
Partitions in the S-Box of Streebog and Kuznyechik

Léo Perrin

@lpp_crypto

FSE’19, Paris

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

From Russia with Love (1963)

How does the Lektor work?

1 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

From Russia with Love? (2016-2019)

How does π work?

2 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

2 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

2 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Previous decompositions: the TU-decomposition

ω

α

σ

ϕ

ν1

I

ν0

⊙

⊙

T

U

⊙ Multiplication in F24

I Inversion in F24

ν0 ≈ Discrete logarithm in F24

ν1, σ 4× 4 permutations

ϕ 4× 4 function

α, ω Linear permutations

Published in 20161.

ν1 is differentially 16-uniform (the worst possible
for differential cryptanalysis)!

1A. Biryukov, L. Perrin, A. Udovenko. Reverse-engineering the S-box of streebog, kuznyechik and
STRIBOBr1. EUROCRYPT’16.

3 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Previous decompositions: the TU-decomposition

ω

α

σ

ϕ

ν1

I

ν0

⊙

⊙
T

U

⊙ Multiplication in F24

I Inversion in F24

ν0 ≈ Discrete logarithm in F24

ν1, σ 4× 4 permutations

ϕ 4× 4 function

α, ω Linear permutations

Published in 20161.

ν1 is differentially 16-uniform (the worst possible
for differential cryptanalysis)!

1A. Biryukov, L. Perrin, A. Udovenko. Reverse-engineering the S-box of streebog, kuznyechik and
STRIBOBr1. EUROCRYPT’16.

3 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Previous decompositions: the TU-decomposition

ω

α

σ

ϕ

ν1

I

ν0

⊙

⊙

T

U

⊙ Multiplication in F24

I Inversion in F24

ν0 ≈ Discrete logarithm in F24

ν1, σ 4× 4 permutations

ϕ 4× 4 function

α, ω Linear permutations

Published in 20161.

ν1 is differentially 16-uniform (the worst possible
for differential cryptanalysis)!

1A. Biryukov, L. Perrin, A. Udovenko. Reverse-engineering the S-box of streebog, kuznyechik and
STRIBOBr1. EUROCRYPT’16.

3 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Previous decompositions: log-based

ω′

q′−1

T

logw,16

⊗−1

⊞

Published in 20172

Completely different decomposition!

Uses a≈ discrete log. in F28 .

2L. Perrin, A. Udovenko. Exponential S-Boxes: a Link Between the S-Boxes of BelT and
Kuznyechik/Streebog. ToSC vol. 16.

4 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

What then?

Exponential S-Boxes: a Link Between the S-Boxes of BelT and
Kuznyechik/Streebog

5 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Released by the designers

The following slides3 are about Kuznyechik.

Selection from known classes

close to optimal values of some
cryptographic parameters

obvious analytical structure

finite field inversion

Random search with a given limit on the parameters

are not optimal when considering the aggregate of the
values of the basic cryptographic properties

do not have a pronounced analytical structure

3Vassilij Shishkin. Design principles of the perspective block encryption algorithm with a block
length of 128 bits. https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

6 / 20

https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Released by the designers

The following slides3 are about Kuznyechik.

Selection from known classes

close to optimal values of some
cryptographic parameters

obvious analytical structure

finite field inversion

Random search with a given limit on the parameters

are not optimal when considering the aggregate of the
values of the basic cryptographic properties

do not have a pronounced analytical structure

3Vassilij Shishkin. Design principles of the perspective block encryption algorithm with a block
length of 128 bits. https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

6 / 20

https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Obtained from the designers

By Saarinen and Brumleyo4 (2015)

“ Randomization using various building blocks was simply iterated until a “good
enough” permutation was found. This was seen as an effective countermeasure
against yet-unknown attacks. ”

At ISO/IEC (Jun. 2018)

The designers did not use the TU-decomposition.

Aim: best possible differential/linear properties from an “optimized random
search”.

Before the SHA-3 competition, the crypto community did not care about
parameters origin and neither did the Streebog designers. (?)

At CrossFyre 2018 (Sep. 2018)

During Q&A, a Russian cryptographer claimed the TU-decomposition is correct.

4M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.
7 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Obtained from the designers

By Saarinen and Brumleyo4 (2015)

“ Randomization using various building blocks was simply iterated until a “good
enough” permutation was found. This was seen as an effective countermeasure
against yet-unknown attacks. ”

At ISO/IEC (Jun. 2018)

The designers did not use the TU-decomposition.

Aim: best possible differential/linear properties from an “optimized random
search”.

Before the SHA-3 competition, the crypto community did not care about
parameters origin and neither did the Streebog designers.

(?)

At CrossFyre 2018 (Sep. 2018)

During Q&A, a Russian cryptographer claimed the TU-decomposition is correct.

4M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.
7 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Obtained from the designers

By Saarinen and Brumleyo4 (2015)

“ Randomization using various building blocks was simply iterated until a “good
enough” permutation was found. This was seen as an effective countermeasure
against yet-unknown attacks. ”

At ISO/IEC (Jun. 2018)

The designers did not use the TU-decomposition.

Aim: best possible differential/linear properties from an “optimized random
search”.

Before the SHA-3 competition, the crypto community did not care about
parameters origin and neither did the Streebog designers. (?)

At CrossFyre 2018 (Sep. 2018)

During Q&A, a Russian cryptographer claimed the TU-decomposition is correct.

4M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.
7 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Obtained from the designers

By Saarinen and Brumleyo4 (2015)

“ Randomization using various building blocks was simply iterated until a “good
enough” permutation was found. This was seen as an effective countermeasure
against yet-unknown attacks. ”

At ISO/IEC (Jun. 2018)

The designers did not use the TU-decomposition.

Aim: best possible differential/linear properties from an “optimized random
search”.

Before the SHA-3 competition, the crypto community did not care about
parameters origin and neither did the Streebog designers. (?)

At CrossFyre 2018 (Sep. 2018)

During Q&A, a Russian cryptographer claimed the TU-decomposition is correct.

4M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.
7 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

7 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partitions of F22m

Multiplicative cosets

Any element of F∗
22mm can be writtenαi+(2m+1)j, so that

F22m = {0} ∪

(
2m∪
i=0

αi ⊙ F∗
2m

)
= F2m ∪

(
2m∪
i=1

αi ⊙ F∗
2m

)
.

Additive cosets
F2m is a vector subspace of dimensionm of F22m .
=⇒ there exists a subspaceW of F22m such that dim(W) = m and

F22m =
∪
w∈W

w⊕ F2m = W ∪

(∪
w∈W

w⊕ F∗
2m

)
.

Both partitions involve one vector space of dimensionm
and 2m “almost spaces” of size 2m − 1.

8 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partitions of F22m

Multiplicative cosets

Any element of F∗
22mm can be writtenαi+(2m+1)j, so that

F22m = {0} ∪

(
2m∪
i=0

αi ⊙ F∗
2m

)
= F2m ∪

(
2m∪
i=1

αi ⊙ F∗
2m

)
.

Additive cosets
F2m is a vector subspace of dimensionm of F22m .
=⇒ there exists a subspaceW of F22m such that dim(W) = m and

F22m =
∪
w∈W

w⊕ F2m = W ∪

(∪
w∈W

w⊕ F∗
2m

)
.

Both partitions involve one vector space of dimensionm
and 2m “almost spaces” of size 2m − 1.

8 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partitions of F22m

Multiplicative cosets

Any element of F∗
22mm can be writtenαi+(2m+1)j, so that

F22m = {0} ∪

(
2m∪
i=0

αi ⊙ F∗
2m

)
= F2m ∪

(
2m∪
i=1

αi ⊙ F∗
2m

)
.

Additive cosets
F2m is a vector subspace of dimensionm of F22m .
=⇒ there exists a subspaceW of F22m such that dim(W) = m and

F22m =
∪
w∈W

w⊕ F2m = W ∪

(∪
w∈W

w⊕ F∗
2m

)
.

Both partitions involve one vector space of dimensionm
and 2m “almost spaces” of size 2m − 1.

8 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Here we go again!

New tool: a vector space search
algorithm!

Expected: one space of dimension 4
mapped to another (when the right
branch is 0).

The tool found 2 such patterns!

This transition can be generalized
to “almost space” trails.

16 of them!

ω

α

σ

ϕ

I

ν0 ν1

⊙

⊙

9 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Here we go again!

New tool: a vector space search
algorithm!

Expected: one space of dimension 4
mapped to another (when the right
branch is 0).

The tool found 2 such patterns!

This transition can be generalized
to “almost space” trails.

16 of them!

ω

α

ϕ

ν0

⊙

I⊙

ν1

σ

9 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Here we go again!

New tool: a vector space search
algorithm!

Expected: one space of dimension 4
mapped to another (when the right
branch is 0).

The tool found 2 such patterns!

This transition can be generalized
to “almost space” trails.

16 of them!

ω

α

ϕ

ν0

⊙

I⊙

ν1

σ

9 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Here we go again!

New tool: a vector space search
algorithm!

Expected: one space of dimension 4
mapped to another (when the right
branch is 0).

The tool found 2 such patterns!

This transition can be generalized
to “almost space” trails.

16 of them!

ω

α

σ

I⊙

⊙

ν1

ϕ

ν0

ν1(c)

xx⊙ c

9 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Here we go again!

New tool: a vector space search
algorithm!

Expected: one space of dimension 4
mapped to another (when the right
branch is 0).

The tool found 2 such patterns!

This transition can be generalized
to “almost space” trails.

16 of them!

ω

α

σ

I⊙

⊙

ν1

ϕ

ν0

ν1(c)

xx⊙ c

9 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Cosets to cosets

F28 π(F28) = F28

{0}

{fc}

F∗
24

κ(0)⊕ F∗
24

α
16
⊙
F∗ 24

κ
((
F4 2)

∗)

...

α
2
⊙
F∗ 24

α
1
⊙
F∗ 24

κ(15)⊕ F∗
24

κ(14)⊕ F∗
24

......

π maps the partition ofF28 intomultiplicative cosets ofF∗
24

to its partition into additive cosets ofF∗
24 !

10 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Cosets to cosets

F28 π(F28) = F28

{0}

{fc}

F∗
24

κ(0)⊕ F∗
24

α
16
⊙
F∗ 24

κ
((
F4 2)

∗)

...

α
2
⊙
F∗ 24

α
1
⊙
F∗ 24

κ(15)⊕ F∗
24

κ(14)⊕ F∗
24

......

π maps the partition ofF28 intomultiplicative cosets ofF∗
24

to its partition into additive cosets ofF∗
24 !

10 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Cosets to cosets

F28 π(F28) = F28

{0}

{fc}

F∗
24

κ(0)⊕ F∗
24

α
16
⊙
F∗ 24

κ
((
F4 2)

∗)

...

α
2
⊙
F∗ 24

α
1
⊙
F∗ 24

κ(15)⊕ F∗
24

κ(14)⊕ F∗
24

......

π maps the partition ofF28 intomultiplicative cosets ofF∗
24

to its partition into additive cosets ofF∗
24 !

10 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Cosets to cosets

F28 π(F28) = F28

{0}

{fc}

F∗
24

κ(0)⊕ F∗
24

α
16
⊙
F∗ 24

κ
((
F4 2)

∗)

...

α
2
⊙
F∗ 24

α
1
⊙

F∗ 24

κ(15)⊕ F∗
24

κ(14)⊕ F∗
24

...

...

π maps the partition ofF28 intomultiplicative cosets ofF∗
24

to its partition into additive cosets ofF∗
24 !

10 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Cosets to cosets

F28 π(F28) = F28

{0}

{fc}

F∗
24

κ(0)⊕ F∗
24

α
16
⊙
F∗ 24

κ
((
F4 2)

∗)

...

α
2
⊙
F∗ 24

α
1
⊙

F∗ 24

κ(15)⊕ F∗
24

κ(14)⊕ F∗
24

......

π maps the partition ofF28 intomultiplicative cosets ofF∗
24

to its partition into additive cosets ofF∗
24 !

10 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

The TKlog

A TKlog, denotedTκ,s, operates on F22m and uses:

α: a generator of F22m ,

κ: an affine function Fm
2 → F22m with ⟨κ(Fm

2) ∪ F2m⟩ = F22m ,

s: a permutation ofZ/(2m − 1)Z.

It works as follows:
Tκ,s(0) = κ(0) ,

Tκ,s

(
(α2m+1)j

)
= κ(2m − j), for 1 ≤ j ≤ 2m − 1 ,

Tκ,s

(
αi+(2m+1)j

)
= κ(2m − i)⊕

(
α2m+1

)s(j)
, for 0 < i, 0 ≤ j < 2m − 1 .

11 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Some properties

Separation

π satisfies the following set equalities{
π
(
F24
)

= κ(F4
2)

π
(
αi ⊙ F∗

24
)

= κ(16− i)⊕ F∗
2m , ∀i ̸= 0 .

Its restriction to each multiplicative coset is always the same:

Tκ,s(α
i+(2m+1)j) = κ(2m − i)︸ ︷︷ ︸

∈κ(Fm
2)

⊕ (α2m+1)s(j)︸ ︷︷ ︸
∈F∗

2m

.

If s depended on i then the coset-to-coset properties would still hold.
π is even simpler than that!

The missing link

A TKlog instance always has a TU-decomposition identical to that in the EC’16
paper.

12 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Some properties

Separation

π satisfies the following set equalities{
π
(
F24
)

= κ(F4
2)

π
(
αi ⊙ F∗

24
)

= κ(16− i)⊕ F∗
2m , ∀i ̸= 0 .

Its restriction to each multiplicative coset is always the same:

Tκ,s(α
i+(2m+1)j) = κ(2m − i)︸ ︷︷ ︸

∈κ(Fm
2)

⊕ (α2m+1)s(j)︸ ︷︷ ︸
∈F∗

2m

.

If s depended on i then the coset-to-coset properties would still hold.
π is even simpler than that!

The missing link

A TKlog instance always has a TU-decomposition identical to that in the EC’16
paper.

12 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Some properties

Separation

π satisfies the following set equalities{
π
(
F24
)

= κ(F4
2)

π
(
αi ⊙ F∗

24
)

= κ(16− i)⊕ F∗
2m , ∀i ̸= 0 .

Its restriction to each multiplicative coset is always the same:

Tκ,s(α
i+(2m+1)j) = κ(2m − i)︸ ︷︷ ︸

∈κ(Fm
2)

⊕ (α2m+1)s(j)︸ ︷︷ ︸
∈F∗

2m

.

If s depended on i then the coset-to-coset properties would still hold.
π is even simpler than that!

The missing link

A TKlog instance always has a TU-decomposition identical to that in the EC’16
paper.

12 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

12 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partition-based backdoors (1/2)

In5, Bannier introduced a backdoor such that, regardless of the key schedule:

x ∈ Vi ⇔ Ek(x) ∈ Wi

where the Vi andWi are affine spaces of constant dimension.

T
u

x y
α

ω

Theorem (simplified)

In order to enable a partition-based backdoor,
an S-box S of F2m

2 must be such that

(ω−1 ◦ S ◦ α−1)(x, y) = Ty(x)⊕ u(y)

for some linear permutationsα, ω.

In other words:

S(α−1(0, y)⊕V) = ω (0, u(y))⊕W, where

{
V = α−1

(
{(x, 0), x ∈ Fm

2 }
)

W = ω
(
{(x, 0), x ∈ Fm

2 }
)

5Arnaud Bannier. Combinatorial Analysis of Block Ciphers With Trapdoors. PhD thesis ENSAM 2017.
13 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partition-based backdoors (1/2)

In5, Bannier introduced a backdoor such that, regardless of the key schedule:

x ∈ Vi ⇔ Ek(x) ∈ Wi

where the Vi andWi are affine spaces of constant dimension.

T
u

x y
α

ω

Theorem (simplified)

In order to enable a partition-based backdoor,
an S-box S of F2m

2 must be such that

(ω−1 ◦ S ◦ α−1)(x, y) = Ty(x)⊕ u(y)

for some linear permutationsα, ω.

In other words:

S(α−1(0, y)⊕V) = ω (0, u(y))⊕W, where

{
V = α−1

(
{(x, 0), x ∈ Fm

2 }
)

W = ω
(
{(x, 0), x ∈ Fm

2 }
)

5Arnaud Bannier. Combinatorial Analysis of Block Ciphers With Trapdoors. PhD thesis ENSAM 2017.
13 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor,
it is necessary to have an S-boxmapping additive cosets of a subspace to additive
cosets of a subspace.

π does not.

But.

The linear layer of Streebog interacts with both
additive and multiplicative cosets of F24 !

14 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor,
it is necessary to have an S-boxmapping additive cosets of a subspace to additive
cosets of a subspace.

π does not.

But.

The linear layer of Streebog interacts with both
additive and multiplicative cosets of F24 !

14 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor,
it is necessary to have an S-boxmapping additive cosets of a subspace to additive
cosets of a subspace.

π does not.

But.

The linear layer of Streebog interacts with both
additive and multiplicative cosets of F24 !

14 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

The linear layer of Streebog

It is actually an 8× 8 matrix of F28 ... defined in the same field as π!

15 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

The linear layer of Streebog

It is actually an 8× 8 matrix of F28 ...

defined in the same field as π!

15 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

The linear layer of Streebog

It is actually an 8× 8 matrix of F28 ... defined in the same field as π!

15 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Subfield to multiplicative cosets

L =



83 47 8b 07 b2 46 87 64
46 b6 0f 01 1a 83 98 8e
ac cc 9c a9 32 8a 89 50
03 21 65 8c ba 93 c1 38
5b 06 8c 65 18 10 a8 9e
f9 7d 86 d9 8a 32 77 28
a4 8b 47 4f 9e f5 dc 18
64 1c 31 4b 2b 8e e0 83

 .

If X = (x, 0, ..., 0), then

X× L =
(
x⊙ L0,0, x⊙ L0,1, ..., x⊙ L0,7

)
.

Open problems

Is there a stronger hidden structure in L?

Can we leverage these properties to attack Streebog (or Kuznyechik)?

16 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Subfield to multiplicative cosets

L =



83 47 8b 07 b2 46 87 64
46 b6 0f 01 1a 83 98 8e
ac cc 9c a9 32 8a 89 50
03 21 65 8c ba 93 c1 38
5b 06 8c 65 18 10 a8 9e
f9 7d 86 d9 8a 32 77 28
a4 8b 47 4f 9e f5 dc 18
64 1c 31 4b 2b 8e e0 83

 .

If X = (x, 0, ..., 0), then

X× L =
(
x⊙ L0,0, x⊙ L0,1, ..., x⊙ L0,7

)
.

Open problems

Is there a stronger hidden structure in L?

Can we leverage these properties to attack Streebog (or Kuznyechik)?

16 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Some natural questions

Isn’t it possible to find a decomposition in any permutation?

No.

Others have used exponential/log-based S-boxes... why is it wrong this time?

Because it’s not a logarithm, it maps F28 to it-
self (and notZ/28Z). It also interacts in a very
non-trivial way with the linear layer of Stree-
bog.

What is so special about this 3rd (!) decomposition? Why would this one be
the one used by the designers?

17 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Some natural questions

Isn’t it possible to find a decomposition in any permutation?

No.

Others have used exponential/log-based S-boxes... why is it wrong this time?

Because it’s not a logarithm, it maps F28 to it-
self (and notZ/28Z). It also interacts in a very
non-trivial way with the linear layer of Stree-
bog.

What is so special about this 3rd (!) decomposition? Why would this one be
the one used by the designers?

17 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Some natural questions

Isn’t it possible to find a decomposition in any permutation?

No.

Others have used exponential/log-based S-boxes... why is it wrong this time?

Because it’s not a logarithm, it maps F28 to it-
self (and notZ/28Z). It also interacts in a very
non-trivial way with the linear layer of Stree-
bog.

What is so special about this 3rd (!) decomposition? Why would this one be
the one used by the designers?

17 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

The presence of the TKlog has to be deliberate

8-bit permutations

256! ≈ 21684

8-bit TKlogs

16︸︷︷︸
polynomial

× 230.3︸︷︷︸
lin. part of κ

× 28︸︷︷︸
κ(0)

× 15!︸︷︷︸
s

≈ 282.6

8-bit affine permutations

7∏
i=0

(28 − 2i)︸ ︷︷ ︸
linear part

28︸︷︷︸
cstt

× ≈ 270.2

If a “random permutation generator” returned an affine permutation, you would
conclude that it did so on purpose. The situation is the same for TKlogs.

18 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

The presence of the TKlog has to be deliberate

8-bit permutations

256! ≈ 21684

8-bit TKlogs

16︸︷︷︸
polynomial

× 230.3︸︷︷︸
lin. part of κ

× 28︸︷︷︸
κ(0)

× 15!︸︷︷︸
s

≈ 282.6

8-bit affine permutations

7∏
i=0

(28 − 2i)︸ ︷︷ ︸
linear part

28︸︷︷︸
cstt

× ≈ 270.2

If a “random permutation generator” returned an affine permutation, you would
conclude that it did so on purpose. The situation is the same for TKlogs.

18 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Possible generation algorithm

1 Generate a random TKlog

2 Are both linearity and diff. uniformity the best possible for a TKlog?
if not, go back to 1.
if yes, then output the TKlog

We only need to generate≈ 210.6 instances (experimental result).

The result closely resembles π and it is not better than a “regular” logarithm.

19 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Possible generation algorithm

1 Generate a random TKlog

2 Are both linearity and diff. uniformity the best possible for a TKlog?
if not, go back to 1.
if yes, then output the TKlog

We only need to generate≈ 210.6 instances (experimental result).

The result closely resembles π and it is not better than a “regular” logarithm.

19 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

19 / 20

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...

... is a deliberate choice by its designers,
... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their “random
generation process” could output an S-box mapping cosets of F∗

24 to cosets of F∗
24

in the same field as the one used for the linear layer of Streebog, and why that
might be a good thing...

... Do not use these algorithms.

... Do not standardize them.

20 / 20

https://who.paris.inria.fr/Leo.Perrin/pi.html

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...

... is a deliberate choice by its designers,
... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their “random
generation process” could output an S-box mapping cosets of F∗

24 to cosets of F∗
24

in the same field as the one used for the linear layer of Streebog, and why that
might be a good thing...

... Do not use these algorithms.

... Do not standardize them.

20 / 20

https://who.paris.inria.fr/Leo.Perrin/pi.html

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...

... is a deliberate choice by its designers,
... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their “random
generation process” could output an S-box mapping cosets of F∗

24 to cosets of F∗
24

in the same field as the one used for the linear layer of Streebog, and why that
might be a good thing...

... Do not use these algorithms.

... Do not standardize them.

20 / 20

https://who.paris.inria.fr/Leo.Perrin/pi.html

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...

... is a deliberate choice by its designers,
... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their “random
generation process” could output an S-box mapping cosets of F∗

24 to cosets of F∗
24

in the same field as the one used for the linear layer of Streebog, and why that
might be a good thing...

... Do not use these algorithms.

... Do not standardize them.

20 / 20

https://who.paris.inria.fr/Leo.Perrin/pi.html

Introduction All that we knew about π What is its actual structure? Why π looks worrying Conclusion

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...

... is a deliberate choice by its designers,
... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their “random
generation process” could output an S-box mapping cosets of F∗

24 to cosets of F∗
24

in the same field as the one used for the linear layer of Streebog, and why that
might be a good thing...

... Do not use these algorithms.

... Do not standardize them.

20 / 20

https://who.paris.inria.fr/Leo.Perrin/pi.html

Components

s = [0,12,9,8,7,4,14,6,5,10,2,11,1,3,13]

κ is such that κ(x) = κ(0)⊕ Λ(x), where

κ(0) = FC
Λ(1) = 1, Λ(2) = 26,Λ(4) = 24, Λ(8) = 30 .

Λ only activates 4 output bits:

Λ(x) & 36 = Λ(x) .

1 / 2

Anomalies

2 / 2

	Introduction
	

	All that we knew about "π
	

	What is its actual structure?
	

	Why "π looks worrying
	To build a backdoor
	Why the structure of "π is deliberate

	Conclusion
	

	Appendix

