Partitions in the S-Box of Streebog and Kuznyechik

Léo Perrin

@lpp_crypto

FSE'19, Paris

troduction				
00	000000	000000	0000000	00

From Russia with Love (1963)

How does the Lektor work?

 All that we knew about π
 What is its actual structure?
 Why π looks worrying

 OOOOOO
 OOOOOOO
 OOOOOOO

Introduction

 $\begin{aligned} \pi' &= (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, \\ 119, 240, 219, 147, 46, 153, 186, 23, 54, 241, 187, 20, 205, 95, 193, 249, 24, 101, \\ 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, \\ 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, \\ 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, \\ 183, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, \\ 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, \\ 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, \\ 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, \\ 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, \\ 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, \\ 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, \\ 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166, \\ 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182). \end{aligned}$

How does π work?

Introduction				
000	000000	000000	0000000	00
Outling				

1 Introduction

- 2 All that we knew about π
- 3 What is its actual structure?
- 4 Why π looks worrying
- 5 Conclusion

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
	●○○○○○	000000	00000000	OO
Outline				

1 Introduction

2 All that we knew about π

- 3 What is its actual structure?
- 4 Why π looks worrying

5 Conclusion

Previous decompositions: the TU-decomposition

- $\odot~$ Multiplication in \mathbb{F}_{2^4}
- ${\mathcal I}$ Inversion in ${\mathbb F}_{2^4}$
- $u_0 \,\,pprox {
 m Discrete logarithm in}\, {\mathbb F}_{2^4}$
- $u_{
 m 1},\sigma$ 4 imes 4 permutations
 - $\phi~$ 4 \times 4 function
- $lpha,\omega$ Linear permutations

Published in 2016¹.

¹A. Biryukov, L. Perrin, A. Udovenko. *Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr*1. EUROCRYPT'16.

Previous decompositions: the TU-decomposition

- $\odot~$ Multiplication in \mathbb{F}_{2^4}
- ${\mathcal I}$ Inversion in ${\mathbb F}_{2^4}$
- $u_0 \,\,pprox {
 m Discrete logarithm in}\, {\mathbb F}_{2^4}$
- $u_{
 m 1},\sigma$ 4 imes 4 permutations
 - $\phi~$ 4 \times 4 function
- $lpha,\omega$ Linear permutations

Published in 2016¹.

¹A. Biryukov, L. Perrin, A. Udovenko. *Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr*1. EUROCRYPT'16.

Previous decompositions: the TU-decomposition

- $\odot~$ Multiplication in \mathbb{F}_{2^4}
- ${\mathcal I}$ Inversion in ${\mathbb F}_{2^4}$
- $u_0 \,\,pprox { ext{Discrete logarithm in }} \mathbb{F}_{2^4}$
- u_{1},σ 4 imes 4 permutations
 - $\phi~$ 4 \times 4 function
- $lpha,\omega$ Linear permutations

Published in 2016¹.

ν₁ is differentially 16-uniform (the worst possible
for differential cryptanalysis)!

¹A. Biryukov, L. Perrin, A. Udovenko. *Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr*1. EUROCRYPT'16.

Previous decompositions: log-based

- Published in 2017²
- Completely different decomposition!
- Uses a \approx discrete log. in \mathbb{F}_{2^8} .

²L. Perrin, A. Udovenko. *Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog.* ToSC vol. 16.

	All that we knew about π		
	00000		
What th	en?		

Our results show that the algebraic structure, whose presence was known thanks to [PUB16], is stronger than hinted in this paper. The permutation π may have been built using one of the known decompositions. However, we think it more likely that each of these decompositions is a consequence of a strong algebraic structure used to design it, probably one related to a finite field exponential. Still this "master decomposition", from which the other would be consequences, remains elusive. Unfortunately, unless the Russian secret service release their design strategy, their exact process is likely to remain a mystery, if nothing else because of the existence of alternative decompositions: which exists by design and which is a mere side-effect of this design?

Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

	All that we knew about π			
000	000000	000000	00000000	00

Released by the designers

The following slides³ are about **Kuznyechik**.

Selection from known classes

- close to optimal values of some cryptographic parameters
- obvious analytical structure
- finite field inversion

Random search with a given limit on the parameters

- are not optimal when considering the aggregate of the values of the basic cryptographic properties
- do not have a pronounced analytical structure

³Vassilij Shishkin. Design principles of the perspective block encryption algorithm with a block length of 128 bits. https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

	All that we knew about π			
000	000000	000000	00000000	00

Released by the designers

The following slides³ are about **Kuznyechik**.

Selection from known classes

- close to optimal values of some cryptographic parameters
- obvious analytical structure
- finite field inversion

Random search with a given limit on the parameters

- are not optimal when considering the aggregate of the values of the basic cryptographic properties
- do not have a pronounced analytical structure

³Vassilij Shishkin. Design principles of the perspective block encryption algorithm with a block length of 128 bits. https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

	All that we knew about π			
000	00000	000000	0000000	00

By Saarinen and Brumleyo⁴ (2015)

"Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

⁴M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

All that we knew about π		
00000		

By Saarinen and Brumleyo⁴ (2015)

"Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

At ISO/IEC (Jun. 2018)

- The designers did not use the TU-decomposition.
- Aim: best possible differential/linear properties from an **"optimized random** search".
- Before the SHA-3 competition, the crypto community did not care about parameters origin and neither did the Streebog designers.

⁴M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

All that we knew about π		
00000		

By Saarinen and Brumleyo⁴ (2015)

"Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

At ISO/IEC (Jun. 2018)

- The designers did not use the TU-decomposition.
- Aim: best possible differential/linear properties from an **"optimized random** search".
- Before the SHA-3 competition, the crypto community did not care about parameters origin and neither did the Streebog designers. (?)

⁴M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

All that we knew about π		
00000		

By Saarinen and Brumleyo⁴ (2015)

"Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

At ISO/IEC (Jun. 2018)

- The designers did not use the TU-decomposition.
- Aim: best possible differential/linear properties from an "optimized random search".
- Before the SHA-3 competition, the crypto community did not care about parameters origin and neither did the Streebog designers. (?)

At CrossFyre 2018 (Sep. 2018)

During Q&A, a Russian cryptographer claimed the **TU-decomposition is correct**.

⁴M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

	What is its actual structure?	
	00000	
0.11		
Outline		

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

		What is its actual structure?	
		00000	
Partitions o	f 𝔽 _{2²m}		

Multiplicative cosets

Any element of $\mathbb{F}_{\mathbf{2}^{2mm}}^{*}$ can be written $\alpha^{i+(\mathbf{2}^{m}+\mathbf{1})j}$, so that

$$\mathbb{F}_{2^{2m}} = \{0\} \cup \left(\bigcup_{i=0}^{2^m} \alpha^i \odot \mathbb{F}_{2^m}^*\right) = \mathbb{F}_{2^m} \cup \left(\bigcup_{i=1}^{2^m} \alpha^i \odot \mathbb{F}_{2^m}^*\right)$$

		What is its actual structure?		
000	000000	00000	0000000	00
Partitions	of F _{22m}			

Multiplicative cosets

Any element of $\mathbb{F}_{2^{2mm}}^{*}$ can be written $\alpha^{i+(2^m+1)j}$, so that

$$\mathbb{F}_{2^{2m}} = \{0\} \cup \left(\bigcup_{i=0}^{2^m} \alpha^i \odot \mathbb{F}_{2^m}^*\right) = \mathbb{F}_{2^m} \cup \left(\bigcup_{i=1}^{2^m} \alpha^i \odot \mathbb{F}_{2^m}^*\right)$$

Additive cosets

 \mathbb{F}_{2^m} is a vector subspace of dimension m of $\mathbb{F}_{2^{2^m}}$.

 \implies there exists a subspace W of $\mathbb{F}_{2^{2m}}$ such that $\dim(W)=m$ and

$$\mathbb{F}_{2^{2m}} = \bigcup_{w \in W} w \oplus \mathbb{F}_{2^m} = W \cup \left(\bigcup_{w \in W} w \oplus \mathbb{F}_{2^m}^*\right)$$

		What is its actual structure?		
000	000000	00000	0000000	00
Partitions	of F _{22m}			

Multiplicative cosets

Any element of $\mathbb{F}_{2^{2mm}}^{*}$ can be written $\alpha^{i+(2^m+1)j}$, so that

$$\mathbb{F}_{2^{2m}} = \{0\} \cup \left(\bigcup_{i=0}^{2^m} \alpha^i \odot \mathbb{F}_{2^m}^*\right) = \mathbb{F}_{2^m} \cup \left(\bigcup_{i=1}^{2^m} \alpha^i \odot \mathbb{F}_{2^m}^*\right)$$

Additive cosets

 \mathbb{F}_{2^m} is a vector subspace of dimension m of $\mathbb{F}_{2^{2^m}}$.

 \implies there exists a subspace W of $\mathbb{F}_{2^{2m}}$ such that $\dim(W) = m$ and

$$\mathbb{F}_{2^{2m}} = \bigcup_{w \in W} w \oplus \mathbb{F}_{2^m} = W \cup \left(\bigcup_{w \in W} w \oplus \mathbb{F}_{2^m}^*\right)$$

Both partitions involve one vector space of dimension mand 2^m "almost spaces" of size $2^m - 1$.

	What is its actual structure?	
	00000	

	What is its actual structure?	
	00000	

- New tool: a vector space search algorithm!
- Expected: one space of dimension 4 mapped to another (when the right branch is 0).

	What is its actual structure?	
	00000	

- New tool: a vector space search algorithm!
- Expected: one space of dimension 4 mapped to another (when the right branch is 0).
- The tool found 2 such patterns!

		What is its actual structure?		
000	000000	00000	0000000	00

- New tool: a vector space search algorithm!
- Expected: one space of dimension 4 mapped to another (when the right branch is 0).
- The tool found 2 such patterns!
- This transition can be generalized to "almost space" trails.

	What is its actual structure?	
	00000	

- New tool: a vector space search algorithm!
- Expected: one space of dimension 4 mapped to another (when the right branch is 0).
- The tool found 2 such patterns!
- This transition can be generalized to "almost space" trails.
- 16 of them!

		What is its actual structure?		
000	000000	00000	0000000	00

	What is its actual structure?	
	000000	

	What is its actual structure?	
	000000	

	What is its actual structure?	
	000000	

 π maps the partition of \mathbb{F}_{2^8} into multiplicative cosets of $\mathbb{F}_{2^4}^*$ to its partition into additive cosets of $\mathbb{F}_{2^4}^*$!

		What is its actual structure?		
000	000000	000000	0000000	00
The TKlog				

A TKlog, denoted $\mathscr{T}_{\kappa,\mathrm{s}}$, operates on $\mathbb{F}_{\mathsf{2}^{2m}}$ and uses:

• α : a generator of $\mathbb{F}_{2^{2m}}$,

• κ : an affine function $\mathbb{F}_2^m o \mathbb{F}_{2^{2m}}$ with $\langle \kappa(\mathbb{F}_2^m) \cup \mathbb{F}_{2^m} \rangle = \mathbb{F}_{2^{2m}}$,

s: a permutation of $\mathbb{Z}/(2^m - 1)\mathbb{Z}$.

It works as follows:

$$\begin{cases} \mathscr{T}_{\kappa,s}(0) &= \kappa(0) \ ,\\ \mathscr{T}_{\kappa,s}\left((\alpha^{2^m+1})^j \right) &= \kappa(2^m-j), \text{ for } 1 \le j \le 2^m - 1 \ ,\\ \mathscr{T}_{\kappa,s}\left(\alpha^{i+(2^m+1)j} \right) &= \kappa(2^m-i) \oplus \left(\alpha^{2^m+1} \right)^{s(j)}, \text{ for } 0 < i, 0 \le j < 2^m - 1 \ .\end{cases}$$

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000	000000	○○○○○●	00000000	OO
_				

Some properties

Separation

 π satisfies the following set equalities

$$\begin{cases} \pi(\mathbb{F}_{2^4}) &= \kappa(\mathbb{F}_2^4) \\ \pi(\alpha^i \odot \mathbb{F}_{2^4}^*) &= \kappa(16-i) \oplus \mathbb{F}_{2^m}^*, \ \forall i \neq 0 \,. \end{cases}$$

Its restriction to each multiplicative coset is always the same:

$$\mathscr{T}_{\kappa,s}(\alpha^{i+(2^m+1)j}) = \underbrace{\kappa(2^m-i)}_{\in\kappa(\mathbb{F}_2^m)} \oplus \underbrace{(\alpha^{2^m+1})^{s(j)}}_{\in\mathbb{F}_{2^m}^*}$$

Introduction	All that we knew about π ΟΟΟΟΟΟ	What is its actual structure? ○○○○○●	Why π looks worrying 00000000	Conclusion OO
-				

Some properties

Separation

 π satisfies the following set equalities

$$\begin{cases} \pi(\mathbb{F}_{2^4}) &= \kappa(\mathbb{F}_2^4) \\ \pi(\alpha^i \odot \mathbb{F}_{2^4}^*) &= \kappa(16-i) \oplus \mathbb{F}_{2^m}^*, \ \forall i \neq 0 \,. \end{cases}$$

Its restriction to each multiplicative coset is always the same:

$$\mathscr{T}_{\kappa,s}(\alpha^{i+(2^m+1)j}) = \underbrace{\kappa(2^m-i)}_{\in\kappa(\mathbb{F}_2^m)} \oplus \underbrace{(\alpha^{2^m+1})^{s(j)}}_{\in\mathbb{F}_{2^m}^*}$$

If s depended on i then the coset-to-coset properties would still hold. π is even simpler than that!

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000	000000	○○○○○●	ΟΟΟΟΟΟΟΟ	OO
-				

Some properties

Separation

 π satisfies the following set equalities

$$\begin{cases} \pi(\mathbb{F}_{2^4}) &= \kappa(\mathbb{F}_2^4) \\ \pi(\alpha^i \odot \mathbb{F}_{2^4}^*) &= \kappa(16-i) \oplus \mathbb{F}_{2^m}^*, \ \forall i \neq 0 \,. \end{cases}$$

Its restriction to each multiplicative coset is always the same:

$$\mathscr{T}_{\kappa,s}(\alpha^{i+(2^m+1)j}) = \underbrace{\kappa(2^m-i)}_{\in\kappa(\mathbb{F}_2^m)} \oplus \underbrace{(\alpha^{2^m+1})^{s(j)}}_{\in\mathbb{F}_{2^m}^*}$$

If s depended on i then the coset-to-coset properties would still hold. π is even simpler than that!

The missing link

A TKlog instance **always** has a TU-decomposition identical to that in the EC'16 paper.

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000		000000	●○○○○○○○	OO
Outline				

1 Introduction

- 2 All that we knew about π
- 3 What is its actual structure?
- 4 Why π looks worrying

5 Conclusion

Partition-based backdoors (1/2)

In⁵, Bannier introduced a backdoor such that, regardless of the key schedule:

 $x \in \mathcal{V}_i \Leftrightarrow E_k(x) \in \mathcal{W}_i$

where the \mathcal{V}_i and \mathcal{W}_i are affine spaces of constant dimension.

Theorem (simplified)

In order to enable a partition-based backdoor, an S-box S of \mathbb{F}_2^{2m} must be such that

$$(\omega^{-1} \circ \mathbf{S} \circ \alpha^{-1})(\mathbf{x}, \mathbf{y}) = T_{\mathbf{y}}(\mathbf{x}) \oplus u(\mathbf{y})$$

for some linear permutations α, ω .

⁵Arnaud Bannier. Combinatorial Analysis of Block Ciphers With Trapdoors. PhD thesis ENSAM 2017.

Partition-based backdoors (1/2)

In⁵, Bannier introduced a backdoor such that, regardless of the key schedule:

 $x \in \mathcal{V}_i \Leftrightarrow E_k(x) \in \mathcal{W}_i$

where the \mathcal{V}_i and \mathcal{W}_i are affine spaces of constant dimension.

Theorem (simplified)

In order to enable a partition-based backdoor, an S-box S of \mathbb{F}_2^{2m} must be such that

$$(\omega^{-1} \circ \mathbf{S} \circ \alpha^{-1})(\mathbf{x}, \mathbf{y}) = T_{\mathbf{y}}(\mathbf{x}) \oplus u(\mathbf{y})$$

for some linear permutations $lpha, \omega.$

In other words:

$$S(\alpha^{-1}(0,y)\oplus \mathcal{V}) = \omega(0,u(y))\oplus \mathcal{W}, \text{ where } \begin{cases} \mathcal{V} = \alpha^{-1}(\{(x,0),x\in \mathbb{F}_2^m\})\\ \mathcal{W} = \omega(\{(x,0),x\in \mathbb{F}_2^m\}) \end{cases}$$

⁵Arnaud Bannier. Combinatorial Analysis of Block Ciphers With Trapdoors. PhD thesis ENSAM 2017.

			Why π looks worrying	
000	000000	000000	0000000	00
		1- 1->		

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor, it is necessary to have an S-box mapping additive cosets of a subspace to additive cosets of a subspace.

-				
000	000000	000000	0000000	00
			Why π looks worrying	

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor, it is necessary to have an S-box mapping additive cosets of a subspace to additive cosets of a subspace.

 π does not.

000	000000	000000	0000000	00
			Why π looks worrying	

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor, it is necessary to have an S-box mapping additive cosets of a subspace to additive cosets of a subspace.

 π does not.

But.

The linear layer of Streebog interacts with both additive and multiplicative cosets of $\mathbb{F}_{2^4}!$

The linear layer of Streebog

5.4 Линейное преобразование множества двоичных векторов

Пненйное преобразование / множетва дволченых векторов V₄₄ задается умноженнем справа на матрицу на на полем GPG2, торок которой записаны нике поспедовательно в шестнадцатеричном виде. Строка матриць с номером *j*, *j* = 0...,63, записанная в виде а_{j,15} ...,a_{j,0}, где a_{j,1} < Z₁₆, *t* = 0,...,15, всть Vec2₆(a₁), III.../Vec2₆(a₂).

8e20faa72ba0b470	47107ddd9b505a38
6c022c38f90a4c07	3601161cf205268d
a011d380818e8f40	5086e740ce47c920
0ad97808d06cb404	05e23c0468365a02
90dab52a387ae76f	486dd4151c3dfdb9
092e94218d243cba	8a174a9ec8121e5d
9d4df05d5f661451	c0a878a0a1330aa6
18150f14b9ec46dd	0c84890ad27623e0
86275df09ce8aaa8	439da0784e745554
e230140fc0802984	71180a8960409a42
456c34887a3805b9	ac361a443d1c8cd2
9bcf4486248d9f5d	c3e9224312c8c1a0
e4fa2054a80b329c	727d102a548b194e
492c024284fbaec0	aa16012142f35760
70a6a56e2440598e	3853dc371220a247
07e095624504536c	8d70c431ac02a736

ad08b0e0c3282d1c 1b8e0b0e798c13c8 2843fd2067adea10 8c711e02341b2d01 24b86a840e90f0d2 4585254f64090fa0 60543c50de970553 0642ca05693b9f70 afc0503c273aa42a b60c05ca30204d21 561b0d22900e4669 effa11af0964ee50 39b008152acb8227 550b8e9e21f7a530 1ca76e95091051ad c83862965601dd1b

d8045870ef14980e 83478b07b2468764 14aff010bdd87508 46b60f011a83988e 125c354207487869 accc9ca9328a8950 302a1e286fc58ca7 0321658cba93c138 d960281e9d1d5215 5b068c651810a89e 2b838811480723ba f97d86d98a327728 9258048415eb419d a48b474f9ef5dc18 0edd37c48a08a6d8 641c314b2b8ee083

The linear layer of Streebog

5.4 Линейное преобразование множества двоичных векторов

Пненйное преобразование / множетва дволченых векторов V₄₄ задается умноженнем справа на матрицу на на полем GPG2, торок которой записаны нике поспедовательно в шестнадцатеричном виде. Строка матриць с номером *j*, *j* = 0...,63, записанная в виде а_{j,15} ...,a_{j,0}, где a_{j,1} < Z₁₆, *t* = 0,...,15, всть Vec2₆(a₁), III.../Vec2₆(a₂).

8e20faa72ba0b470	47107ddd9b505a38	ad08b0e0c3282d1c	d8045870ef14980e
6c022c38f90a4c07	3601161cf205268d	1b8e0b0e798c13c8	83478b07b2468764
a011d380818e8f40	5086e740ce47c920	2843fd2067adea10	14aff010bdd87508
0ad97808d06cb404	05e23c0468365a02	8c711e02341b2d01	46b60f011a83988e
90dab52a387ae76f	486dd4151c3dfdb9	24b86a840e90f0d2	125c354207487869
092e94218d243cba	8a174a9ec8121e5d	4585254f64090fa0	accc9ca9328a8950
9d4df05d5f661451	c0a878a0a1330aa6	60543c50de970553	302a1e286fc58ca7
18150f14b9ec46dd	0c84890ad27623e0	0642ca05693b9f70	0321658cba93c138
86275df09ce8aaa8	439da0784e745554	afc0503c273aa42a	d960281e9d1d5215
e230140fc0802984	71180a8960409a42	b60c05ca30204d21	5b068c651810a89e
456c34887a3805b9	ac361a443d1c8cd2	561b0d22900e4669	2b838811480723ba
9bcf4486248d9f5d	c3e9224312c8c1a0	effa11af0964ee50	f97d86d98a327728
e4fa2054a80b329c	727d102a548b194e	39b008152acb8227	9258048415eb419d
492c024284fbaec0	aa16012142f35760	550b8e9e21f7a530	a48b474f9ef5dc18
70a6a56e2440598e	3853dc371220a247	1ca76e95091051ad	0edd37c48a08a6d8
07e095624504536c	8d70c431ac02a736	c83862965601dd1b	641c314b2b8ee083

It is actually an 8 imes 8 matrix of \mathbb{F}_{2^8} ...

The linear layer of Streebog

5.4 Линейное преобразование множества двоичных векторов

Пненйное преобразование / множетва дволченых векторов V₄₄ задается умноженнем справа на матрицу на на полем GPG2, торок которой записаны нике поспедовательно в шестнадцатеричном виде. Строка матриць с номером *j*, *j* = 0...,63, записанная в виде а_{j,15} ...,a_{j,0}, где a_{j,1} < Z₁₆, *t* = 0,...,15, всть Vec2₆(a₁), III.../Vec2₆(a₂).

8e20faa72ba0b470	47107ddd9b505a38	ad08b0e0c3282d1c	d8045870ef14980e
6c022c38f90a4c07	3601161cf205268d	1b8e0b0e798c13c8	83478b07b2468764
a011d380818e8f40	5086e740ce47c920	2843fd2067adea10	14aff010bdd87508
0ad97808d06cb404	05e23c0468365a02	8c711e02341b2d01	46b60f011a83988e
90dab52a387ae76f	486dd4151c3dfdb9	24b86a840e90f0d2	125c354207487869
092e94218d243cba	8a174a9ec8121e5d	4585254f64090fa0	accc9ca9328a8950
9d4df05d5f661451	c0a878a0a1330aa6	60543c50de970553	302a1e286fc58ca7
18150f14b9ec46dd	0c84890ad27623e0	0642ca05693b9f70	0321658cba93c138
86275df09ce8aaa8	439da0784e745554	afc0503c273aa42a	d960281e9d1d5215
e230140fc0802984	71180a8960409a42	b60c05ca30204d21	5b068c651810a89e
456c34887a3805b9	ac361a443d1c8cd2	561b0d22900e4669	2b838811480723ba
9bcf4486248d9f5d	c3e9224312c8c1a0	effa11af0964ee50	f97d86d98a327728
e4fa2054a80b329c	727d102a548b194e	39b008152acb8227	9258048415eb419d
492c024284fbaec0	aa16012142f35760	550b8e9e21f7a530	a48b474f9ef5dc18
70a6a56e2440598e	3853dc371220a247	1ca76e95091051ad	0edd37c48a08a6d8
07e095624504536c	8d70c431ac02a736	c83862965601dd1b	641c314b2b8ee083

It is actually an 8 \times 8 matrix of $\mathbb{F}_{2^8}...$ defined in the same field as $\pi!$

			Why π looks worrying	
000	000000	000000	0000000	00

Subfield to multiplicative cosets

$$L = \begin{bmatrix} 83 & 47 & 8b & 07 & b2 & 46 & 87 & 64 \\ 46 & b6 & 0f & 01 & 1a & 83 & 98 & 8e \\ ac & cc & 9c & a9 & 32 & 8a & 89 & 50 \\ 03 & 21 & 65 & 8c & ba & 93 & c1 & 38 \\ 5b & 06 & 8c & 65 & 18 & 10 & a8 & 9e \\ f9 & 7d & 86 & d9 & 8a & 32 & 77 & 28 \\ a4 & 8b & 47 & 4f & 9e & f5 & dc & 18 \\ 64 & 1c & 31 & 4b & 2b & 8e & e0 & 83 \end{bmatrix}$$

٠

If X = (x, 0, ..., 0), then

$$X \times L = \left(x \odot L_{0,0}, \, x \odot L_{0,1}, ..., \, x \odot L_{0,7} \right).$$

			Why π looks worrying	
000	000000	000000	0000000	00

Subfield to multiplicative cosets

$$L = \begin{bmatrix} 83 & 47 & 8b & 07 & b2 & 46 & 87 & 64 \\ 46 & b6 & 0f & 01 & 1a & 83 & 98 & 8e \\ ac & cc & 9c & a9 & 32 & 8a & 89 & 50 \\ 03 & 21 & 65 & 8c & ba & 93 & c1 & 38 \\ 5b & 06 & 8c & 65 & 18 & 10 & a8 & 9e \\ f9 & 7d & 86 & d9 & 8a & 32 & 77 & 28 \\ a4 & 8b & 47 & 4f & 9e & f5 & dc & 18 \\ 64 & 1c & 31 & 4b & 2b & 8e & e0 & 83 \end{bmatrix}$$

If X = (x, 0, ..., 0), then

$$X \times L = (x \odot L_{0,0}, x \odot L_{0,1}, ..., x \odot L_{0,7}).$$

Open problems

- Is there a stronger hidden structure in L?
- Can we leverage these properties to attack Streebog (or Kuznyechik)?

			Why π looks worrying ○○○○○●○○	
Some natural questions		al questions		

Isn't it possible to find a decomposition in any permutation?

Others have used exponential/log-based S-boxes... why is it wrong this time?

What is so special about this 3rd (!) decomposition? Why would this one be the one used by the designers?

		Why π looks worrying	
Some natural questions			

Isn't it possible to find a decomposition in any permutation?

No.

Others have used exponential/log-based S-boxes... why is it wrong this time?

What is so special about this 3rd (!) decomposition? Why would this one be the one used by the designers?

Introduction 000	All that we knew about π	What is its actual structure?	Why <i>π</i> looks worrying	Conclusion OO
Some na	tural questions			

Isn't it possible to find a decomposition in any permutation?

No.

Others have used exponential/log-based S-boxes... why is it wrong this time?

Because it's not a logarithm, it maps \mathbb{F}_{2^8} to itself (and not $\mathbb{Z}/2^8\mathbb{Z}$). It also interacts in a very non-trivial way with the linear layer of Streebog.

What is so special about this 3rd (!) decomposition? Why would this one be the one used by the designers?

			Why π looks worrying	
000	000000	000000	00000000	00

The presence of the TKlog has to be deliberate

8-bit permutations

 $256!\,\approx\,2^{1684}$

8-bit TKlogs

8-bit affine permutations

			Why π looks worrying	
000	000000	000000	00000000	00

The presence of the TKlog has to be deliberate

 $256!\,\approx\,2^{1684}$

8-bit TKlogs

8-bit affine permutations

If a "random permutation generator" returned an affine permutation, you would conclude that it did so on purpose. The situation is the same for TKlogs.

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion		
000	000000	000000	○○○○○○○○	OO		
Possible generation algorithm						

Generate a random TKlog

- 2 Are **both** linearity and diff. uniformity the best possible for a TKlog?
 - if not, go back to 1.
 - if yes, then output the TKlog

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion		
000	000000	000000	○○○○○○○○	OO		
Possible generation algorithm						

1 Generate a random TKlog

2 Are both linearity and diff. uniformity the best possible for a TKlog?

- if not, go back to 1.
- if yes, then output the TKlog

We only need to generate $pprox 2^{10.6}$ instances (experimental result).

The result closely resembles π and it is **not** better than a "regular" logarithm.

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000		000000	00000000	O
Outline				

1 Introduction

- 2 All that we knew about π
- 3 What is its actual structure?
- 4 Why π looks worrying

5 Conclusion

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000	ΟΟΟΟΟΟ	000000	00000000	
Conclusion				

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
Conclusion				

The TKlog structure in π ...

... is a deliberate choice by its designers,

... is very reminiscent of a known backdoor structure.

Introduction 000	All that we knew about π ΟΟΟΟΟΟ	What is its actual structure?	Why π looks worrying 00000000	Conclusion
Conclusion				

The TKlog structure in π ...

... is a **deliberate** choice by its designers, ... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their "random generation process" could output an S-box mapping cosets of $\mathbb{F}_{2^4}^*$ to cosets of $\mathbb{F}_{2^4}^*$ to cosets of $\mathbb{F}_{2^4}^*$ in the same field as the one used for the linear layer of Streebog, and why that might be a good thing...

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000	ΟΟΟΟΟΟ		00000000	O O
Conclusion				

The TKlog structure in π ...

... is a **deliberate** choice by its designers, ... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their "random generation process" could output an S-box mapping cosets of $\mathbb{F}_{2^4}^*$ to cosets of $\mathbb{F}_{2^4}^*$ to cosets of $\mathbb{F}_{2^4}^*$ in the same field as the one used for the linear layer of Streebog, and why that might be a good thing...

... Do not use these algorithms.

Introduction	All that we knew about π	What is its actual structure?	Why π looks worrying	Conclusion
000	ΟΟΟΟΟΟ		00000000	O O
Conclusion				

The TKlog structure in π ...

... is a **deliberate** choice by its designers, ... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their "random generation process" could output an S-box mapping cosets of $\mathbb{F}_{2^4}^*$ to cosets of $\mathbb{F}_{2^4}^*$ to cosets of $\mathbb{F}_{2^4}^*$ in the same field as the one used for the linear layer of Streebog, and why that might be a good thing...

... Do not use these algorithms.

... Do not standardize them.

• κ is such that $\kappa(x) = \kappa(0) \oplus \Lambda(x)$, where

$$\kappa(0) = FC$$

 $\Lambda(1) = 1, \ \Lambda(2) = 26, \ \Lambda(4) = 24, \ \Lambda(8) = 30.$

 Λ only activates 4 output bits:

$$\Lambda(x) \& 36 = \Lambda(x).$$

Anomalies

