, α ∈ Fn2 , β ∈ Fm2 .

The value taken by the transform at point (α, β) is called the Walsh coefficient of S at
point (α, β). The Walsh spectrum of S is the multiset

Wspec(S) , {WS(α, β) | α ∈ Fn2 , β ∈ Fm2 \ {0}}.

The extended Walsh spectrum of S is the multi-set of the absolute of values in Wspec(S).
The Walsh support of S is those (α, β) such that W(α, β) 6= 0.

Back to the notion of bias of linear approximations, we have:

WS(α, β) = 2n+1 · εS(α, β).

Accordingly, the linear approximation table (LAT) has equivalence with the Walsh trans-
form (up to multiplication of a constant 2n+1). Thus, in this paper, we use the table formed
by all Walsh coefficients WS(α, β) as the LAT instead of using the values of biases εS(α, β).
Note that, besides the bias and Walsh coefficient, there is also a consistence notion of
correlation coefficient C(f, g) [DGV94], which associates a pair of Boolean functions f and
g by C(f, g) = 2 Pr[f(x) = g(x)]− 1. Let one Boolean function be f(x) = α · x which is a
linear combination of input bits, and let the other be g(x) = β · S(x), which is a linear
combination of output bits. Then the correlation coefficient C(α · x, β · S(x)) is related to
WS(α, β) by

WS(α, β) = 2n · C(α · x, β · S(x)).

The correlation coefficients C(α · x, β · S(x)) for all α ∈ Fn2 and β ∈ Fm2 can be arranged
in a matrix, named correlation matrix [DGV94], which is also equivalent to LAT (up to
multiplication with a constant).

See Figure 3 for an example of the LAT, L, Wspec of a 4-bit S-box.
Note that an S-box is completely specified by its Walsh Spectrum, i.e., LAT. It can be

recovered from its Walsh Spectrum:

Proposition 8 ([Per17]). Let S be a vectorial Boolean function S : Fn2 → Fm2 . Then each
coordinate Sei (for 1 ≤ i ≤ m) can be recovered by using:

Sei(x) = 1
2 −

1
2n+1

∑
a∈Fn2

WS(a, 2i)(−1)a·x.

Definition 20 (Linearity of an S-box [Nyb94]). The linearity of a vectorial Boolean
function S : Fn2 → Fm2 is the maximum linearity of its non-trivial components {Sβ | β ∈
Fm2 \ {0}}.

L(S) = max
λ∈Fm2 \{0}

L(Sβ) = max
α∈Fn2 ,β∈Fm2 \{0}

|WS(α, β)| .

We define LFreq , #{(α, β) | WS(α, β) = L(S), α ∈ Fn2 , β ∈ Fm2 \ {0}} as the
frequency of the maximum occurs in the LAT of an S-box.

Definition 21 (Nonlinearity of an S-box [Nyb94]). The nonlinearity of a vectorial Boolean
function S : Fn2 → Fm2 is the Hamming distance between the set of its non-trivial compo-
nents {Sλ | λ ∈ Fm2 \ {0}} and the set of all affine functions An.

NL(S) = min
λ∈Fm2 \{0}

NL(Sλ) = 2n−1 − 1
2 L(S).
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High nonlinearity (low linearity) of an S-box is a desired property for the cipher to
resist linear attack. Similar to the definitions of PN and APN functions related to the
resistance to differential attacks, the corresponding definitions of Bent functions and almost
Bent functions are closely related to the resistance to linear attacks (although the original
proposition of the Bent function [Rot76] is not related to linear attacks).

Definition 22 (Bent vectorial Boolean function). A vectorial Boolean function S : Fn2 →
Fm2 is called a Bent function if and only if all of its non-trivial component functions are
Bent. This is equivalent to |WS(α, β)| = 2n/2 for all α ∈ Fn2 and β ∈ Fm2 \ {0}.

Bent vectorial Boolean functions with linearity (resp. nonlinearity) reach the minimum
(resp. maximum). However, as mentioned above, Bent functions are not balanced and
only exist for an even numbers of variables. Similar to the proposition of APN, to achieve
balancedness and at the same time to possess some merit of Bent functions, the almost
Bent function is proposed:

Definition 23 (Almost Bent vectorial Boolean function [CV94]). Let S be a vectorial
Boolean function S : Fn2 → Fn2 . Then,

L(S) ≥ 2(n+1)/2, and NL(f) ≤ 2n−1 − 2(n+1)/2−1.

Those S with linearity (resp. nonlinearity) reaches the lower (resp. upper) bound are
called Almost Bent (AB) functions. Moreover, an almost Bent (AB) function is almost
perfect nonlinear (APN) as well.

Almost Bent functions only exist for odd number of variables. Examples are the power
polynomials S(x) = x2k+1 in Fn2 , n is odd and 1 < k < n and gcd(n, k) = 1, which was
proposed by Nyberg [Nyb93]. For even number of variables, the linearity of the S-boxes
are all strictly larger than 2(n+1)/2. However, the tight lower bound on the linearity is
not known. As noted by Leander and Poschmann [LP07], for 4-bit bijective S-box S, the
optimal linearity L(S) = 8. Brinkmann and Leander [BL08] provided all the four non-AE
classes of 5-bit APN permutations with L(S) = 8. For 8-bit permutations, the AES S-box
possesses the best known linearity, which is L(S) = 32.

At this point, we can distinguish those S-boxes possessing the optimal differential
uniformity and optimal linearity as follows:

Definition 24 ([LP07]). Let S be a vectorial Boolean function S : F4
2 → F4

2. If S fulfills
the following conditions, we call S an optimal 4-bit S-box:

1. S is a bijection.

2. L(S) = 8.

3. U(S) = 4.

Following the definition on an optimal 4-bit S-box, we can call an S-box from Fn2 to
Fn2 an optimal n-bit S-box if it possesses the optimal differential uniformity, possesses the
optimal linearity, and is bijective. However, we currently do not even known the exact
value of the optimal differential uniformity and/or the optimal linearity for n ≥ 8.

3.1.3 Resistance to Boomerang Attack

The boomerang attack [Wag99] intuitively combines two independent differential trails
in two consecutive bijective functions. Let E0 and E1 be two consecutive functions that
allow a differential propagation α to β with probability p and γ to δ with probability q.
The boomerang attack detects a certain differential propagation for E1 ◦ E0 that occurs
with probability p2q2.
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It has been pointed out several times in the literature that the behavior around the
border of two trails is not completely independent from the other part. Dunkelman et
al. [DKS10] formulated its probability during their attack against KASUMI by setting the
middle part Em. That is, the target is divided into three parts E1 ◦ Em ◦ E0 to point out
that the probability for the middle part is not squared. Cid et al. [CHP+18] focused on
the designs in which Em is a single S-box-application layer and proposed constructing
a precomputed table to evaluate this probability. The table resembles DDT, and Cid
et al. revealed several relationships between DDT and their table called the Boomerang
Connectivity Table (BCT), which is defined as follows.

Definition 25 (Boomerang Connectivity Table (BCT) of an invertible n × n S-box
S [CHP+18]). Let a ∈ Fn2 and b ∈ Fn2 be the output difference from E0 (equivalently input
difference to the S-box) and input difference to E1 (equivalently output difference from
the S-box), respectively. BCT is a 2n × 2n table that precomputes the following quantity
for all (a, b): βS(a, b) , #

{
x ∈ Fn2 | S−1(S(x)⊕ b

)
⊕ S−1(S(x⊕ a)⊕ b

)
= a

}
.

The boomerang uniformity, denoted by BU(S), is the highest value in the BCT excluding
the entry (0, 0): BU(S) = maxa,b∈Fn2 \{0} βS(a, b). The boomerang differential spectrum is
the multiset BDspec(S) , {βS(a, b) | a ∈ Fn2 \ {0}, b ∈ Fn2}.

See Figure 4 for an example of the BCT, BU , BDspec of a 4-bit S-box.
Dunkelman [Dun18] provided a method to efficiently construct the BCT. Boura and

Canteaut [BC18] provided an in-depth analysis to show that two families of differentially
4-uniform S-boxes are also optimal with respect to boomerang attacks.

3.1.4 Resistance to Algebraic Attacks

The rule of thumb to evaluate the resistance of a cipher to algebraic attacks is to calculate
the algebraic degree. Generally speaking, the higher the algebraic degree, the higher the
resistance to algebraic attacks. For ciphers based on S-boxes, the algebraic degree of the
S-box provides an upper bound of the algebraic degree of the whole cipher.

Algebraic Degrees.

Definition 26 (Algebraic degree of a Boolean function deg(f)). For a Boolean function
f : Fn2 → F2, let

ANFf =
⊕
u∈Fn2

αu

n−1∏
i=0

xuii , where αu ∈ F2, then

deg(f) , max{wt(u) | u ∈ Fn2 and αu 6= 0 ∈ F2 in ANFf}.

The direct generalization of the algebraic degree of a Boolean function to the algebraic
degree of a vectorial Boolean function is as follows:

Definition 27 (Algebraic degree of a vectorial Boolean function Deg(S)). For a vectorial
Boolean function S : Fn2 → Fm2 , let

ANFS =
⊕
u∈Fn2

αu

n−1∏
i=0

xuii , where αu ∈ Fm2 , then

Deg(S) , max{wt(u) | u ∈ Fn2 and αu 6= 0 ∈ Fm2 in ANFS}.

That is, the algebraic degree of a vectorial Boolean function S : Fn2 → Fm2 is defined as
the global degree of its ANF. It equals the maximum among all degrees of the coordinate
functions (and also equals the maximum among all degrees of the component functions):

Deg(S) = max
i∈{0,··· ,n−1}

deg(Sei) = max
λ∈Fm2 \{0}

deg(Sλ).
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We define DegFreq , #{λ | deg(Sλ) = Deg(S), λ ∈ Fm2 \ {0}} as the number of non-trivial
components of S with the maximal degree.

Apart from the maximum degree, the minimum is also important regarding algebraic
attacks. Here we denote by min deg(S) the minimum degree of S,

min deg(S) , min
λ∈Fm2 \{0}

deg(Sλ).

Note that, different from the notion of algebraic degree, the minimum among all degrees of
the coordinate functions does not equal the minimum among all degrees of the component
functions. This is because even when all coordinates possess the maximum degree, some
of their linear combinations (components) can be with smaller degrees (in the case that
the highest order terms in their ANFs are canceled when summed together). Thus, we
distinguish the following two definitions, i.e., Degspec(S) and Degspeccor(S).

Definition 28 (Degspec(S)). The degree spectrum of a vectorial Boolean function S :
Fn2 → Fm2 is a multiset Degspec(S) , {deg(Sλ) | λ ∈ Fm2 \ {0}}, where Sλ are component
functions of S.

Definition 29 (Degspeccor(S)). The degree spectrum of the coordinates of a vectorial
Boolean function S : Fn2 → Fm2 is a multiset Degspeccor(S) , {deg(Sei) | 1 ≤ i ≤ m},
where Sei are coordinate functions of S.

See Figure 6 for an example of the ANFs, Deg(S), min deg(S) and Degspec(S) of a
S-box.

Besides the linear combinations of coordinates, the product of coordinates is also
important. The degrees of the product of any k coordinates of the S-box (and its inverse)
can provide a tighter upper bound on the degree of the entire cipher, as stated and shown
by using examples (Luffa, AES, Keccak, JH etc.) in [BCC11, BC13b].

Definition 30 (Maximal degree of the product of k coordinates). Let S be a vectorial
Boolean function S : Fn2 → Fm2 . For any integer k, 1 ≤ k ≤ m, dk(S) denotes the maximal
algebraic degree of the product of any k (or fewer) coordinates of S

dk(S) = max
K⊆{1,...,m},|K|≤k

deg
( ∏
i∈K

Sei
)
.

In particular, d1(S) = deg(S).

See Table 8 for an example of the dk of a 4-bit S-box.

Theorem 1 (Degree of the composition G ◦ F [BCC11, BC13b]). Let F : Fnt2 → Fnt2
corresponding to the concatenation of t smaller balanced S-boxes, S1, . . . , St, defined over
Fn2 . Let dk be the maximal degree of the product of any k coordinates of anyone of these
smaller S-boxes. Then, for any function G from Fnt2 into F`2, we have

deg(G ◦ F ) ≤ nt− nt− deg(G)
γ

, where γ = max
1≤i≤n−1

n− i
n−max1≤j≤t di(Sj)

.

From this theorem, it can be seen that the degree of product of coordinates of the
S-boxes provides upper bounds on the maximum degree of a composition function. Thus,
dk(S) are closely related to resistance against higher-order differential attacks.

The maximum value the degree dk(S) can take is limited by the divisibility of the
Walsh spectrum of S.

Theorem 2 ([CV02]). If all WSv(u) are divisible by 2`, then the product of any k
coordinates of S has degree dk ≤ n+ k − `.
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From this theorem, one can conclude that Bent functions (resp. almost Bent functions)
on Fn2 have degrees at most n/2 (resp. (n+ 1)/2).

Apart from the influence on the algebraic degree of the whole cipher, dk of the S-box
(and more directly, dk of the inverse S-box) is also closely related to the division property
of the S-box.

Division Property. The division property [Tod15b] is a notion proposed in 2015. Let
d be the algebraic degree of the S-box. Then, it is possible to choose 2d+1 inputs to
the S-box so that the sum of the S-box outputs can be 0. This evaluation is natural in
algebraic analysis, whereas simple integral attacks do not take it into account. Intuitively,
the division property combines degree counting with the integral attack.

Let πu : Fn2 → F2 be a bit-product function for any u ∈ Fu2 , and let x ∈ Fn2 be an input
to πu. We also denote the i-th bits of u and x by ui and xi respectively. Then, πu is
defined as πu(x) := Πn

i=1x
ui
i .

Definition 31 (Division Property). Let X be a multiset whose elements take a value of
Fn2 , and k takes a value between 0 and n. When the multiset X has the division property
Dnk , it fulfills the following conditions. The parity of πu(x) for all x ∈ X is always even for
any u whose Hamming weight is less than k. Moreover, the parity becomes unknown for
any u whose Hamming weight is greater than or equal to k.

After the strike of the division-property-based integral attack on MISTY [Tod15a],
Boura and Canteaut [BC16] and Göloglu et al. [GRW16] discussed the security criterion for
S-boxes related to resistance against division-property-based integral attacks. In particular,
one suggestion was to focus on the appearance of monomials in the ANFs of x 7→ πv(S(x))
for v ∈ Fn2 , which is defined as a set

VS(u) ,
⋃

w∈Succ(u)

VS(w) and VS(w) , {v ∈ Fn2 : πv(S(x)) contains πw(x)},

where Succ(u) = {x ∈ Fn2 : u � x} which is an affine subspace of dimension (n− wt(u)).
A table representation of VS(u) for all u is useful to understand the resistance against

division-property-based attacks. Such a table is recommended to not contain columns or
rows that are too sparse. See Figure 5 for an example of a table representation of VS(u)
for all u of an S-box.

A strong indicator for the number of elements of weight 1 in VS(u) is its min deg(S) as
stated by the following proposition:

Proposition 9 ([BC16]). Let S be a permutation of Fn2 such that all its non-trivial
component functions Sλ for λ ∈ Fn2 have the maximal degree (n−1). Then, for any u ∈ Fn2 ,
VS(u) contains at least (n− wt(u)) elements of weight 1.

Accordingly, to resist division-property-based integral attacks, it is better that all
components have the maximal degree.

Univariate Degree. Besides the ANF representation, an S-box can also be uniquely
represented as a univariate polynomial:

Definition 32 (Univariate polynomial representation). Let S : Fn2 → Fn2 be any n-bit
S-box. The vectors of Fn2 can be interpreted as elements of a finite field F2n , and S can be
written as a unique univariate polynomial of F2n [X]:

S(X) =
2n−1∑
i=0

viX
i.
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This representation can be obtained by using Lagrange interpolation [MLCA], thus it
is also named an interpolation polynomial.

Definition 33 (Univariate degree). The univariate degree of an n-bit S-box S : X 7→∑2n−1
i=0 viX

i is
max({i, vi 6= 0}).

The relation between the univariate degree and the algebraic degree of an S-box is
given by Canteaut [Can16] as Deg(S) = max({wt(i), vi 6= 0}).

The univariate degree of the S-box indicates the resistance to interpolation attacks for
the cipher. If the univariate degree of the S-box is too low, the distance of the S-box to the
set of low univariate degree functions is too small, or the number of terms in the polynomial
representation is too small, it may lead to efficient interpolation attacks [JK01].

3.1.5 Resistance to Truncated Differential and Subspace Trail Attacks

Linear structures were proposed in the early era of cryptanalysis of block ciphers. In the
seminal attack they presented [CE85], Chaum and Evertse first found linear structures in
individual rounds of DES. These linear structures are six-bit blocks that when are xor-ed
to the input of an S-box, the output is always changed by the same value. Then, by
chaining these linear structures that yield a sequence of linear factors over more rounds,
attackers are able to attack DES up to six rounds. This linear structure-based attack can
be seen as the predecessor of the well known differential attack on DES [BS90], because
the later can be seen as the probabilistic version of the former. Formally, we have:

Definition 34 (Linear structures of a Boolean function [Eve87, MS89]). The linear space
of a Boolean function f : Fm2 → F2 is the linear subspace of those a such that Daf is a
constant function, i.e.,

LS(f) , {a ∈ Fn2 | Daf = c, where c is constant in F2}.

Such a, a 6= 0, is said to be a c-linear structure of f .

Definition 35 (Linear structures of an S-box [Eve87, Lai94, Dub01]). A linear structure
of a vectorial Boolean function S : Fn2 → Fm2 is a triple (λ, a, c) such that a is a c-linear
structure of the component function Sλ(x), i.e.,

Sλ(x)⊕ Sλ(x⊕ a) = c for ∀x ∈ Fn2 .

Let # LS denote the number of linear structures of an S-box.

See Table 9 for examples of linear structures of some 4-bit S-boxes. It shows that for
optimal 4-bit S-boxes, the degree spectrum has some relationship with the number of
linear structures.

A special type of linear structure was proposed named undisturbed bits (the invariant
bits in all compatible output differences corresponding to a particular nonzero input
difference) [MT14], which is the linear structure of coordinates instead of components of
the S-box. Noticing the relation between undisturbed bits and linear structures, as well as
their relations to the derivative and autocorrelation of coordinates of the S-box, Makarim
and Tezcan [MT14] proposed a way to efficiently find all linear structures of an S-box by
using its autocorrelation table (ACT) (see Thm. 3). The ACT of an S-box S : Fn2 → Fm2 is
a 2n × 2m matrix, in which the element ACTS(a, λ) in row a and column λ is equal to the
autocorrelation coefficient of the component function Sλ on a, i.e., rSλ(a) [ZZI00].

Theorem 3 ([MT14]). A vectorial Boolean function S : Fn2 → Fm2 has a linear structure
(λ, a, c) if and only if there exists a ∈ Fn2 \{0} and λ ∈ Fm2 \{0} such that |ACTS(a, λ)| = 2n.
If ACTS(a, λ) = +2n (resp. −2n), c = 0 (resp. c = 1).
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The linear structure (λ, a, c) of an S-box can be interpreted in another way: for a
particular input difference a, one bit of information on its compatible output differences
is determined. The determined bit of information is on the parity of bits selected by
λ from the output differences. From this interpretation, the undisturbed bits can be
seen as truncated differential (with probability 1), i.e., differences that are only partially
determined [Knu94]. Accordingly, Makarim and Tezcan [MT14] proposed that ACT can
be viewed as a counterpart of the DDT for truncated differential cryptanalysis. Exploiting
the undisturbed bits, Tezcan et al. proposed several of the best known truncated and
impossible differential attacks on some symmetric ciphers [TTD14, Tez14, Tez16]. However,
they pointed out that it remains unclear that whether the existence of linear structures in
component functions of an S-box other than the coordinate functions could be exploited
to improve truncated differential attacks.

Recently, Grassi et al. [GRR16] introduced the subspace trail attack, which is a
generalization of the invariant subspace attack [LAAZ11]. They pointed out that a
subspace trail attack includes special cases of techniques based on impossible or truncated
differentials and integrals. Leander et al. [LTW18], by considering all linear structures of
components of an S-box instead of restricting to that of the coordinates (i.e., undisturbed
bit), were able to describe the influence of linear structures on subspace trails: If the S-box
used in the cipher does not have any linear structure, ignoring the details of the S-box and
using their proposed approach can result in the strongest subspace trail. If the S-box used
in the cipher does have linear structures, one should take the linear structures into account
to find the strongest subspace trail or to provably bound the longest subspace trail.

Interestingly, the distance to linear structures (the set of all Boolean functions with
a linear structure) was already used (as another way apart from the distance to affine
functions) to measure the nonlinearity of Boolean functions in earlier eras:

Definition 36 (Distance to linear structures [MS89]). Let LS(n) denote the subset of
Boolean functions having linear structures. For a Boolean function f , the distance to
linear structures is defined as the Hamming distance of f to the set LS(n) :

d(f,LS(n)) , min
`∈LS(n)

d(f, `).

If the nonlinearity is measured by using the distance to all affine functions (which is the
generally used measurement, see Def. 13 and 21), even if a function has a linear structure,
it can still have high nonlinearity. Thus, the distance to a linear structure is a stricter
criterion on nonlinearity than the distance to affine function.

3.1.6 Resistance to Cube or Cube-like Attacks

Boura and Canteaut [BC13a] proposed a notion to quantify the ability of an S-box to
propagate the affine relations in the input to the output, named (v, w)-linearity. An
S-box is (v, w)-linear means that 2w components are affine on all cosets of a v-dimensional
subspace. If an S-box is (v, w)-linear and v and w are large, it means that by fixing only a
small number of input bits to arbitrary values, a large number of the output bits becomes
linearly dependent on the remaining input bits. In this case, this S-box might not be
strong enough to resist a cube attack [DS09] or cube-like attack [Fuh10]. Formally,

Definition 37 ((v, w)-linearity [BC13a]). A vectorial Boolean function S : Fn2 → Fm2 is
said to be (v, w)-linear if there exist linear subspaces V ⊂ Fn2 and W ⊂ Fm2 with dimV = v
and dimW = w, such that, for all λ ∈W, Sλ has a degree at most 1 on all cosets of V .

Note that (v, w)-linear implies (v′, w′)-linear for all v′ ≤ v and w′ ≤ w. We denote by
maxv(v, w)-linear the maximal v such that the S-box is (v, w)-linear, and maxw(v, w)-linear
the maximal w such that the S-box is (v, w)-linear.
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The notion (v, w)-linearity is shown to be related to two well-known cryptographic
properties — the algebraic degree and the linearity.

Proposition 10 ((v, w)-linear and degree [BC13a]). Let S be an vectorial Boolean function
S : Fn2 → Fm2 . If S is (v, w)-linear w.r.t. (V,W ), then all its components Sλ, where λ ∈W
have degree at most n+ 1− v. Thus, Deg(S) ≤ n+ 1− v.

Proposition 11 ((v, w)-linear and linearity [BC13a]). Let S be a vectorial Boolean function
S : Fn2 → Fm2 . If S is (v, w)-linear w.r.t. (V,W ), then all its components Sλ, where λ ∈W ,
have linearity L(Sλ) = 2v. Thus, L(S) ≥ 2v.

Note that these two propositions are not under necessary and sufficient conditions.
Although the converse propositions of these propositions are not necessarily true, the
contrapositives of these propositions provide assurance on the non-(v, w)-linearities for an
S-box if its degree is larger than n+ 1− v or if its linearity is smaller than v. For example,
one can conclude that:

Proposition 12. Let S be a permutation of Fn2 such that all its non-trivial component
functions Sλ for λ ∈ Fn2 have the maximal degree (n− 1). Then S is not (v, w)-linear for
all v ≥ 3 and w ≥ 1.

Note that, if a 4-bit S-box is not (v, w)-linear for all v ≥ 3 and w ≥ 1, this will help
the whole cipher to resist against the cube-like attacks in [Fuh10, BC13a].

Furthermore, for S : Fn2 → Fm2 and m = n, Boura and Canteaut point out that:

Proposition 13 ([BC13a]). Let S be a permutation of Fn2 such that all its non-trivial
component functions Sλ for λ ∈ Fn2 have the maximal degree (n − 1). Then, S is not
(2, n− 1)-linear.

For a Boolean function, there is a necessary and sufficient condition between (n− 1, 1)-
linear and the degree and linearity.

Proposition 14 ((n − 1, 1)-linear [BC13a]). Let f be a Boolean function f : Fn2 → F2.
Then f is (n − 1, 1)-linear if and only if deg(f) ≤ 2 and L(f) ≥ 2n−1. Moreover, if
deg(f) = 2 and L(f) ≥ 2n−1, there exist exactly three distinct hyperplanes H such that f
has degree at most 1 on both H and H̄.

This proposition implies that if any components Sλ in an S-box S satisfy deg(Sλ) ≤ 2
and L(Sλ) ≥ 2n−1, then the S-box is (n− 1, 1)-linear. Moreover, if those components are
linear on cosets of the same subspace V with dim(V ) = n− 1, and they form a subspace
W with dim(W ) = w, and the S-box is (n− 1, w)-linear, which is not desired.

As pointed by Boura and Canteaut [BC13a] and Liu and Rijmen [LR18], the notion
of (v, w)-linearity seems also related to the invariant subspace attack [LAAZ11] that may
exploit the property of an n-bit S-box that there exists an affine subspace a + V with
dimensions no larger than n such that the image under the S-box also forms an affine
subspace b+W . Resistance to invariant subspace attacks can be achieved together with
the choices of round constants [GJN+16, BCLR17] to avoid iterative subspaces.

The (v, w)-linearity and the concrete number of (V,W ) pairs with respect to which
an S-box is (v, w)-linear are invariant under affine transformation. However, unlike the
differential uniformity and linearity, they are not invariant under CCZ-equivalence.

See Table 10 for an example of (v, w)-linearity of an S-box.

3.1.7 Hash Function Settings

The discussion so far mainly considered the security in the keyed setting, in which the
adversary can only choose plaintexts and ciphertexts to force oracles to output the
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corresponding ciphertexts and plaintexts. In contrast, in the key-less setting like the
analysis of hash functions, the adversary can choose the internal state values and thus a
different type of security should be considered.

Rebound attacks [MRST09, LMS+15] aim to build efficient differential trails for the
sequence of the P-layer, S-layer and another P-layer. The attacks choose the difference
between the first P-layer and the S-layer so that the propagation through the inverse of
the P-layer has a good property. The attacks then independently choose the difference
between the S-layer and the second P-layer so that the propagation through the P-layer
has a good property. As a result, the attacks expect that the independently generated
pair of input and output differences for the S-layer have actual values to satisfy those
differences for all the S-boxes.

The notion of cardinality for DDT is useful to evaluate the difficulty of this strategy.

Definition 38. CardD(S) , #SetDiff(S), i.e., the number of non-zero entries in DDT,
where SetDiff(S) , {(a, b) | |δS(a, b)| 6= 0}, i.e., the set of non-zero entries in (or say,
support of) DDT.

If CardD(S) is low, it becomes hard to generate such differences suitable for the rebound
attacks.

3.1.8 Others

There are other important cryptographic properties of (vectorial) Boolean functions focused
on more in the research of stream ciphers. Examples include resiliency and algebraic
immunity, for which one has to make trade-offs with algebraic degree and nonlinearity.
As these notions are less relevant in the design of S-boxes used in block ciphers and
hash functions, we refer interested readers to the work of Carlet [Car10a, Car10b] for a
comprehensive introduction.

3.2 Special Security Criteria (for some specific linear layers)
In this section, we list security criteria that are useful for a particular type of (yet important)
linear layers.

3.2.1 For Linear Layers only Composed of Bit-Permutation

The first type of linear layers we consider is the bit-permutation. Suppose that all bits of
the state are updated by parallelly applying the S-box in the S-layer. Then, performing a
bit-permutation can be sufficient for the diffusion. PRESENT, RECTANGLE, and GIFT
are examples using this type of linear layers. More generally, the designs that are optimized
for bitsliced implementation, e.g., Serpent and LS-design, often share the same security
criteria.

Resistance to Differential and Linear Attacks. The same spirit of differential and linear
attacks against general diffusion layers can still be applied to those with specific linear
layers. Hence, we do not define their concept from scratch, but focus our attention on the
important part of the previous security criteria.

Given that no bit-permutation changes the number of active bits in the context of
either differential or linear cryptanalysis, S-boxes in those designs must provide not only
confusion but also diffusion. In other words, S-boxes should activate many bits. Thus, the
branch number of the S-box defined below is crucial for those designs.

Definition 39 (BND(S)). The differential branch number of an S-box S (a vectorial
Boolean function S : Fn2 → Fm2 ), BND(S) = min{wt(a) + wt(b) | δS(a, b) 6= 0, a ∈
Fn2 \ {0}, b ∈ Fm2 }.
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Definition 40 (BNL(S)). The linear branch number of an S-box S (a vectorial Boolean
function S : Fn2 → Fm2 ), BNL(S) = min{wt(u) + wt(v) | WS(u, v) 6= 0, u ∈ Fn2 , v ∈
Fm2 \ {0}}.

If the branch number of the S-box is 2, the differential/linear trail can only have 1
active bit throughout the encryption/decryption process. This motivates us to focus on
single-bit differences/linear masks of DDT and LAT.

Definition 41 (DDT1(S)). The sub-table of DDT containing entries (a, b) where wt(a) =
wt(b) = 1.

Definition 42 (LAT1(S)). The sub-table of LAT containing entries (u, v) where wt(u) =
wt(v) = 1.

The highest value in DDT1(S) and LAT1(S) is defined as follows.

Definition 43. U1(S) , maxa∈Fn2 \{0},b∈Fm2 {δ(a, b)| | wt(a) = wt(b) = 1}.

Definition 44. L1(S) , maxα∈Fn2 ,λ∈Fm2 \{0}{|WS(α, λ)| | wt(α) = wt(λ) = 1}.

See Figure 2 and 3 for examples of DDT1, U1, LAT1 and L1 of a 4-bit S-box.
The 4-bit S-boxes of SERPENT [RA98] and PRESENT [BKL+07] are examples whose

design criteria involve not only U and L but also U1 and L1. Essentially, they are optimal
on these four criteria because bijective 4-bit S-boxes can achieve the following: U = 4,
L = 8, U1 = 0, L1 = 4. The optimality of the former two criteria is shown by Leander and
Poschmann [LP07] as mentioned in Sect. 3.1, and the optimality of L1 can be implied by
Proposition 15.

Besides the maximum values in DDT1 and LAT1, later attacks (e.g., [Ohk09, Cho10])
show that the number of nonzero entries in DDT1 and LAT1 should also be considered.
This is because a large number of nonzero entries increases the possibility that many
single-bit trails result in hulls. That motivated Zhang et al. [ZBRL15] to consider the
following definitions:

Definition 45. SetDiff1(S) , {(a, b) | |δS(a, b)| 6= 0, wt(a) = wt(b) = 1}, i.e., the set
of non-zero entries in (or say, support of) DDT1. CardD1(S) , # SetDiff1(S), i.e., the
number of non-zero entries in DDT1.

Definition 46. SetLin1(S) , {(u, v) | |W(u, v)| 6= 0, wt(u) = wt(v) = 1}, i.e., the set
of non-zero entries in (or say, support of) LAT1. CardL1(S) , # SetLin1(S), i.e., the
number of non-zero entries in LAT1.

On these definitions, Zhang et al. [ZBRL15] identify three platinum categories among
optimal 4-bit S-boxes, which fulfill CardD1 + CardL1 ≤ 4. Under the naming rule
(CardD1,CardL1)-Num1-DL, they are called (0, 4)-Num1-DL, (1, 3)-Num1-DL, and (2,
2)-Num1-DL. The 4-bit S-box of RECTANGLE [ZBL+15] is selected under this criteria and
belongs to the (2, 2)-Num1-DL category. RECTANGLE is shown to have good resistance
to differential and linear attacks even considering the possibility of trail clustering.

Note that there is no optimal 4-bit S-box with BNL > 2 according to the following
proposition:

Proposition 15 ([ZBRL15]). Let S : F4
2 → F4

2 be an optimal 4-bit S-box, then CardL1(S) ≥
2. This implies L1(S) ≥ 4.

Although ensuring optimal U and U1, optimal L and L1, optimal BND and BNL is
good for those designs, it does not exclude the possibility of designing secure primitives
with non-optimality. Indeed GIFT [BPP+17], the latest design in this direction, ensures
the primitive’s security even using an S-box with U(S) = 6 and BND(S) = 2, which are
not optimal. The core idea is
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• allowing only a few (≤ 2) differential propagations satisfying δS(a, b) > 4.

• for differential propagations satisfying δS(a, b) > 4, their number of active bits should
be large, i.e., wt(a) + wt(b) ≥ 4.

• designing a bit-permutation such that an active output bit from any (both differential
and linear mask) propagation (a, b) satisfying wt(a) + wt(b) = 2 does not move to
an active input bit to any propagation (a′, b′) satisfying wt(a′) + wt(b′) = 2.

The idea can be examined quantitatively by evaluating the following properties.
Definition 47 (GI /GO /BI /BO(S)). GI /GO /BI /BO(S) are abbreviations of “Good
Input”, “Good Output”, “Bad Input”, “Bad Output”, respectively.

• GI(S) , {a | |δS(a, b)| = 0, wt(a) = wt(b) = 1}, namely a set of the single-bit input
difference to S such that the entries in DDT1 is 0 for any output difference.

• GO(S) , {b | |δS(a, b)| = 0, wt(a) = wt(b) = 1}, namely a set of the single-bit
output difference to S such that the entries in DDT1 is 0 for any input difference.

• BI(S) , {a | |∃b, δS(a, b)| 6= 0, wt(a) = wt(b) = 1}.

• BO(S) , {b | |∃a, δS(a, b)| 6= 0, wt(a) = wt(b) = 1}.

Definition 48 (Dscore(S)). |GI |+ |GO | observed from DDT1.
Definition 49 (Lscore(S)). |GI |+ |GO | observed from LAT1.

Those are useful evaluation criteria when the permutation layer is designed.

3.2.2 For Linear Layers Using Binary Orthogonal Matrices

Another type of linear layer we consider is the combination of cell-wise permutation and
multiplication by a binary orthogonal matrix. In such a construction, security against
differential and linear attacks is identical because of the duality of those two attacks
[CV94], which eases the designer’s evaluation workload. SCREAM is an example of
adopting this design. Some almost-maximum distance seperable (MDS) binary matrices
are also orthogonal and thus fall into this type, e.g., MIDORI64.

Resistance to Non-linear Invariant Subspace Attack. Todo et al. [TLS16] proposed a
new type of attack using non-linear masks for the S-box. In particular, most 4-bit S-boxes
and even some 8-bit S-box have non-linear masks in which the masked value does not
change before and after the S-box. This is called non-linear invariant, which is defined as
follows.
Definition 50. Non-linear invariants [TLS16] For a given S-box S, a non-linear Boolean
function g is non-linear invariant if g(x)⊕ g(S(x)) = c for any input value x, where c is a
constant in F2.

See Figure 7 for examples of nonlinear invariants of two 4-bit S-boxes.
Todo et al. proved that if the linear transformation consists of cell-wise permutation

and multiplications by binary orthogonal matrices and if there is a quadratic invariant for
the S-box, ⊕ti=1g(xi) is non-linear invariant for the entire cipher. Thus, for ciphers with a
binary orthogonal linear function, the number of quadratic invariants for the S-box might
be a relevant criterion.

Todo et al. also introduced two quantities: nCirc(S) and Circ(S). nCirc(S) denotes
the number of cycles in the functional graph representation of S and Circ(S) denotes
the maximum cycle length in the functional graph representation of S. These are used
to explain some relationships between the non-linear invariant attack and the invariant
subspace attack.
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3.3 Implementation Criteria
Efficiency of the implementation is as important as the security for the S-box. These two
aspects of criteria form a trade-off and are often impossible to both be satisfied at a good
level. Moreover, there are several evaluation criteria for efficiency, which forms another
level of trade-off. For example, parallel implementation minimizes the latency of the
hardware implementation while requiring a large area. In contrast, serial implementation
minimizes the area size while imposing a larger latency. In this paper, we particularly
focus on the following implementation criteria.

Gate Size. The gate size measures the area occupied by the logic circuit in hardware.
Area is one of the most fundamental quantities to evaluate the hardware implementation
cost of the S-box. Since the available gates and the area cost of different gates depend
on technologies, e.g., UMC/180nm and TMSC/65nm, measuring and comparing the area
consumption of implementations requires a standard unit. A usual unit is Gate Equivalent
(GE), where one GE equals the area of a 2-input NAND gate. The area of other gates can
be normalized by using the ratio between their real area and the area of one NAND gate
(see Table 2 and 3 for details). Accordingly, the area of a whole implementation involving
various gates can also be normalized to be the number of GEs. Using the terms of GE, we
can define the gate complexity of an S-box.

Note that, for software implementations, there is also a notion for gate complexity,
named Bitslice Gate Complexity (BGC) [Sto16]. Under this notion, each available gate costs
the same. Thus, BGC is essentially the smallest number of logic operations (available in an
instruction set, e.g., the most common set of logic instructions {AND, OR, XOR, NOT}) required
to implement an S-box. Considering that ANDN is also common in various central processing
units (CPUs), in this paper, we include it in the instruction set for software implementations.
One should note that, in some studies (e.g., [Sto16]), the difference between the notion
of gate complexity and bitslice gate complexity only lies in the basic logic operations
available in the set (apart from logical gates allowed in BGC, i.e., {AND, OR, XOR, NOT}, for
GC, additional gates are allowed, i.e., NAND, NOR, XNOR), without considering the fact that
different gates require different amounts of area in hardware. Here, we treat the notion of
gate complexity in terms of GE, and denoted the notion by GEC in the formal definition.
Thus, the notion is different from that of Stoffelen [Sto16] and is the same as that of Jean
et al. [JPST17]. To distinguish these two notions, we denote the notion of gate complexity
without considering GE by GC.

Definition 51 (Gate Equivalent complexity (GEC) [JPST17]). The smallest number of
Gate Equivalents (GEs) required to implement an S-box, given the cost of atomic operations,
e.g., Table 3.

Definition 52 (Bitslice Gate Complexity (BGC) [CHM11, Sto16]). The smallest number
of operations in {AND, OR, XOR, NOT} required to implement an S-box.

Depth. Depth of the circuit implementation of an S-box is closely related to latency and
energy consumption of the circuit. In some studies, circuit depth complexity is defined
as the length of the longest paths from an input gate to an output gate [BP12, Sto16].
However, counting the number of gates to estimate the delay of a circuit path is not
accurate, because different gates delay differently.

The designers of the MIDORI block cipher [BBI+15] extensively studied the depth of
S-boxes. They suggested roughly evaluating the depth of the Boolean function by weighing
the logical operations in accordance with simple rules.

Definition 53 (Depth complexity (Depth) [BBI+15]). The Depth is defined as the sum
of sequential path delays of basic operations (see Table 2) in the critical path .
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Table 2: List of atomic operations implemented by standard cells from the libraries, recall
that ∧,∨,⊕,¬ respectively stand for: logical and, or, exclusive or, not. [JPST17])

Operation Function Operation Function
NAND (a, b)→ ¬(a ∧ b) XOR (a, b)→ a⊕ b

NOR (a, b)→ ¬(a ∨ b) XNOR (a, b)→ ¬(a⊕ b)
AND (a, b)→ a ∧ b NAND3 (a, b, c)→ ¬(a∧b∧c)
OR (a, b)→ a ∨ b NOR3 (a, b, c)→ ¬(a∨b∨c)
NOT a→ ¬a ANDN (a, b)→ ¬a ∧ b

MAOI1 (a, b, c, d)→ ¬((a ∧ b) ∨ (¬(c ∨ d))) ORN (a, b)→ ¬a ∨ b

MOAI1 (a, b, c, d)→ ¬((a ∨ b) ∧ (¬(c ∧ d)))
Note that MAOI1(a, b, a, b) = ¬((a ∧ b) ∨ (¬(a ∨ b))) = (¬a ∨ ¬b) ∧ (a ∨ b) = XOR(a, b)
Note that MOAI1(a, b, a, b) = ¬((a∨ b)∧ (¬(a∧ b))) = (¬a∨ b)∧ (a∨¬b) = XNOR(a, b)

Table 3: Cost of atomic operations under various techniques (some are referred
from [JPST17])

Tech. NAND AND
NOT XOR XNOR ANDN ORN

NAND3
MAOI1 MOAI1

NOR OR NOR3
UMC 180nm 1.00 1.33 0.67 3.00 3.00 1.67 1.67 1.33 2.67 2.00
TSMC 65nm 1.00 1.50 0.50 3.00 3.00 1.50 1.50 1.50 2.50 2.50
Software - 1.00 1.00 1.00 - 1.00 - - - -
Depth (GEs) 1.00 1.50 0.50 2.00 2.00 - - - - -
Depth (Soft.) 1.00 1.00 1.00 1.00 1.00 - - - - -
Multiplicative - 1.00 0.00 0.00 - - - - - -

It is reasonable to assume that depths of basic operations equal their GEs, because
delays depend on the number of the transistors to be sequentially proceeded in the opera-
tion [BBI+15]. Note that the depth of critical path changes under different technologies,
e.g., hardware TSMC65nm, hardware UMC180nm, and software (see Table 3).

Multiplicative Complexity. The designers of LowMC [ARS+15] studied symmetric-key
primitives that minimize the multiplicative size and depth of their descriptions.

Definition 54 (Multiplicative complexity (MC) [BPP00]). The multiplicative complexity
MC(f1, f2, . . . , fm) of a set of Boolean function f1, . . . , fr ∈ Bn is the smallest integer t
for which there exist Boolean functions gi, hi, ki ∈ Bn(i = 1, . . . , t) such that h1, k1 ∈
〈x1, . . . , xn, 1〉, g1 = h1k1 and hi, ki ∈ 〈g1, . . . , gi−1, x1, . . . , xn, 1〉, gi = hiki for i = 2, . . . , t.
f1, . . . , fr ∈ 〈g1, . . . , gt, x1, . . . , xn, 1〉. This recursion describes an XOR-AND circuit that
has x1, . . . , xn as its inputs and outputs f1, . . . , fr. The value t is the minimum number of
AND gates necessary.

The cost of the masking for side-channel analysis countermeasure also depends on
the MC. Moreover, as researched by several papers e.g. [PRC12, JS17], the cost of the
higher-order masking grows quadratically to MC.

3.4 Invariant Properties under Simple Transformations
Many cryptographic properties (differential uniformity, linearity, differential spectrum,
extended Walsh spectrum, algebraic degree, (v, w)-linearity, etc.) are invariant under
simple transformations. These transformations include XOR constants, bit permutations
at the input/output, linear transformation, and affine transformation.

Definition 55 (XOR-equivalent (XE)). Two functions F : Fn2 → Fm2 and G : Fn2 → Fm2
are XOR-equivalent if there exist two constants c1 ∈ Fn2 and c2 ∈ Fm2 , s.t.

G(x) = F (x⊕ c1)⊕ c2.
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Table 4: Known function equivalence that preserves particular criteria

Criteria Equivalence Criteria Equivalence Criteria Equivalence
U , Dspec CCZ [CP18] L, Wspec CCZ [CP18] Deg, Degspec EA [CP18]
U1, Dspec1 PXE (obvious) L1, Wspec1 PXE (obvious) Degspeccor PXE (obvious)
dk AE [GRW16] # LS AE [MS89] (v, w)−linearities AE [BC13a]
MC EA (obvious) BGC/GEC PE (obvious) Depth PE (obvious)

Definition 56 (Permutation-equivalent (PE)). Two functions F : Fn2 → Fm2 and G : Fn2 →
Fm2 are Permutation-equivalent, if there exist two bit permutations P1 : Fn2 → Fn2 and
P2 : Fm2 → Fm2 , s.t.

G(x) = (P2 ◦ F ◦ P1)(x).

Definition 57 (Permutation-XOR-equivalent (PXE)). Two functions F : Fn2 → Fm2
and G : Fn2 → Fm2 are Permutation-XOR-equivalent if there exist two bit permutations
P1 : Fn2 → Fn2 and P2 : Fm2 → Fm2 and two constants c1 ∈ Fn2 and c2 ∈ Fm2 , s.t.

G(x) = (P2 ◦ F ◦ P1)(x⊕ c1)⊕ c2.

Definition 58 (Linear-equivalent (LE)). Two functions F : Fn2 → Fm2 and G : Fn2 → Fm2
are Linear-equivalent if there exist two linear permutations L1 : Fn2 → Fn2 and L2 : Fm2 →
Fm2 , s.t.

G(x) = (L2 ◦ F ◦ L1)(x).

Definition 59 (Affine-equivalent (AE)). Two functions F : Fn2 → Fm2 andG : Fn2 → Fm2 are
Affine-equivalent if there exist two affine permutations A1 : Fn2 → Fn2 and A2 : Fm2 → Fm2 ,
s.t.

G(x) = (A2 ◦ F ◦A1)(x).

Definition 60 (Extended-Affine equivalent (EA)). Two functions F : Fn2 → Fm2 and
G : Fn2 → Fm2 are Extended-Affine equivalent if there exist two affine permutations
A1 : Fn2 → Fn2 and A2 : Fm2 → Fm2 and an affine function C : Fn2 → Fm2 , s.t.

G(x) = (A2 ◦ F ◦A1)(x)⊕ C(x).

Definition 61 (Carlet-Charpin-Zinoviev equivalent (CCZ) [CCZ98]). Two functions F :
Fn2 → Fm2 and G : Fn2 → Fm2 are CCZ equivalent if there exists an affine permutation A of
Fn2 × Fm2 , s.t., the graph of F is mapped to the graph of G, i.e.,

{(x, F (x)) | x ∈ Fn2}
A−→ {(x,G(x)) | x ∈ Fn2}.

These different notions of equivalence have the following implication relations:

PE =⇒ LE=⇒ =⇒
XE =⇒ PXE =⇒ AE =⇒ EA =⇒ CCZ

Knowledge on the largest transformation group leaving a criterion invariant is important
for studying the criterion and S-boxes fulfilling the criterion. Table 4 lists the most general
form of function equivalence that is known to preserve certain criteria.

Classifying S-boxes according to the specific equivalence helps to better understand
S-boxes with important security characteristics. For example, to investigate bijective 4-bit S-
boxes with the optimal differential uniformity and linearity, Leander and Poschmann [LP07]
partition the space of 4-bit permutations according to affine equivalence. The offered
seminal knowledge is that there are exactly 16 different optimal affine-equivalent classes
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(AE-classes for short) (G0 ∼ G15, see Table 11), which contain all S-boxes possessing the
best possible differential uniformity U(S) = 4 and linearity L(S) = 8 for 4-bit bijective
S-boxes [LP07].By that, one could characterize all the optimal S-boxes regarding differential
uniformity and linearity by using representatives of the AE-classes. Further, these 16
optimal AE-classes can be classified into 7 different CCZ equivalent classes (CCZ-classes
for short)2. The corresponding knowledge on 5-bit S-boxes offered by Brinkmann and
Leander [BL08] is that there are exactly 5 APN permutations in F5

2 up to affine equivalence.
By further calculating, one will find 4 out of the 5 APN S-boxes possess optimal linearity,
i.e., L(S) = 8. Accordingly, there are exactly 4 different AE-classes, which contain all
S-boxes possessing the best possible differential uniformity U(S) = 2 and linearity L(S) = 8
for 5-bit bijective S-boxes.

In addition to cryptographic properties, notions of equivalence are also important
for studying implementation complexities of S-boxes. For example, the multiplicative
complexity is a constant within an affine-equivalent class. The gate complexity is a
constant within a permutation-equivalent class. Utilizing these equivalences, one could
handle the task to find implementations for all small S-boxes, study classes of S-boxes with
the best implementation complexities, and reduce the search space when finding optimal
implementations of a given S-box [UDCI+11, BNN+12].

By using the equivalence to study S-boxes, the prerequisite is to be able to test the
equivalence between given S-boxes. However, testing equivalence is not a trivial problem.
Thanks to Biryukov et al. [BCBP03], testing linear equivalence between n-bit permutations
has become practical for n up to 32 (with theoretical complexity O(n32n)) and affine
equivalences for n up to 17 (with theoretical complexity O(n322n)). This scale has covered
the domain size of most S-boxes suitable to be used in modern symmetric primitives
following classical design strategies. For larger n up to 40, one can resort to the algorithm
recently published by Dinur [Din18]. Brinkmann and Leander [BL08] offer techniques to
test CCZ-equivalence between functions in Fn2 and classify all APN functions in dimension n
for n up to 5. For small amounts of S-boxes, one can test CCZ-equivalence through testing
equivalence between linear codes, which is offered by mathematical software Magma [Mag].

Among these equivalence notions, the knowledge on the most general and very important
equivalence CCZ is the least clear, which motivates recent work on CCZ-equivalence [CP18],
in which Canteaut and Perrin show the necessary conditions on the zeros in DDT (or
LAT) of two S-boxes for them to be CCZ-equivalent.

3.5 Relations
Some criteria are not compatible with other cryptographic design criteria, e.g., the most well-
known example is that perfect nonlinearity (also Bent) is not compatible with balancedness.
However, it is still interesting to clearly quantify the corresponding properties and construct
S-boxes that are near optimal regarding an important criterion while satisfying other
criteria.

As noted by Leander and Poschmann [LP07], an optimal S-box with respect to linear
and differential properties is always optimal with respect to algebraic attacks (in the sense
of possessing the maximal algebraic degree). The converse is not true. The following
known relations between algebraic degree and Walsh transform might shed some light on
this:

Proposition 16 ([Car93]). Let f be a Boolean function f : Fn2 → F2 (n ≥ 2), and let
1 ≤ k ≤ n. If all Wf (a) for a ∈ Fn2 takes values divisible by 2k, then f has degree
deg(f) ≤ n− k + 1.

2The original paper [LP07] contains a small typo stating that there are six non CCZ-classes when there
are actually seven (a CCZ-class containing the single AE-class G13 is overlooked).
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A natural question is that, are there relations between properties related to linear
attacks and properties related to differential attack? The answer is yes. DDT is shown to
be strongly related to the LAT of an S-box:

Theorem 4 ([CV94, BN13]). Let S be a vectorial Boolean function from Fn2 → Fn2 . Then,
we have, for any u, v ∈ Fn2 :

W2
S(u, v) =

∑
a∈Fn2

∑
b∈Fn2

(−1)a·u⊕b·vδS(a, b).

Conversely, for any a, b ∈ Fn2 :

δS(a, b) = 2−2n
∑
u∈Fn2

∑
v∈Fn2

(−1)a·u⊕b·vW2
S(a, b).

Although a vectorial Boolean function is completely specified by its Walsh spectrum
and one can recover it from its LAT (refer to Proposition 8), this is not true for the
DDT. The DDT corresponds to the absolute LAT (actually, squared), which loses some
information.

4 The Peigen Platform
In this section, we describe a tool to evaluate most of the properties (security-related
and implementation-related) listed above. The goal is to develop a comprehensive and
efficient Platform for Evaluating, Implementing, and GENerating S-boxes (Peigen),
automatically.

Peigen is built upon many existing tools, and the most closely related is LIGHTER
proposed by Jean et al. [JPST17]. As will be introduced in Sect. 4.1, one of the two
components in LIGHTER is dedicated to search for optimal implementations of bijective
4× 4-bit S-boxes. Through the comparison among existing tools, LIGHTER possesses the
most merits. It is more computationally efficient and more versatile. It covers various
implementation aspects (e.g.,BGC, GC, MC), with flexibility of tuning the set of available
gates and customizing the cost for each gate. Although its output implementations are
not guaranteed to be optimal (only guaranteed to be optimal B-implementations), they
are compatible with results generated using other tools. Besides, one can directly get the
implementations of the inverse functions from the generated results for forward functions,
and the resulted implementations for software requires less temporary registers (see details
in Sect. 4.1). Besides, it is coded in C/C++ and does not depend on external tools, which
makes it open to be optimized, extended, and enhanced. With these considerations, and
knowing that C/C++ programs can also be integrated as sub-modules to other tools (e.g.,
SageMath), we finally decided to build Peigen on the basis of LIGHTER and implement it
in the form of pure C++ template headers.

Our ultimate goal for Peigen is to become a comprehensive platform for the community
to study S-boxes. We aim for enriched functionality, good extendibility, and high efficiency.
In what follows, we survey existing tools related to S-boxes and make a comparison before
describing Peigen in detail.

4.1 Existing Tools on S-box
Tools to study cryptographic properties. A comprehensive tool to study cryptographic
properties of S-boxes is SageMath – a general purpose and open source mathematic
tool. SageMath contains dedicated modules for cryptography, one of which is the mod-
ule ‘sage.crypto.sbox’ [MLCA]. This module provides a rich set of functionalities to



358 Peigen – a Platform for Evaluation, Implementation, and Generation of S-boxes

evaluate cryptographic properties of S-boxes, such as DDT, LAT, and algebraic degrees.
Additionally, the module ‘sage.crypto.sboxes’ [PW] provides a comprehensive list of
S-boxes used in known ciphers. However, SageMath does not yet support some desired
functionalities, for example, testing equivalences and testing (v, w)-linearities. Regarding
efficiency, when evaluating a large set of S-boxes, SageMath’s speed is not quite satis-
factory. Apart from SageMath, the Magma Computational Algebra System [Mag] also
includes modules for coding theory and cryptography, which is handy for studying S-boxes
(especially the modules for coding theory).

A relatively new project in GitHub, named ‘libapn’ [FJ], is another open source tool
to study vectorial Boolean functions. Its main focus is on APN functions. Functionalities
it provides include computing DDT, differential uniformity, and degrees and searching for
APN (or δ-uniform) functions. Besides, it can output linear and affine representatives of a
permutation. Apart from properties regarding differential attacks, libapn does not seem
to consider other cryptographic properties or implementation-related functionalities.

Tools to find optimal implementations. Finding the optimal sequence of logical in-
structions to implement a function is still an open problem, especially for cryptographic
functions. However, efficiently achieving this can be very beneficial, for both hardware and
software implementations. For hardware, it can minimize the area cost or the latency of
an implementation. For software, it can minimize the required number of instructions and
reduce the memory consumption in an implementation based on the bitslice technique. The
bitslice technique in software implementation was originally introduced by Biham [Bih97]
to speed up software implementation of DES and can be used for speeding up the brute
force attack. The main idea in the bitslice technique is to use logic operations on n-bit
words in software simulating n gate-operations in hardware. Thus, a sequence of logical
operations on n-bit words in a software implementation can be seen as n-way parallel
gate-operations in a hardware implementation. Using the bitslice technique, one can
implement a whole cipher by using logical instructions to avoid table lookups. These can
avoid data-dependent memory access to prevent cache-timing side-channel attacks.

As for S-boxes, there are some tools to search for optimal implementations. The early
tools date back to the competition for the Advanced Encryption Standard (AES). One
candidate in the final list for AES is the block cipher Serpent, whose design comes with an
innate bitslice idea and whose performance is good for both hardware and software. At that
time, Gladman developed a C program for finding efficient Boolean function decompositions
for the Serpent S-boxes and their inverses. The program is open source and can be found
online [Gla]. The considered instruction set is {XOR, AND, OR, NOT}, which are common for
modern CPUs. The program adopts depth-first-search (DFS) with heuristics. It can be
directly applied for any 4× 4-bit S-box. Although it does not necessarily output the best
implementations for all 4-bit S-boxes, the outputs are generally good and the efficiency of
this program is satisfactory (as can be seen later, and also in [CHM11, BLL15]).

Osvik [Osv00] described a program to search for software implementations of Serpent
S-boxes. Reasonably, the target is to find implementations by using minimum CPU cycles
with limited available CPU registers. The program takes care of the effect of destructive
instructions (replacing one input with the output) of x86 CPU and the parallelizability
of instructions. The results are some 2-way or 3-way parallel implementations of Serpent
S-boxes costing 6 ∼ 8 CPU cycles. Although the total numbers of instructions in the
resulting implementation are larger than those in other implementations, the resulting
implementations are more efficient regarding CPU cycles. Unfortunately, this program is
not openly accessible.

Inheriting some non-heuristic rules from Osvik [Osv00], Ullrich et al. [UDCI+11]
presented an iterative deepening depth first search (ID-DFS) to find efficient bitsliced
implementations of invertible 4 × 4-bit S-boxes. Affine equivalence among S-boxes is
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considered to effectively prune branches during the search. Thus, the search aims to find
the S-box that cost the least within a class of affine-equivalent S-boxes. Accordingly, this
approach cannot be used to find the exact implementation of a given S-box. Considering
that implementation cost is generally not invariant under affine transformation (also
note that XOR gate generally costs more than NAND/NOR/AND/OR gates in terms of Gate
Equivalent), this method is recommended to be used in accordance with the proposed
special methodology to design efficient cryptographic primitives [UDCI+11].

Another approach is to adopt logic minimization techniques and the shortest linear
straight-line program [BP10, BMP13, CHM11]. Boyar et al. [BMP13], showed a two-
step process to optimize the logic circuit implementing the S-box of AES. The first step
heuristically optimizes the non-linear part in terms of multiplicative complexity (MC), and
the second step treats the optimization of the resulting linear part as the shortest linear
program problem and deals with another heuristic approach. This two-step heuristic
searching process can provide good solutions for large S-boxes (e.g., 8× 8-bit). For a small
S-box (4× 4-bit), the heuristic strategies in both steps can be replaced by a SAT solver,
as proposed by Courtois et al. [CHM11]. Thus, for each step, the solution is optimal.
However, the combined solutions are not necessarily optimal.

Stoffelen [Sto16] proposed a method to model the whole problem of finding optimal
bitsliced implementation as a problem that can be solved by a SAT solver. The considered
notions of implementation complexity include multiplicative complexity (MC), bitslice
gate complexity (BGC), gate complexity (GC), and circuit depth complexity (Depth). By
adaptively increasing from a lower bound of complexity until the SAT solver outputs a
solution, the result can be proven to be optimal. The efficiency for searching for optimal
implementations with respect to MC is quite satisfactory. However, with respect to BGC, GC,
and Depth, the efficiency is not satisfactory when dealing with some “strong”3 S-boxes
compared with other heuristic methods (e.g., [Gla] and [JPST17]). Besides, as mentioned
in Sect. 3.3, Stoffelen’s notions of gate complexity and circuit depth complexity [Sto16]
are different from the gate equivalent complexity and the depth complexity that consider
weighted-cost of gates, i.e., different gates have different costs regarding area and latency
in hardware.

Differentiation among different gates is tackled by Jean et al. [JPST17], but in a quite
different approach from SAT-based methods. Their deliverable [JPST17] is a tool named
LIGHTER. LIGHTER can generate efficient implementation of a small function given a certain
set of available gates and their corresponding costs. Essentially, it handles various notions
of implementation merits (MC, BGC, and GEC) in a unified way by assigning a non-fixed
weight to each logic operation4, which allows costs of gates to be customized. There are
two independent components in LIGHTER to search for implementations: one is for linear
functions, and the other is for non-linear functions. The non-linear-search part is dedicated
to bijective 4× 4-bit S-boxes, which is the part most relevant to this paper.

The approach in the non-linear part of LIGHTER is to apply a breath-first-search (BFS)
using graphs, combined with a meet-in-the-middle (MITM) strategy. More concretely, it
expands two graphs simultaneously: one starts from a root node encoding the identity
function I, and the other starts from a root node encoding the target function S. The
internal nodes in the two graphs are transformed from their predecessor nodes by using
small invertible instructions constructed by atomic logic operations (atomic operations are
combined for the sake of invertibility), and they form a set of basic invertible instructions
named B-set. An implementation using instructions restricted to a B-set is called B-
implementation by Jean et al. [JPST17])5. The goal is to find a matched node M on the

3In the sense that it posses additional cryptographic properties, e.g., DegFreq = 2n − 1 like PRINCE
S-boxes, or BND > 2 and L1 ≤ 4 like Serpent S-boxes

4Here, the logic operations correspond to logic instructions in software or logic gates in hardware.
5For example, linear operations XOR and NOT, or functions of the type of one round Feistel, e.g.,

x0 = x0 XOR f(x1, x2, x3) where f is composed of 1 or 2 non-linear operations like f(x1, x2, x3) =
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two increasingly expanded graphs, which connects the two roots I and S with the lowest
weighted path (the weight is the sum of the cost of each logic operation on the path). Once
a match node is found, one can immediately retrieve the entire sequence of logic operations
transforming an identity function I into the target function S, which is essentially the
logic implementation of S. The implementations found in this way by using a B-set are
optimally small B-implementations (optimal B-implementations).

The approach in LIGHTER has several advantages. One is that, from the implementa-
tion of S, one can directly obtain an implementation with the same cost for its inverse
S−1 because of the combinations of invertible Feistel-style operations. Another bonus of
the searching strategies regarding software implementations is that the generated imple-
mentations require very few registers. For CPU architectures possessing non-destructive
instructions, i.e., not replacing one input with the output (e.g., three-operation advanced
vector extension (AVX) instructions and reduced instruction set computer (RISC) in-
structions), the required extra registers in the generated implementations are minimized.
Unlike in the results generated by methods of Gladman [Gla] and Stoffelen [Sto16], the
hidden costs of MOV instructions for register scheduling are directly saved. This merit is
not mentioned by Jean et al. [JPST17]. A concern on the search strategy in LIGHTER is
that limiting the strategy to invertible combinations of logic operations results in solutions
that are not necessarily optimal. However, by comparing some implementations generated
by LIGHTER with those by SAT solvers (regarding BGC), one will find that the costs of the
solutions differ little (essentially, there are no differences in the results on 4× 4-bit S-boxes
of Piccolo, LAC, Prøst, and RECTANGLE obtained by using the SAT solver). However,
LIGHTER is more time efficient. For example, our experiment on a 24-core server showed
that, for BGC of the first Serpent S-box, LIGHTER took 2.7 minutes using 24 threads to
generate a 14-gate solution. In contrast, the Gladman’s program [Gla] took 16.2 minutes
using a single thread to generate a 15-gate solution, while the SAT-based tool using the
parallel SAT solver Plingling with 24 threads did not find a 14-gate solution within one
day.

A missing consideration of LIGHTER is on the metric Depth, which measures the latency
of an implementation. The metric Depth is tackled in the SAT-based method [Sto16], but
again, the efficiency of the solving procedure is not quite satisfactory and the measurement
of Depth does not consider that different gates delay differently in hardware. Another
tool targeted at evaluating the Depth complexity of S-boxes was developed by Guo et
al. [GJN+16]. Essentially, the tool first generates Depth-minimized implementations for
almost all balanced 4-variable Boolean functions, which can be used as a small database.
For a given S-box, the tool queries the pre-computed database with the four coordinate
functions of the S-box. Then, outputs the query results and the maximum among the
depths of the four coordinates. This can be done very fast. The pre-computed database is
openly accessible at [Qia]. Note that in the implementations stored in the database, the
weights of the costs for XOR, AND/OR, NAND/NOR, and NOT are fixed to 2, 1.5, 1, and 0.5,
respectively.

Essentially, these programs for searching for efficient implementations of a given S-box
can be turned into programs for generating S-boxes with efficient implementations and good
security properties. In the setting of searching for implementations, the target is the given
S-box, whereas in the setting of generating S-boxes, the target is any S-box fulfilling given
requirements. As explained in a talk given by Watanabe [WS10], this methodology was
used to generate the 4-bit S-boxes of Luffa [DCSW08] and can be named “instruction based
S-box design”. Watanabe’s target [WS10] are S-boxes with implementations optimized
for CPU cycles (Intel Core2 with instruction parallelization and a limited number of
registers) and with good security properties (including optimal differential uniformity,
optimal linearity, high algebraic degree and no fixed point). The S-box of Luffa v1 is

((x1 AND x2) ORN x3).
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Table 5: Known tools on S-boxes
Source Security MC BGC/

GC GEC Depth CPU
cycles Method Speed Optimal Open

code

[Gla] 8 8 4 8 8 8
Heuristic
DFS 4 8 4

[Osv00] 8 8 8 8 8 4 Heuristic - 8 8

[WS10] 8 8 8 8 8 4
Instr. first
generation 4 4 8

[UDCI+11] 8 8 4 8 8 8
ID-DFS +
AE - 4 8

[BMP13] 8 4 4 8 8 8
Two-step
Heuristic - 8 8

[CHM11] 8 4 4 8 8 8
Two-step
SAT - 8 8

[Sto16] 8 4 4 8 4 8 SAT 8 4 4

[GJN+16] 8 8 8 8 4 8 LUT 4 4 8

[JPST17] 8 4 4 4 8 8
MITM +
BFS 4 8 4

[MLCA] 4 8 8 8 8 8 - 8 8 4

[Mag] 4 8 8 8 8 8 - 8 8 8

[FJ] 4 8 8 8 8 8 - 8 8 4

generated following a strategic approach. The strategic approach uses iterations on basic
invertible functions like the generalized Feistel structure. Following this strategy, the
generated S-boxes can cost minimal CPU cycles. However, because of the similarity
between ANFs of its coordinates in the S-box of Luffa v1, the step-reduced versions of
Luffa v1 suffer higher order differential attacks [WHYK10]. That is the motivation for
the non-strategic approach in the generation of the S-box in Luffa v2, which uses random
combinations of instructions combined with regular testing on the bijective and security
properties.

Note that, the strategy used to find an efficient implementation of a given S-box by
Jean et al. [JPST17] adopts invertible functions similar to those used in the strategic
approach of Watanabe [WS10]. The difference is that each invertible function in Watanabe’s
approach [WS10] involves one non-linear operation, whereas an invertible function in Jean
et al.’s approach [JPST17] can involve more than one non-linear operations. Besides, when
combining those invertible functions, Watanabe’s strategy [WS10] adopts identical Feistel
shuffle (bit rotation), whereas Jean et al.’s strategy [JPST17] allows any bit-permutations
on the inputs. Thus, the strategy of Jean et al. [JPST17] covers a far larger range (on the
space of S-boxes) than the strategic approach of Watanabe [WS10].

To make pros and cons of existing tools on S-boxes clearer, we list their main char-
acteristics in Table 5. From Table 5 and the above discussions, we can see that LIGHTER
possesses the most merits, which is the main reason why we decided to build Peigen on
the basis of LIGHTER.

4.2 Functionalities of Peigen

In this section, we briefly describe the functionalities currently provided by Peigen. On
the whole, Peigen can efficiently evaluate most security-related properties of given S-boxes,
find good implementations for given S-boxes under various techniques and merits, and
automatically generate S-boxes fulfilling given criteria.
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4.2.1 Evaluating

Given a set of n-bit S-boxes (for 3 ≤ n ≤ 8), Peigen can evaluate their security-related
properties. Specifically, properties currently included are as follows:

1. Resistance to Differential attack: computes (and prints when required) the
Difference Distribution Table (DDT); and outputs the differential uniformity (U(S)),
the differential spectrum (Dspec(S)), the maximum entry in DDT1 (U1(S)), the
numbers of nonzero entries in DDT1 (CardD1(S)), and the differential spectrum
observed from DDT1 (Dspec1(S)).

2. Resistance to Linear attack: computes (and prints when required) the Linear
Approximation Table (LAT); and outputs the linearity (L(S)), the Walsh spectrum
(Wspec(S)), the maximum entry in LAT1 (L1(S)), the numbers of nonzero entries in
LAT1 (CardL1(S)), and the Walsh spectrum observed from LAT1 (Wspec1(S)).

3. Resistance to Boomerang attack: computes (and prints when required) the
Boomerang Connectivity Table (BCT); outputs the boomerang uniformity (BU(S))
and the boomerang spectrum BDspec(S).

4. Resistance to Algebraic attack: computes (and prints when required) the ANF
of all coordinate/component functions S0 ∼ S2n−1; and outputs the maximum
algebraic degree (Deg(S)), the minimum algebraic degree (min deg (S)), the degree
spectrum (Degspec(S)), the maximal degree of the product of k coordinates (dk for
1 ≤ k ≤ n), and the table representation of VS(u) for all u indicating the appearance
of monomials in the ANFs of x 7→ πv(S(x)) for v ∈ Fn2 .

5. Linear structures and (v, w)-linearity: computes (and prints when required) the
linear-structures LS(S) and the total number, and the (v, w)-linearity table, i.e., the
number N(v,w) of subspaces V of dimension v for which there exists a w-dimensional
subspace W such that the S-box is (v, w)-linear with respect to (V,W ); print all
non-trivial subspace (V,W ) pairs, the maximal dimension maxv among subspaces
V such that there exist a subspace W for which the S-box is (v, w)-linear, and the
maximal dimension maxw among subspaces W such that there exists a subspace V
for which the S-box is (v, w)-linear.

6. Others: output whether it is a permutation, whether it is an involution.

Given n-bit S-boxes (for 3 ≤ n ≤ 8 if not otherwise stated), Peigen can evaluate their
equivalence relations:

1. Permutation-XOR equivalence (PE, XE, PXE): for a given S-box, outputs
the representative of its PE- and PXE-class; for a given S-box, outputs all S-boxes
PE, XE, and PXE with it; for two given S-boxes, outputs whether they are PXE.

2. Linear equivalence (LE): for a given S-box, outputs the minimum representative
of its LE-class; for two given S-boxes, outputs whether they are LE. If they are LE,
outputs the linear transformations between them.

3. Affine equivalence (AE): for two given S-boxes, outputs whether they are AE.
If they are AE, outputs the affine transformations between them; for a given 4-bit
S-box, outputs whether it belongs to one the 16 optimal classes. If it belongs to at
least one of them, outputs to which optimal class it belongs.

4. Partition an AE-class into PXE-classes: for a given 4-bit S-box, outputs all
PXE-representatives of the AE-class to which this S-box belongs, i.e., split one
AE-class into mutually non-PXE classes, outputs their representatives.
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4.2.2 Implementing

Given a set of n-bit S-boxes and the specific implementation configuration (user-tuned
set of available gates and costs for each gate), Peigen can provide their implementations
under various techniques, which are good with respect to different merits (support for
3 ≤ n ≤ 8, but the tool is only efficient for 3- and 4-bit S-boxes):

1. Bitslice gate complexity (BGC), Gate equivalent complexity (GEC), and Mul-
tiplicative complexity (MC): outputs implementations optimized for area and code
size, i.e., with minimized number of gates/equivalent gates under different imple-
mentation techniques (e.g., software logic instructions, hardware gates TSMC65nm
tech. and UMC180nm tech.), or with minimized number of non-linear operations;

2. Depth complexity (Depth): outputs implementations optimized for latency, i.e.,
with minimized depth of critical path under different techniques (e.g., hardware tech.
TSMC65nm and UMC180nm, and software logic instructions); at the same time,
keeps the area as small as possible (i.e., for two implementations posses the same
Depth, output the one with less GEC).

4.2.3 Generating

There are two usages in Peigen with respect to generating S-boxes from given criteria:

1. Filtering out good S-boxes: Given a set of n-bit S-boxes and a set of criteria
(user-required security-related and implementation-related properties), Peigen filters
out the S-boxes fulfilling the criteria, and at the same time, outputs the detailed
evaluations of their security properties and their implementations under a given
configuration on gates;

2. Generating new S-boxes from scratch: Given a set of criteria (user-required
security-related and implementation-related properties listed above), Peigen

(a) generates a set of S-boxes fulfilling the given criteria, and at the same time,
outputs the detailed evaluations of their security properties and their imple-
mentations under a given configuration on gates;

(b) classifies the generated S-boxes in accordance with their detailed properties by
distributing the results on the generated S-boxes into different folders. Those
folders are named after the property profiles of the S-boxes. Thus, the S-
boxes with the same property profile are gathered together into the same
folder. Doing this makes it much easier for users to read and make further
observations on the results. The consideration on adding this functionality is
that, Peigen can generate a large number of S-boxes fulfilling the given criteria.
If all of them are output without distinction, they will be difficult for users to
read. Thus, for each generated S-box, Peigen only outputs its LUT and the
evaluations of their security properties, and identifies its permutation-equivalent
(PE) representative. Then, Peigen only outputs implementations of one S-
box among all generated S-boxes that are PE. Note that, if two S-boxes are
PE, then given the implementation of one S-box, one can directly obtain the
implementation of the other S-box by renaming the input/output variables from
the original implementation.

4.3 Efficiency, Expandability and Compatibility of Peigen
Peigen is developed with efficiency in mind for the search on large sets of S-boxes. Apart
from programming-level optimizations (e.g., adopting fine-grained parallelism by performing
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vectorization using single instruction, multiple data (SIMD) instructions, supporting higher-
level parallelism by using OpenMP), we optimized the most time/memory-consuming parts
in the algorithmic level.

Approach and performance for evaluation. For evaluating S-boxes, the most time-
consuming computations are testing affine equivalence and generating pairs of subspaces
(V,W ) with respect to which S-box is (v, w)-linear. However, for linear/affine equivalence,
our implementation of the primary algorithms offered by Biryukov et al. [BCBP03] turns
out to be sufficiently efficient even for a large set of S-boxes (e.g., 214 4-bit S-boxes). For
(v, w)-linearity, an implementation performing exhaustive testing in accordance with the
definition is also sufficiently efficient for most known S-boxes. Concretely, for evaluating a
comprehensive list of known S-boxes provided by Perrin and Wiemer [PW] together with
a few additions, Peigen takes less than 1 second for all 3-bit to 6-bit S-boxes, less than 5
seconds for a 7-bit S-box, and less than 2 minutes for most 8-bit S-boxes. The inefficiency
is confined to 8-bit S-boxes with too many (V,W )-subspace pairs with respect to which
the S-box is linear, so that Peigen takes more time to compute and output (e.g., it takes
about 12 minutes for the S-box of SKINNY-128 [BJK+16] and about 27 minutes for the
S-box of CSS [PMA07]). We defer the details of the evaluation results to Sect. 5.1.

Approach and performance for implementation. Compared with evaluating, implement-
ing and generating S-boxes requires more effort to achieve high efficiency, especially for a
large set of S-boxes. The basic approach in Peigen to find an efficient implementation of
a given S-box is based on the approach in LIGHTER. On the basis of its non-linear part
introduced in Sect. 4.1, we propose the following optimizations:

1. Composition and concatenation: We notice that there is an isomorphism be-
tween the two graphs expanded from the two roots respectively encoding the identity
function I and an target function S (we will use the same notations I and S to
represent the functions and the nodes in the graphs). Essentially, the graphs ex-
panded (using the same set of basic instructions and following the same procedure)
from any root node encoding a permutation will be isomorphic. Accordingly, we
only need to expand one graph from a root node I. For a given target function
S, we compose S with each function represented by the node in the graph and
use the composite function to match the nodes in the same graph. Thanks to the
mechanism used to build the graph (using invertible basic instructions, for which
both the forward and the inverse computations are trackable), once a match is
found, one can backtrack both of the two sequences of instructions – the sequence
generating the match node and the sequence generating the node composed to the
target function. By concatenating the two instruction sequences, one can obtain a
logic implementation of the target function S.

2. Pre-computation: Note that, in the composition and concatenation method, the
graph is expanded from I without any given target. When there is a set of targets
(i.e., need to implement a set of S-boxes), this graph can be built once and for all.
Thus, we can pre-compute the graph and store it in the binary form for reuse. This
might also conduce cross-node parallelization.

3. Other amendments:

(a) Note that there is an equivalence between different decompositions of an imple-
mentation (i.e., a sequence of instructions). Specifically, if an implementation
can be found by using the concatenation of two short instruction sequences
Imp1‖Imp2, then it can also be found by using the composition Imp′1‖Imp′2,
where Imp′1 = Imp1‖Ins1 and Imp2 = Ins1‖Imp′2. Thus, to speed up the search,
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we exploit such equivalence to avoid duplicate matching. Note that different
invertible instructions Ins are composed by different sets of atom gates, thus
their costs are not continuous numbers. As a result, to deal with such disconti-
nuity, some duplicated matchings cannot be completely avoided while finding
the implementations with the least costs.

(b) We amended small issues related to ANDN/ORN in the non-linear part of LIGHTER:
i. Full support for ANDN and ORN: the original program does not fully support

ANDN/ORN (without support for MOAI1/MAOI1 combined with ANDN/ORN.
With support for XOR ◦ AND/OR ◦ ANDN/ORN, but without dealing with the
asymmetry of the ANDN/ORN operations), we amended these small issues.
Some resulting implementations can achieve a slight improvement6.

ii. Correct the print error relating ANDN/ORN: because it does not consider
asymmetry of the ANDN/ORN operations, the original program occasionally
prints the operators in the triple-gate instructions involving ANDN/ORN in
the wrong order. We amended this small issue.

(c) We extended the cover range of implementation target from 4-bit S-boxes to
3 ∼ 8-bit S-boxes. Unfortunately, Peigen is only efficient for 3 and 4-bit
S-boxes and barely able to handle 5-bit S-boxes. For larger S-boxes, heuristic
strategies and further optimizations are required.

Approach and performance for generation. With its composition, concatenation, and
pre-computation mechanisms, together with the evaluation functionality in Peigen, it is
quite handy to build the module to efficiently generate S-boxes fulfilling given criteria.

The approach is to simply compose nodes in the graph to obtain a composite function
and then test whether its security-related properties fulfill given criteria. If a criterion
on implementation costs is provided, this criterion will be taken as an upper bound and
Peigen only outputs those S-boxes with by far the lowest implementation costs. To
minimize the cost of the implementation, the composition procedure starts from low layer
nodes and increases to high layer nodes with updated lower- and upper-bounds on the
implementation costs. Otherwise (heuristically starting from some high layer to perform
matching), the procedure may rapidly find S-boxes fulfilling the given criteria but not
assure the best implementation costs. Note that, when composing nodes, a bit-permutation
is added inbetween. That is because the nodes in the graph are all non-PE (regarding
output bits), i.e., one node in the graph represent a class of output-permutation-equivalence
functions7. To make the composition be functionally complete (e.g., can express every
bijective function as can be expressed by a single logic sequence without composition),
all possible bit permutations should be considered in the between when composing two
functions (i.e., two nodes in the graph)8.

In Sect. 5.3, we will present some examples of the generated S-boxes together with the
time it took, from which it can be seen that the efficiency of generating S-box is practical.

Approach and performance for finding Depth-optimal implementations. Peigen can
find optimal implementations with respect to Depth given a certain set of available gates
and their corresponding latency. The approach differs greatly from the approach used to

6For example, for BGC, DES_S2_2 changes from 15 to 14 GEs, JH_S0 changes from 16 to 15 GEs; for
GEC with TSMC65nm tech., Whirlpool_E from 26.5 to 26 GEs, BLAKE_7 from 25 to 24.5 GEs; for GEC with
UMC180nm tech., DES_S4_2 from 22.99 to 22.33 GEs, Twofish_Q1_T3 from 22 to 21.33 GEs.

7But still, implementations of all functions represented by this node can be retrieved by combining the
sequence of instructions together with a permutation on the variable index.

8This is why a sequence of instructions for variable substitution appears in the middle of the generated
implementations in our results. Note that, those variable substitutions can be manually removed and thus
do not cause additional costs.
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find efficient implementations regarding BGC and GEC. The MITM, and composition and
concatenation strategies in searching efficient implementations regarding BGC and GEC are
not straightforward to extend to the case of Depth, because the optimization objectives
differ significantly, and more importantly, the inverse of an instruction sequence usually
possesses different latency from the forward direction. Although the essential algorithm is
modified, we adopt a similar framework of the program regarding BGC and GEC to inherit the
merit of supporting a customizable set of available gates and user-tuned gate costs. In the
kernel, we apply a similar method to that used by Guo et al. [GJN+16, Qia]. Concretely,
the program generates Depth-minimized implementations for each of the coordinates of a
given S-box. The Depth of the S-box is the maximum among depths of its coordinates.
The generating process adopts BFS to increasingly expand a graph in which each node
represents a Boolean function. This graph can also be built once and for all and stored
for reuse later. An addition is that, besides Depth, we try to make the area as small as
possible at the same time. However, we can only achieve the local optimal for GEC, i.e.,
minimized GEC among minimized Depth for each coordinate. For global optimization (the
S-box) for GEC, the best that can be achieved is to choose the implementation with the
most sharable instruction-prefix between implementations of different coordinates. With
this, we can achieve slightly improvement on the results obtained by Qiao [Qia] (with a
fixed set of available gates and gate costs). Note that, for Depth, the results are guaranteed
to be optimal.

As for efficiency, under different sets of available gates and gate cost, the time and
memory consumption are generally different. For 3 ∼ 4-bit S-boxes, Peigen is generally
satisfactory. For example, when the available gate set is {XOR/XNOR (2 GEs), AND/OR (1.5
GEs), NAND/NOR (1 GE), and NOT (0.5 GE)}, Peigen took 95 minutes on a 24-core server
to find all the Depth-minimized implementations of the 206 known 4-bit S-boxes, during
which building the graph took almost all the time, i.e., if there are more given S-boxes,
the required time will stay almost the same.

Expandability and compatibility. To make Peigen expandable, we use template-based
C++ implementations to facilitate coverage of larger amount of S-boxes. Besides, it is very
convenient to add new functionalities (e.g., evaluating other security-related properties) to
the template classes. Also, to make Peigen compatible with SageMath (the functional
mathematics software as introduced in Sect. 4.1), we add Cython interfaces for classes of
Peigen so that they can be compiled with “sage” command lines, and called as modules
by sage.

4.4 Future Work on Peigen
To make Peigen a more comprehensive platform for researching S-boxes, there is still a
lot of work to do in terms of functionality and efficiency. For functionalities related to
cryptographic properties, the following work will be of great significance.

1. Reverse-engineering: given the LUT of an S-box, discover the hidden structures of
the S-box that reveal unknown design criteria [BPU16];

2. Reconstructing: given the DDT, reconstruct all the S-boxes having this DDT (recover
a class of DDT-equivalent S-box) [DH18, BCJS18]; This problem essentially belongs
to a more general problem, that is, given a cryptographic property, generate all
S-boxes (or equivalence classes of S-box) possessing this property. Similar work
includes also, given the differential uniformity δ, generating all δ-uniform functions
(when δ = 2, this corresponds to finding APN functions);

3. Partitioning: partition the whole space of S-boxes with a certain domain size into
equivalence classes (e.g., CCZ-class, AE-class [LP07, BL08]); or partition a larger
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equivalence class into smaller equivalence classes (e.g., partition an CCZ-class into
EA-classes [CP18], and an EA-class into PXE-classes as has been done for 4-bit
S-boxes);

For functionalities related to implementations and for efficiency, the following work will
also be of great value.

1. Generating good implementations with resistance to side-channel attacks: although
implementations that are good regarding MC can be used to construct good implemen-
tations protected from side-channel attacks, the current generated implementations
are plain logic sequences without protection. Fully and automatically generating pro-
tected implementations that are good with respect to software (for microprocessors)
and hardware (for various implementation techniques) is part of our future work
here.

2. Generating good implementations regarding CPU cycles taking instruction parallelism
and register scheduling into consideration (for software on high-end CPUs).

3. Generating good implementations for large S-boxes: although the current tools
support finding implementations for 5 ∼ 8-bit S-boxes, the efficiency is not satisfactory.
Effective heuristic strategies need to be devised and applied.

5 Evaluation Results
5.1 Summarizations on Cryptographic Properties of Existing S-boxes
With the evaluation component of Peigen, we evaluated cryptographic properties of
existing S-boxes (3-bit to 8-bit) in most known block ciphers. As mentioned above, a
comprehensive list of known S-boxes is provided by Perrin and Wiemer [PW]. We added a
few missing ones to the list and evaluated them all. For readers who are interested in the
resulting summary on cryptographic properties of existing S-boxes, details are provided in
the supplementary materials, which provide concisely summarized and thoroughly detailed
evaluations.

A note on high (v, w)-linearity and large number of linear structures It is worth
noting that results regarding the high (v, w)-linearity (also the large number of linear
structures) of some S-boxes might be worth deeper analysis because they might reveal
some undesired properties of the S-boxes. For example, for 5-bit S-boxes, both the S-box
of KECCAK [BDPVA] and the S-box of Ascon [DEMS16] have large (V,W ) subspace
pairs restricted to which the S-box is linear. Concretely, both of them are (4, 2)-linear and
(3, 4)-linear, with a large number (91) of linear structures; for 8-bit S-boxes, the S-boxes of
CSS [PMA07], SKINNY-128 [BJK+16], and Fantomas [GLSV14] also have large subspace
pairs restricted to which they become linear. Concretely, the S-box of CSS is (7, 5)-linear
and (4, 7)-linear, with 6465 linear structures; the S-box of SKINNY-128 is (7, 2)-linear
and (3, 7)-linear, with 601 linear structures; the S-box of Fantomas is (6, 2)-linear and
(2, 7)-linear, with 83 linear structures. That is to say, by fixing only a few input bits
(even a single bit) with an arbitrary value, a large part of the output bits (even all but a
single bit) becomes linearly dependent on the remaining input bits. This can be described
as linearizable/partially-linearizable property of the S-box. This linearizable/partially-
linearizable property of the S-box of KECCAK has been exploited to improve cube-attacks
and collision attacks [DMP+15, GLS16, QSLG17, SLG17]. Two questions naturally arise.
By fully exploiting those subspace pairs (V,W ) restricted to which the S-box is linear,
can the complexities of these attacks be further reduced? For other ciphers with S-boxes
possessing large dimension (V,W ) subspace pairs restricted to which they become linear,
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Figure 1: Relations between known equivalent classes of 4-bit S-boxes. In this figure, G0
to G15 (in black frame) are the 16 non-AE optimal 4-bit S-boxes in [LP07] (see Table 11);
R0 to R19 (in blue) are the 20 non-PXE Serpent-type S-boxes in [LP07] (see Table 12);
K0 to K3 (in orange frame) are the 4 non-PXE Golden S-boxes in [Saa11] (see Table 13);
Pijk (in green frame) are the 10 non-PXE Platinum S-boxes in [ZBRL15] (see Table 14).
Besides, #PXEGi represents the number of non-PXE S-boxes with class Gi.

can this property be exploited to launch efficient attacks on the ciphers? We leave these
as open problems.

Relations between known equivalent classes of 4-bit S-boxes With the functionalities
on equivalence relations of Peigen and the knowledge of good classes of 4-bit S-boxes,
we find the relations between some known classes of 4-bit S-boxes proposed in different
studies.

For example, one can easily confirm those PXE-classes within the 16 optimal classes of
4-bit S-boxes, which are pointed out in the literature, i.e., the 20 non-PXE Serpent-type
S-boxes [LP07], the 4 non-PXE Golden S-boxes [Saa11], and the 10 non-PXE (three)
Platinum S-boxes [ZBRL15]. This is achieved by first partitioning each of the 16 optimal
AE-classes into several PXE-classes. Then, the ‘filtering’ functionality of Peigen is used
to filter out those PXE-representatives fulfilling given criteria (definitions of those good
S-boxes). Moreover, Fig. 1 points out the overlaps between those known PXE-classes.
Concretely, the 4 non-PXE Golden S-boxes [Saa11] are actually 4 out of the 20 Serpent-type
S-boxes [LP07], and the 2 out of the 10 non-PXE Platinum S-boxes [ZBRL15] are actually
2 out of the 20 Serpent-type S-boxes. There is no overlap between the 4 Golden S-boxes
and the 10 Platinum S-boxes.

Using similar method, one can find all PXE-classes with other specific criteria. For
example, with the maximum value U1 ≤ 2 in DDT1 and L1 ≤ 4 in LAT1 instead of
CardD1 + CardL1 ≤ 4, one can find 112882 non-PXE optimal S-boxes.

5.2 Implemented S-boxes
Using the components for finding efficient implementations in Peigen, we implement
invertible S-boxes (3-bit and 4-bit) in known block ciphers under various techniques.
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Specifically, we conduct efficient software implementations corresponding to BGC; efficient
hardware implementations corresponding to GEC under TSMC65nm tech. and UMC180nm
tech.; and Depth-optimal software implementations, Depth-optimal hardware implementa-
tions corresponding to TSMC65nm tech., UMC180nm tech., and STM65nm tech. The
summarized results and detailed implementations can be found in our supplementary
materials.

5.3 Generated S-boxes
With the generation component of Peigen, we try to generate more efficient S-boxes
fulfilling design criteria of known ciphers. When generating S-boxes, we only output the
implementation of one S-box among its PE-class, because implementation cost is invariant
under permutation of input/output bits, and from the implementation of one S-box, one
can directly obtain that of others in the same PE-class. Note that, the generated S-boxes
might be XE and we do not restrict generated S-boxes to having no fixed points because
fixed points can be removed by XOR constants. Although, implementation cost is not
invariant under XOR constants, we can claim that the floating range among implementation
costs of XE S-boxes is small.

3-bit S-boxes For 3-bit S-boxes, the best properties regarding differential and linear
attack are U = 2 and L = 4. The optimal BGC9 for those optimal 3-bit S-boxes is 6
gates. There are 40 non-PE optimal classes with this minimum software cost. For these 40
non-PE S-boxes, their GECs (hardware costs) are 10.5 ∼ 11.5 GEs under TSMC65nm tech.,
are 9 ∼ 10.67 GEs under UMC180nm tech..

4-bit S-boxes For 4-bit S-boxes, we run the generator with different set of criteria. For
each set, we limited the run time to be one day (the run was terminated if it did not
finish). When the criteria are set to be:

1. CriteriaSet0 = {U ≤ 4, L ≤ 8, BGC ≤ 8}: all such S-boxes can be generated within
10 minutes with a pre-computed graph. There are in total 851 non-PE S-boxes,
which are all from {G0, G2, G8}. Note that, all permutations generated by using
fewer than 9 gates have been tested, and no permutation with fewer than 8 gates
fulfills {U ≤ 4, L ≤ 8}. Thus, 8 is the optimal BGC for optimal 4-bit S-boxes. Also
note that, the generated S-boxes under this criteria set might be comparable with
known S-boxes, e.g.,PRIDE, Prøst, Piccolo, and SKINNY-4-bit S-boxes. For these
generated 851 non-PE S-boxes, their GEC are 14 ∼ 15.5 GEs under TSMC65nm
tech., are 12 ∼ 14.34 GEs under UMC180nm tech..

2. CriteriaSet1 = {U ≤ 4, L ≤ 8, U1 ≤ 2 ,L1 ≤ 4, BGC ≤ 11}, the S-boxes generated
within one day (1256 non-PE S-boxes, not complete) are all from {G0, G1, G2, G8}.
Note that, the set {G0, G1, G2, G8} forms one of the 7 non-CCZ-equivalent classes
for optimal 4-bit S-boxes. Without the restriction on BGC, all the 16 optimal classes
have some S-boxes fulfilling this set of criteria. For the generated 1256 non-PE
S-boxes, their GEC are 21.5 ∼ 22.5 GEs under TSMC65nm tech., are 18 ∼ 20.01 GEs
under UMC180nm tech..

3. CriteriaSet2 = {U ≤ 4, L ≤ 8, UFreq ≤ 18, BGC ≤ 11}, the S-boxes generated within
one day (14530 non-PE S-boxes, not complete) are all from {G9, G10, G14, G15}.
Note that, for optimal 4-bit S-boxes, the criteria in the set {UFreq = 18, LFreq =

9In the sequel, by optimal, we mean in the sense of optimal B-implementation; By BGC, we mean using
the gate set {NOT, AND/OR, XOR, ANDN } and each gate has the same cost. We include ANDN in this set because
BGC closely corresponds to software implementation and many processor architectures support ANDN.
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32, DegFreq = 14, # LS = 3} are simultaneously fulfilled, and essentially character-
izes the classes {G9, G10, G14, G15}. Thus, for S-boxes in these classes, we claim that
the optimal BGC is 11 gates (we did not find an S-box fulfilling this set of criteria
with 10 gates, and the searching limited by 10 gates is completed). For the generated
14530 non-PE S-boxes, their GEC are 18 ∼ 20 GEs under TSMC65nm tech., are
15.33 ∼ 18.67 GEs under UMC180nm tech..

4. CriteriaSet3 = {U ≤ 4, L ≤ 8, UFreq ≤ 15, BGC ≤ 12}, the S-boxes generated within
one day (10892 non-PE S-boxes, not complete) are all from {G4, G12}. Note that,
for optimal 4-bit S-boxes, the criteria in the set {UFreq = 15, LFreq = 30, DegFreq =
15, # LS = 0} are simultaneously fulfilled, and essentially characterizes the classes
{G3, G4, G5, G6, G7, G11, G12, G13}. Also note that, this set of criteria is essentially
the design choice of PRINCE S-boxes. Thus, for S-boxes within these classes or
PRINCE-type S-boxes, the optimal BGC is 12 gates (we did not find any S-box
fulfilling the set of criteria when limiting BGC to be 11 gates). For the generated
10892 non-PE S-boxes, their GEC are 19 ∼ 24 GEs under TSMC65nm tech., are
16.33 ∼ 21.34 GEs under UMC180nm tech..

5. CriteriaSet4 = {U ≤ 4, L ≤ 8, U1 = 0, L1 ≤ 4, BGC ≤ 11}, the S-boxes generated
within 16 hours (32 non-PE S-boxes, completed) are all from {G1}. Note that, except
the criterion on BGC, this set of criteria is essentially the design choice of Serpent10

and PRESENT S-boxes. For the generated S-boxes, their GEC are 23.5 ∼ 24 GEs
under TSMC65nm tech., are 20 ∼ 21 GEs under UMC180nm tech..

6. CriteriaSet5 = {U ≤ 4, L ≤ 8, CardD1 ≤ 2, CardL1 ≤ 2, BGC ≤ 11}, the S-boxes
generated within 6 hours (64 non-PE S-boxes, completed) are from {G0, G1, G2}.
Note that, except the criterion on BGC and fixed points, this set of criteria is the
design choice of RECTANGLE S-boxes. For the generated S-boxes, their GECs are
21.5 ∼ 22 GEs under TSMC65nm tech., are 18 ∼ 19.34 GEs under UMC180nm tech..

Note that, many of the generated S-boxes have lower cost but the same security level
(fulfilling the design criteria) as the S-boxes used in known ciphers.

5-bit S-boxes For 5-bit S-boxes, we run the generator with the following set of criteria:
1. CriteriaSet0 = {U ≤ 8, L ≤ 16, GEC (TSMC65nm tech.) ≤ 18}: for this set of

criteria, the security level regarding differential uniformity and linearity is the same
as that of the KECCAK and Ascon S-box. Within one day, the generator generated
11471 non-PE S-boxes fulfilling this set of criteria. Some generated S-boxes are
involution, and some have degree 4. Unfortunately, all generated S-boxes (both
themselves and their inverse) have quadratic components.

2. CriteriaSet1 = {U ≤ 8, L ≤ 16, min deg ≥ 3, GEC (TSMC65nm tech.) ≤ 21.5}:
Note that, this are the criteria fulfilled by inverse S-boxes of KECCAK and Ascon.
Within one day, it generated 6220 non-PE S-boxes fulfilling this set of criteria.
Some generated S-boxes have maximum degree 4 and minimum degree 3 among all
components. For all generated S-boxes, their inverse have maximum degree larger
than 3 but also quadratic components.

Considering that, APN and 4-uniform 5-bit S-boxes are so sparse (also true for larger
S-boxes), one is unlikely to be found by this instruction-first design method without
heuristics. Therefore, we give up trying and call for a more rational approach.

We refer the readers who are interested in the generated S-boxes to our supplementary
materials for more details.

10Note that, the design criteria of Serpent S-boxes include L1 ≤ 4, which is excluded in the definition of
Serpent-type S-box in [LP07]
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5.4 Observations and Discussions on Inclusive and Exclusive Criteria
Observing the evaluated results on 4-bit S-boxes, we find that some criteria are inclusive,
which allows designers to focus their efforts on the superior criterion; some are exclusive,
which requires designers to make careful trade-offs.

Inclusive Criteria

1. Although the criteria on platinum S-boxes are imposed to limit the number of nonzero
entries in DDT1 and LAT1, concretely CardD1 + CardL1 ≤ 4, we find that they
all simultaneously satisfy another merit, namely, U1 ≤ 2 and L1 ≤ 4. In other
words, if we limit the number of 1-bit to 1-bit differential propagations (resp. linear
approximations) to be as small as possible, we can simultaneously assure their
probabilities (resp. bias) to be small as well (not the maximum U = 4 and L = 8).
More generally, we find that for all optimal 4-bit S-boxes, by minimizing CardL1,
the L1 is automatically minimized, i.e., CardL1 = 2 =⇒ L1 = 4. 11

As for DDT1, since the minimal value that the CardD1 can take is 0, the correspond-
ing phenomenon is quite natural, i.e., CardD1 = 0 ⇐⇒ U1 = 0.
However, simultaneous minimization on both DDT1 and LAT1 cannot be achieved.
In other words, { U1 = 0 and CardD1 = 0 } and { L1 = 4 and CardL1 = 2 } cannot
hold simultaneously.

2. For all optimal 4-bit S-boxes, the characters in the set
{UFreq, LFreq, DegFreq, # LS, maxv(v, w)-linear} are always determined simultane-
ously, i.e., if one is fixed, the others can be known directly. Concretely:

UFreq = 24 ⇔ LFreq = 36 ⇔ DegFreq = 12 ⇔ # LS = 9 ⇔ maxv(3, 2)-linear.
UFreq = 18 ⇔ LFreq = 32 ⇔ DegFreq = 14 ⇔ # LS = 3 ⇔ maxv(3, 1)-linear.
UFreq = 15 ⇔ LFreq = 30 ⇔ DegFreq = 15 ⇔ # LS = 0 ⇔ maxv(2, 2)-linear.

Thus, when generating S-boxes, one only needs to impose one of them as criteria.
Considering that to test redundant properties wastes time, the filtering criteria
should be non-reducible.
There is a corresponding question: which one of the criteria in the set decides the
others? For example, does the differential spectrum (or Walsh spectrum) imply the
degree spectrum? This may be answered by using the relation between the divisibility
of the Walsh spectrum and the degree of a Boolean function, e.g., for a component
Sb if all WS(a, b) is divisible by 23 = 8, then deg(Sb) ≤ n+ 1− 3 = 2. Thus, if there
is a column in the LAT with either 0 or 8, then the component corresponding to this
column is quadratic.

Exclusive Criteria

1. An optimal 4-bit S-box whose components are all with the maximal algebraic degree
cannot have a large differential branch number. Precisely, DegFreq = 15 =⇒ U1 > 0.
Actually, both the number of low Hamming weight differentials and the number of
low Hamming weight linear approximations, cannot be very small at the same time.
Precisely, DegFreq = 15 =⇒ CardD1 ≥ 1 and CardL1 ≥ 4.
Furthermore, according to the above observation on inclusive criteria, all criteria
in the set {UFreq = 15, LFreq = 30, DegFreq = 15, # LS = 0, is not (3, 1)-linear}
conflict with the requirement CardD1 = 0 or CardL1 < 4.

11Note that, 2 (resp. 4) is the minimal value the CardL1 (resp. L1) of an optimal S-box can take.
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As shown by Boura and Canteaut [BC13a] (resp. [BC16]), if the targeted cipher
Hamsi (resp. PRESENT) attacked by their cube-like attack (resp. division-property-
based integral attack) uses a 4-bit S-box whose components are all with maximal
algebraic degree (e.g., PRINCE S-box), then those attacks can be prevented (see
Prop. 12 and Prop. 9). This may imply that, the criterion that all components have
the maximal degree should be included in the design criteria of PRESENT S-box
and Hamsi S-box (uses Serpent S2). However, U1 = 0 which is incompatible with
this criterion is an explicit requirement for these two S-boxes, because the linear
layer of PRESENT and Hamsi involves bit-permutations.
Accordingly, a careful trade-off is required between the resistance to the cube-like
attack (division-property-based integral attack) and the resistance to the differential
attack. One possible tradeoff is to relax the requirement on algebraic degree to
be “all components but one have the maximal algebraic degree” and reserve the
requirement U1 = 0. This tradeoff will result in some Serpent-type S-boxes [LP07]
and the Golden S-boxes [Saa11]. Another possible tradeoff is to relax the requirement
on U1 = 0 to be “with small U1, CardD1, L1, CardL1” and keep the requirement on
algebraic degree. Experimental results show that the best achievable is DegFreq = 15,
U1 = 2, CardD1 = 6, L1 = 4, CardL1 = 4. There are only 2 PXE-classes among
optimal S-boxes possessing this sense of optimality. They belong to G13 (note that,
G13 forms a CCZ-class containing only itself among the 16 optimal S-boxes).

2. A 4-bit S-box whose components all have the maximal algebraic degree cannot
possess low multiplication complexity. This follows intuition. Precisely, we find all
existing S-boxes with more than 3 quadratic components of MC = 4; with 1 quadratic
components of MC = 4 or 5; with no quadratic components of MC = 5.

3. An involution S-box cannot avoid a low hamming weight differential, i.e., S(S(x)) =
x for ∀x =⇒ U1 > 0.

6 Conclusion and Future Work
The research on S-boxes closely interweaves with several other research lines, including
attacks, Boolean functions, coding theories, and designs. The line of attacks imposes
firm lower bounds on the acceptable properties; the lines of Boolean functions and coding
theories provide idealistic upper bounds on the quality of being (almost) perfect; and the
line of designs performs the art of difficult trade-offs. With this interweaving, the research
on S-boxes has steadily progressed.

This paper provides a record on this progression. The main line of this record is
following the line of attacks, in a consideration that significant attacks have almost always
triggered a deep introspection on the design, especially on the design of S-boxes. Although,
clear criteria can sometimes be obtained to advise new designs (e.g., the differential
uniformity and linearity of S-boxes), at other times, it is hard to clarify the exact property
playing the key role (e.g., for the division-property-based integral attack). Sometimes, the
community takes a long time to fully understand how some known properties influence
a striking attack (e.g., the linear structures on the truncated differential and subspace
trail attacks). Besides, efficient dedicated attacks generally exploit resonance properties
between multiple components in a cipher. Thus, it is even harder to conclude a just right
criterion for avoiding attacks. Under this situation, we tried to extract and distill known
results reflected in studies on various attacks, present the proposed or implied criteria for
avoiding the attacks, and form a comprehensive check-list for designers.

Besides, a platform Peigen is built, as a prototype in its embryonic stage, aiming to
provide the community an open platform to facilitate the research and use of S-boxes. The
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hope is to promote the development and further to provide feedback to these interweaving
lines of research. Peigen is said to be in its embryonic stage, because, for larger S-boxes
(≥ 5-bit), it is satisfactory only for evaluating security, but not yet powerful enough for
implementing and generating strong S-boxes. We believe that both heuristic and theoretical
approaches exist and can be integrated into this platform. At this point, a call for further
joint effort is initiated.

All the source codes of Peigen and generated results are available via https://github.
com/peigen-sboxes/PEIGEN.
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A A Complete List of Notations

⊕,
⊕

and +,
∑ To make a distinction, we use ⊕,

⊕
to represent addition and

summation of Fn2 , and use +,
∑

to represent addition and
summation of Z.

-

a
A binary vector, for a ∈ Fn2 , a = (a0, a1, . . . , an−1) where
ai ∈ F2 is the coordinate of a with index i. -

wt(a) The Hamming weight (or simply, weight) of a binary vector
a ∈ Fn2 , wt(a) ,

∑n
i=1 ai.

-

supp(a) The support of a binary vector a ∈ Fn2 is the set of all labels i
such that ai 6= 0. -

a · b The inner product of two binary vectors a, b ∈ Fn2 ,
a · b ,

⊕n
i=1 ai · bi.

-

a � b For two binary vectors a, b ∈ Fn2 , a � b if and only if ai ≤ bi
for all 1 ≤ i ≤ n. -

f : Fn2 → F2

A Boolean function in n binary variables, mapping from Fn2
into F2.
We also directly use f to denote the value vector of f , which
is the vector corresponding to all values taken by the function
when we use the lexicographical order on the inputs.

-

ANFf

The algebraic normal form of f : Fn2 → F2. A Boolean
function f can be uniquely represented by an n-variate
polynomial in F2[x1, · · · , xn]/(x2

1 ⊕ x1, · · · , x2
n ⊕ xn):

f(x1, . . . , xn) =
⊕

u∈Fn2
αu
∏n
i=1 x

ui
i , where αu ∈ F2.

4

ϕα,
α ∈ Fn2

The linear Boolean function x 7→ α · x. The algebraic normal
form of ϕα is ϕα(x1, . . . , xn) =

⊕n
i=1 αi · xi.

-

An
The set of all n-variable affine Boolean functions
An , {ϕα(x1, . . . , xn) =

⊕n
i=1 αi · xi ⊕ α0 | a0, . . . , an ∈ F2}.

-

S : Fn2 → Fm2
A vectorial Boolean function (an n×m S-box) mapping n bits
to m bits. -

ANFS

The algebraic normal form of S : Fn2 → Fm2 . A vectorial
Boolean function S can be uniquely represented by a n-variate
polynomial in Fm2 [x1, · · · , xn]/(x2

1 ⊕ x1, · · · , x2
n ⊕ xn):

S(x1, . . . , xn) =
⊕

u∈Fn2
αu
∏n
i=1 x

ui
i , where αu ∈ Fm2 .

4

{ei | i ∈ {1, · · · ,m}} The standard basis for Fm2 . -

Sei : Fn2 → F2

x 7→ ei · S(x)

The coordinate function (or simply, coordinate) of a vectorial
Boolean function S : Fn2 → Fm2 for index 1 ≤ i ≤ m, which is
the Boolean function representing the i-th output bit of S.

4

Sλ : Fn2 → F2

x 7→ λ · S(x)

The component function (or simply, component) of a vectorial
Boolean function S : Fn2 → Fm2 for nonzero vector λ ∈ Fm2 ,
which is a Boolean function representing the linear
combination

⊕m
i=1 λiSei of the coordinate functions of S.

4
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Daf : Fn2 → F2
x 7→ f(x)⊕ f(x⊕ a)

The derivative function (or simply, derivative) of a Boolean
function f . Daf(x) , f(x)⊕ f(x⊕ a), a ∈ Fn2 .

-

δf (a, b),
a ∈ Fn2 , b ∈ F2

δf (a, b) , #{x ∈ Fn2 | f(x)⊕ f(x⊕ a) = b} = |Daf
−1(b)|. -

rf (a) The autocorrelation coefficient of a Boolean function
f : Fn2 → F2 on a ∈ Fn2 , rf (a) ,

∑
x∈Fn2

(−1)f(x)⊕f(x⊕a).
-

ACTS
The autocorrelation table, in which the elements in row a and
column λ is equal to autocorrelation coefficient of the
component function Sλ on a ∈ Fn2 , ACTS(a, λ) = rSλ(a).

4

DaS : Fn2 → Fm2
x 7→ S(x)⊕ S(x⊕ a)

The derivative function (or simply, derivative) of a vectorial
Boolean function S : Fn2 → Fm2 to the direction a ∈ Fn2 .
DaS(x) , S(x)⊕ S(x⊕ a), a ∈ Fn2 .

-

δS(a, b),
a ∈ Fn2 , b ∈ Fm2

δS(a, b) , #{x ∈ Fn2 | S(x)⊕ S(x⊕ a) = b} = #{Daf
−1(b)},

where Daf
−1(b) means the set of preimages of b under the

derivative function Daf .
-

DDT
The differential distribution table of an S-box S (a vectorial
Boolean function S : Fn2 → Fm2 ). The entry (a, b) in DDTS
equals δS(a, b) for all a ∈ Fn2 and b ∈ Fm2 .

4

U(S) The differential uniformity of a vectorial Boolean function
S : Fn2 → Fm2 , U(S) , maxa∈Fn2 \{0},b∈Fm2 δS(a, b). 4

UFreq(S) UFreq(S) , #{(a, b) | δS(a, b) = U(S), a ∈ Fn2 \ {0}, b ∈ Fm2 }. 4

Dspec(S)
The differential spectrum of a vectorial Boolean function
S : Fn2 → Fm2 is the multiset
Dspec(S) , {δS(a, b) | a ∈ Fn2 \ {0}, b ∈ Fm2 }.

4

BCT

The boomerang connectivity table of an bijective S-box S (a
vectorial Boolean function S : Fn2 → Fn2 ). The entry (a, b)
equals
βS(a, b) , #{x ∈ Fn2 | S−1(S(x)⊕ b)⊕S−1(S(x⊕a)⊕ b) = a}
for all a ∈ Fn2 and b ∈ Fn2 .

4

BU(S)
The boomerang uniformity of an S-box S (a vectorial Boolean
function S : Fn2 → Fn2 ) is the highest value in the BCT
excluding the entry (0, 0): BU(S) , maxa,b∈Fn2 \{0} βS(a, b).

4

BDspec(S)
The boomerang differential spectrum of a bijective S-box S (a
vectorial Boolean function S : Fn2 → Fn2 ) is the multiset
BDspec(S) , {βS(a, b) | a ∈ Fn2 , b ∈ Fn2}.

4

εS(α, β)
The bias of a linear approximation (α, β), i.e.,∣∣∣#{x|Sβ(x)=α·x}

2n − 1/2
∣∣∣. -

d(f, g)
The Hamming distance between two Boolean functions f and
g is the number of function values in which they differ:
d(f, g) = wt(f ⊕ g).

-
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F(f)
The discrete Fourier transform (aka., Walsh transform) at
point 0 of the sign function (−1)f of a Boolean function
f : Fn2 → F2. F(f) ,

∑
x∈Fn2

(−1)f(x) = 2n − 2 wt(f).
-

Wf : Fn2 → Z
α 7→ F(f ⊕ ϕα)

The Walsh transform (aka., Fourier transform) of a Boolean
function f : Fn2 → F2,
Wf (α) ,

∑
x∈Fn2

(−1)f(x)⊕α·x = F(f ⊕ ϕα) = 2n − 2 d(f, ϕα),
for α ∈ Fn2 . The value taken by the transform at point α is
called the Walsh coefficient of f at point α.

-

Wspec(f)
The Walsh spectrum (aka. Fourier spectrum) of a Boolean
function f : Fn2 → F2 is the multiset
Wspec(f) , {Wf (α) | α ∈ Fn2}

-

L(f) The linearity of a Boolean function f : Fn2 → F2,
L(f) , maxα∈Fn2 |2

n − 2 wt(f ⊕ ϕα)| = maxα∈Fn2 |Wf (α)| -

NL(f)

The nonlinearity of a Boolean function f : Fn2 → F2 is the
minimum Hamming distance between f and all affine
functions An.
NL(f) , ming∈An d(f, g) = minα∈Fn2 |wt(f ⊕ ϕα)| =
2n−1 − 1

2 maxα∈Fn2 |Wf (α)| = 2n−1 − 1
2 L(f).

-

WS : Fn2 × Fm2 → Z
(α, β) 7→ F(β · S ⊕ ϕα)

The Walsh transform of a vectorial Boolean function
S : Fn2 → Fm2 , WS(α, β) =WSβ (α) =∑
x∈Fn2

(−1)β·S(x)⊕α·x, α ∈ Fn2 , β ∈ Fm2 . The value taken by
the transform at point (α, β) is called the Walsh coefficient of
S at point (α, β).

4

Wspec(S)

The Walsh spectrum of a vectorial Boolean function
S : Fn2 → Fm2 is the multi-set
Wspec(S) , {WS(α, β) | α ∈ Fn2 , β ∈ Fm2 \ {0}}. The extended
Walsh spectrum of S is the multi-set of the absolute of values
in Wspec(S).

4

L(S)

The linearity of a vectorial Boolean function S : Fn2 → Fm2 is
the maximum linearity of its nontrivial components
{Sβ | β ∈ Fm2 \ {0}}.
L(S) = maxβ∈Fm2 \{0} L(Sβ) = maxα∈Fn2 ,β∈Fm2 \{0} |WS(α, β)|.

4

NL(S)

The nonlinearity of a vectorial Boolean function S : Fn2 → Fm2
is the Hamming distance between the set of its nontrivial
components {Sβ | β ∈ Fm2 \ {0}} and the set of all affine
functions An.
NL(S) = minβ∈Fm2 \{0}NL(Sβ) = 2n−1 − 1

2 L(S).

4

LAT
The linear approximation table of an S-box S (a vectorial
Boolean function S : Fn2 → Fm2 ). The entry (α, β) in LATS
equals WS(α, β) for all α ∈ Fn2 and β ∈ Fm2 .

4

LFreq
LFreq , #{(α, β) | WS(α, β) = L(S), α ∈ Fn2 , β ∈ Fm2 \ {0}},
the frequency of the maximum occurs in the LAT of an S-box. 4
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deg(f)

The algebraic degree (or simply, degree) of a Boolean function
f . Let ANFf =

⊕
u∈Fn2

αu
∏n−1
i=0 x

ui
i , where αu ∈ F2. The

algebraic degree of f is
deg(f) , max{wt(u) | u ∈ Fn2 and αu 6= 0 ∈ F2 in ANFf}..

4

Deg(S)

The algebraic degree (or simply, degree) of a vectorial Boolean
function S : Fn2 → Fm2 . Let
ANFS =

⊕
u∈Fn2

αu
∏n−1
i=0 x

ui
i , where αu ∈ Fm2 .

Deg(S) , max{wt(u) | u ∈ Fn2 and αu 6= 0 ∈ Fm2 in ANFS}.

4

DegFreq
DegFreq , #{λ | deg(Sλ) = Deg(S), λ ∈ Fm2 \ {0}}, the
number of non-trivial components with the maximal degree. 4

min deg(S) The minimum algebraic degree of a vectorial Boolean function
S : Fn2 → Fm2 , min deg(S) , minλ∈Fm2 \{0} deg(Sλ). 4

Degspec(S)

The degree spectrum of a vectorial Boolean function
S : Fn2 → Fm2 is a multiset
Degspec(S) , {deg(Sλ) | λ ∈ Fm2 \ {0}}, where Sλ are
component functions of S.

4

Degspeccor(S)

The degree spectrum of the coordinates of a vectorial Boolean
function S : Fn2 → Fm2 is a multiset
Degspeccor(S) , {deg(Sei) | 1 ≤ i ≤ m}, where Sei are
coordinate functions of S.

-

dk(S) dk(S) = maxK⊆{1,...,m},|K|≤k deg
(∏

i∈K Sei
)
, maximal

degree of the product of k coordinates. 4

VS

A table representation of VS(u) for all u indicating the
appearance of monomials in the ANFs of x 7→ πv(S(x)) for
v ∈ Fn2 , where VS(u) ,

⋃
w∈Succ(u) VS(w) and VS(w) , {v ∈

Fn2 : πv(S(x)) contains πw(x)}, Succ(u) = {x ∈ Fn2 : u � x}
which is an affine subspace of dimension (n− wt(u)), and
πw(x) =

∏n
i=1 x

wi
i .

4

LS(f)

The linear space of a Boolean function f is the linear
subspace of those a such that Daf is a constant function.
LS(f) , {a ∈ Fn2 | Daf = c, where c is constant 0 or 1}.
Such a, a 6= 0, is said to be a c-linear structure of f .

-

(λ, a, c)
A linear structure of a vectorial Boolean function
S : Fn2 → Fm2 is a triple (λ, a, c) such that a is a c-linear
structure of the component function Sλ(x).

4

# LS(S) the number of linear structures of an S-box S. 4

d(f,LS(n)) d(f,LS(n)) , min`∈LS(n) d(f, `). LS(n) is the subset of
Boolean functions having linear structure. -

(v, w)-linear
For S : Fn2 → Fm2 , exist linear subspaces V ⊂ Fn2 and W ⊂ Fm2
with dimV = v and dimW = w, such that, for all λ ∈W, Sλ
has degree at most 1 on all cosets of V .

4

maxv(v, w)-linear the maximal v such that the S-box is (v, w)-linear. 4

maxw(v, w)-linear the maximal w such that the S-box is (v, w)-linear. 4
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DDT1(S) The sub-table of DDT containing entries (a, b) where
wt(a) = wt(b) = 1. 4

LAT1(S) The sub-table of LAT containing entries (u, v) where
wt(u) = wt(v) = 1. 4

U1(S) maxa∈Fn2 \{0},b∈Fm2 {|δS(a, b)| | wt(a) = wt(b) = 1}. 4

L1(S) maxα∈Fn2 ,λ∈Fm2 \{0}{|WS(α, β)| | wt(α) = wt(β) = 1}. 4

BND(S)
The differential branch number of an S-box S (a vectorial
Boolean function S : Fn2 → Fm2 ), BND(S) =
min{wt(a) + wt(b) | δS(a, b) 6= 0, a ∈ Fn2 \ {0}, b ∈ Fm2 }.

-

BNL(S)
The linear branch number of an S-box S (a vectorial Boolean
function S : Fn2 → Fm2 ), BNL(S) = min{wt(u) + wt(v) |
WS(u, v) 6= 0, u ∈ Fn2 , v ∈ Fm2 \ {0}}.

-

SetDiff1(S) {(a, b) | δS(a, b) 6= 0, wt(a) = wt(b) = 1} 4

SetLin1(S) {(u, v) | |WS(u, v)| 6= 0, wt(u) = wt(v) = 1} 4

CardD1(S) # SetDiff1(S), number of non-zero entries in DDT1 . 4

CardL1(S) # SetLin1(S), number of non-zero entries in LAT1. 4

GI(S) {a | |δS(a, b)| = 0, wt(a) = wt(b) = 1}. -

GO(S) {b | |δS(a, b)| = 0, wt(a) = wt(b) = 1}. -

BI(S) {a | |∃b, δS(a, b)| 6= 0, wt(a) = wt(b) = 1}. -

BO(S) {b | |∃a, δS(a, b)| 6= 0, wt(a) = wt(b) = 1}. -

Dscore(S) |GI |+ |GO | observed from DDT1. -

Lscore(S) |GI |+ |GO | observed from LAT1. -

XE/PE/PXE XOR-equivalent, Permutation-equivalent,
Permutation-XOR-equivalent 4

LE Linear-equivalent 4

AE Affine-equivalent 4

EA Extended-Affine-equivalent -

CCZ CCZ-equivalent -

BGC Bitslice gate complexity 4

GEC Gate equivalent complexity 4

MC Multiplicative complexity 4

Depth Depth complexity 4

The last column indicates whether Peigen evaluates the corresponding criterion.

B Examples for Some Notations
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Table 7: Lookup table of the first 4× 4-bit S-box S0 used in Serpent
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 3 8 F 1 A 6 5 B E D 4 2 7 0 9 C

a\b 0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 16 · · · · · · · · · · · · · · ·
1 · · · · · 4 · · 4 · · 4 · 4 · ·
2 · · · · · 2 4 2 · 2 2 · · 2 2 ·
4 · · · · · · 4 2 2 2 2 2 · · 2 ·
8 · · · · · 2 · · 2 · · 2 4 2 · 4

3 · 2 · 2 · 2 · 4 · 2 · 2 2 · · ·
5 · 2 · 2 · · · · 2 2 4 · 2 2 · ·
6 · · 2 · 2 · · 2 · · 2 · 4 · · 4

9 · · 2 4 2 · · 2 · · 2 · · · 4 ·
A · · 2 · 2 2 4 · · 2 · · · 2 2 ·
C · · 2 · 2 · 4 · 2 2 · 2 · · 2 ·
7 · 4 2 · 2 · · 2 · · 2 · · · · 4

B · 2 · 2 4 · · · 2 2 · · 2 2 · ·
D · 2 4 2 · 2 · · · 2 · 2 2 · · ·
E · · 2 · 2 2 · 2 2 · 2 2 · 2 · ·
F · 4 · 4 · · · · · · · · · · 4 4

DDT1

δS(a, b) , #{x ∈ Fn
2 | S(x)⊕ S(x⊕ a) = b}

U = 4, Dspec = {0 : 159, 2 : 72, 4 : 24, 16 : 1}, U1 = 0, Dspec1 = {0 : 16}

Figure 2: The DDT/DDT1 of the Serpent S-boxes S0

Table 8: Maximal degree of the product of k coordinates of MISTY1 S-box

dk(S) = max
K⊆{1,...,m},|K|≤k

deg
( ∏
i∈K

Sei
)

k 1 2 3 4 5 6 7
dk 3 5 5 6 6 6 7
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a\b 0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 16 · · · · · · · · · · · · · · ·
1 · · · · · · −8 · · · · −8 · −8 · 8

2 · · 4 −4 4 4 −4 · −4 · · · 8 8 −4 4

4 · · −4 −4 −4 4 −4 · −4 · · 8 −8 · −4 4

8 · · 4 · −4 −4 · −4 4 · −4 4 · 4 8 8

3 · · 4 4 −4 4 −4 −8 4 −8 · · · · −4 −4

5 · · −4 −4 4 4 4 · 4 −8 8 · · · 4 4

6 · · · · · −8 · −8 −8 · 8 · · · · ·
9 · 8 −4 · −4 −4 · 4 −4 −8 −4 −4 · 4 · ·
A · · 8 4 · · 4 4 · · 4 −4 −8 4 −4 4

C · · · −4 8 · −4 −4 · · −4 −4 −8 4 4 −4

7 · · · 8 · 8 · · −8 · · · · · 8 ·
B · −8 · −4 −8 · −4 4 · · 4 −4 · 4 4 −4

D · 8 8 −4 · · −4 4 · · 4 4 · −4 4 −4

E · · 4 −8 −4 4 8 −4 −4 · −4 −4 · −4 · ·
F · 8 −4 · −4 4 · −4 4 8 4 −4 · 4 · ·

LAT1

WS(a, b) ,
∑

x∈Fn
2
(−1)b·S(x)⊕a·x

L = 8, Wspec = {0 : 123, 4 : 96, 8 : 36, 16 : 1}, L1 = 4, Wspec1 = {0 : 8, 4 : 8}

Figure 3: The LAT/LAT1 of the Serpent S-boxes S0

a\b 0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 16 · · 4 · 2 2 2 · 4 2 2 2 · 4 ·
2 16 · · · 4 4 · · 2 2 4 4 · 2 2 8

4 16 · · 16 · · · · 8 8 · · · 8 8 ·
8 16 · · 4 · 2 2 2 4 · 2 2 2 4 · ·
3 16 2 2 4 · 2 · · 4 · 2 2 2 4 · ·
5 16 · 2 4 2 · 2 · · 6 · · 2 · 6 ·
6 16 2 2 · 4 4 2 2 · · 4 4 · · · 8

9 16 2 2 · · · 2 2 2 2 · · · 2 2 ·
A 16 2 2 4 · 2 · · · 4 2 2 2 · 4 ·
C 16 2 · 4 2 · · 2 6 · · · 2 6 · ·
7 16 · 2 4 2 · 2 · 6 · · · 2 6 · ·
B 16 2 2 · 4 4 2 2 · · 4 4 · · · 8

D 16 · · · 8 8 · · · · 8 8 · · · 16

E 16 2 · 4 2 · · 2 · 6 · · 2 · 6 ·
F 16 2 2 · 4 4 2 2 · · 4 4 · · · 8

BCT1

βS(a, b) , #{x ∈ Fn
2 | S−1(S(x)⊕ b)⊕ S−1(S(x⊕ a)⊕ b) = a}

BU = 16, BDspec = {0 : 107, 2 : 64, 4 : 32, 6 : 8, 8 : 12, 16 : 33}

Figure 4: The BCT of the Serpent S-boxes S0
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u\v 0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x x x x x x x x x x x x x x x

1 x x x x x x x x x x x x x x x

2 x x x x x x x x x x x x x x x

4 x x x x x x x x x x x x x x x

8 x x x x x x x x x x x x x x x

3 x x x x x x x x x x x x x x

5 x x x x x x x x x x x x

6 x x x x x x x x x x x x x x

9 x x x x x x x x x x x x x x

A x x x x x x x x x x x x x

C x x x x x x x x x x x x x x

7 x x x x x x x x x x

B x x x x

D x x x x x x x x

E x x x x x x x x x x

F x

VS(u) ,
⋃

w∈Succ(u) VS(w) and VS(w) , {v ∈ Fn
2 : πv(S(x)) contains πw(x)},

where Succ(u) = {x ∈ Fn
2 : u � x} and πw(x) =

∏n
i=1 x

wi
i

Figure 5: The table representation of VS(u) for all u ∈ Fn2 of the Serpent S-boxes S0

Table 9: Degree spectra and Linear structures of some S-boxes

Degspec(S) = {deg(Sλ) | λ ∈ Fn2 \ {0}} = {2 : 3, 3 : 12}, # LS = 9

Noekeon Piccolo PRESENT Rectangle LBlock_0
(0100, 0001, 1) (0100, 0001, 0) (0001, 0001, 1) (0001, 0100, 1) (0001, 0001, 1)
(0100, 1010, 1) (0100, 1000, 1) (0001, 1000, 1) (0001, 1000, 1) (0001, 0010, 1)
(0100, 1011, 0) (0100, 1001, 1) (0001, 1001, 0) (0001, 1100, 0) (0001, 0011, 0)
(1000, 0001, 1) (1000, 0001, 1) (1010, 0001, 1) (0010, 0001, 1) (0010, 0011, 1)
(1000, 1000, 0) (1000, 0010, 0) (1010, 1110, 1) (0010, 0100, 1) (0010, 1000, 1)
(1000, 1001, 1) (1000, 0011, 1) (1010, 1111, 0) (0010, 0101, 0) (0010, 1011, 0)
(1100, 0001, 0) (1100, 0001, 1) (1011, 0001, 0) (0011, 0100, 0) (0011, 0011, 1)
(1100, 0010, 1) (1100, 1010, 1) (1011, 0110, 1) (0011, 1001, 1) (0011, 1001, 0)
(1100, 0011, 1) (1100, 1011, 0) (1011, 0111, 1) (0011, 1101, 1) (0011, 1010, 1)

Degspec(S) = {deg(Sλ) | λ ∈ Fn2 \ {0}} = {2 : 1, 3 : 14}, # LS = 3

Golden_S0 Golden_S1 Golden_S2 Golden_S3 Qarma_sigma0
(1111, 0100, 0) (0111, 0010, 0) (1111, 0100, 0) (0110, 0010, 1) (0100, 0100, 0)
(1111, 1010, 1) (0111, 1100, 1) (1111, 1001, 1) (0110, 0101, 1) (0100, 1011, 1)
(1111, 1110, 1) (0111, 1110, 1) (1111, 1101, 1) (0110, 0111, 0) (0100, 1111, 1)

Degspec(S) = {deg(Sλ) | λ ∈ Fn2 \ {0}} = {3 : 15}, # LS = 0

PRINCE TWINE KLEIN JH_0/1 Qarma_sigma1/2 Panda Midori_Sb1
Have no linear structure
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Table 10: (v, w)-linearity of KECCAK 5-bit S-box
v \ w 1 2 3 4

1 31 31 31 31

2 155 155 155 155

3 155 155 60 5

4 20 5 0 0

(a) The number N(v,w) of subspaces V of dimension v for which there exists a w-dimensional W
such that the S-box is (v, w)-linear with respect to (V,W ).

Basis of V W

{0x02,0x04,0x08,0x10} {0x00, 0x02,0x04,0x06}
{0x01,0x04,0x08,0x10} {0x00, 0x04,0x08,0x0c}
{0x01,0x02,0x08,0x10} {0x00, 0x08,0x10,0x18}
{0x01,0x02,0x04,0x10} {0x00, 0x01,0x10,0x11}
{0x01,0x02,0x04,0x08} {0x00, 0x01,0x02,0x03}

(b) The 5 pairs of subspaces (V,W ) where |V | = v = 4 and |W | = w = 2 with respect to which
the S-box is linear.

Let g(x) = x1x2 ⊕ x0 ⊕ x5. Let S be the S-box in Scream. Then
g(x)⊕ g(S(x)) = 1,∀x ∈ F8

2. Thus, g is a nonlinear invariant for the S-box S in Scream.
Let g(x) = x2x3 ⊕ x0 ⊕ x1 ⊕ x2. Let S be the S-box in Midori64. Then
g(x)⊕ g(S(x)) = 0,∀x ∈ F4

2. Thus, g is a nonlinear invariant for the S-box in Midori64.

Figure 7: Examples of nonlinear invariants. Nonlinear invariant g(x) of the S-box is
g(x)⊕ g(S(x)) = c, where g is a non-linear Boolean function, and c is a constant.

Table 11: Representatives for all 16 classes of optimal 4 bit S-boxes [LP07]
G0 0 1 2 D 4 7 F 6 8 B C 9 3 E A 5
G1 0 1 2 D 4 7 F 6 8 B E 3 5 9 A C
G2 0 1 2 D 4 7 F 6 8 B E 3 A C 5 9
G3 0 1 2 D 4 7 F 6 8 C 5 3 A E B 9
G4 0 1 2 D 4 7 F 6 8 C 9 B A E 5 3
G5 0 1 2 D 4 7 F 6 8 C B 9 A E 3 5
G6 0 1 2 D 4 7 F 6 8 C B 9 A E 5 3
G7 0 1 2 D 4 7 F 6 8 C E B A 9 3 5
G8 0 1 2 D 4 7 F 6 8 E 9 5 A B 3 C
G9 0 1 2 D 4 7 F 6 8 E B 3 5 9 A C
G10 0 1 2 D 4 7 F 6 8 E B 5 A 9 3 C
G11 0 1 2 D 4 7 F 6 8 E B A 5 9 C 3
G12 0 1 2 D 4 7 F 6 8 E B A 9 3 C 5
G13 0 1 2 D 4 7 F 6 8 E C 9 5 B A 3
G14 0 1 2 D 4 7 F 6 8 E C B 3 9 5 A
G15 0 1 2 D 4 7 F 6 8 E C B 9 3 A 5
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Table 12: Representatives for all 20 classes of Serpent-type S-boxes [LP07]
R0 0 3 5 6 7 A B C D 4 E 9 8 1 2 F
R1 0 3 5 8 6 9 A 7 B C E 2 1 F D 4
R2 0 3 5 8 6 9 B 2 D 4 E 1 A F 7 C
R3 0 3 5 8 6 A F 4 E D 9 2 1 7 C B
R4 0 3 5 8 6 C B 7 9 E A D F 2 1 4
R5 0 3 5 8 6 C B 7 A 4 9 E F 1 2 D
R6 0 3 5 8 6 C B 7 A D 9 E F 1 2 4
R7 0 3 5 8 6 C B 7 D A E 4 1 F 2 9
R8 0 3 5 8 6 C F 1 A 4 9 E D B 2 7
R9 0 3 5 8 6 C F 2 E 9 B 7 D A 4 1
R10 0 3 5 8 6 D F 1 9 C 2 B A 7 4 E
R11 0 3 5 8 6 D F 2 7 4 E B A 1 9 C
R12 0 3 5 8 6 D F 2 C 9 A 4 B E 1 7
R13 0 3 5 8 6 F A 1 7 9 E 4 B C D 2
R14 0 3 5 8 7 4 9 E F 6 2 B A D C 1
R15 0 3 5 8 7 9 B E A D F 4 C 2 6 1
R16 0 3 5 8 9 C E 7 A D F 4 6 B 1 2
R17 0 3 5 8 A D 9 4 F 6 2 1 C B 7 E
R18 0 3 5 8 B C 6 F E 9 2 7 4 A D 1
R19 0 3 5 A 7 C B 6 D 4 2 9 E 1 8 F

Table 13: Representatives for all 4 classes of Golden S-boxes [Saa11]
K0 0 3 5 8 6 9 C 7 D A E 4 1 F B 2
K1 0 3 5 8 6 C B 7 9 E A D F 2 1 4
K2 0 3 5 8 6 A F 4 E D 9 2 1 7 C B
K3 0 3 5 8 6 C B 7 A 4 9 E F 1 2 D

Table 14: Representatives for all 10 classes of Platinum S-boxes [ZBRL15]. In the form
Pijk , the index i represents CardD1 = i, the index j represents CardL1 = j, and index k
represents the index of one PXE-class within one Pij class.

P040 0 B C 5 6 1 9 A 3 E F 8 D 4 2 7
P041 0 C D A 5 B E 7 F 6 2 1 3 8 9 4
P130 0 C 9 7 6 1 F 2 3 B 4 E D 8 A 5
P131 0 C 9 7 F 2 6 1 3 B 4 E A 5 D 8
P132 0 B 8 5 F C 3 6 E 4 7 9 2 1 D A
P133 0 D 4 B 7 E 9 2 6 A 3 5 8 1 F C
P220 0 D 8 2 E B 7 5 F 6 3 C 4 1 9 A
P221 0 B E 1 A 7 D 4 6 C 9 F 5 8 3 2
P222 0 B 6 9 C 5 3 E D 7 8 4 2 A F 1
P223 0 E 9 5 F 8 A 7 3 B 6 C 4 1 D 2
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