Partitions in the S-Box of Streebog and Kuznyechik

Léo Perrin

@lpp_crypto

FSE'19, Paris

From Russia with Love (1963)

How does the Lektor work?

From Russia with Love? (2016-2019)

$\pi^{\prime}=(252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,233$, $119,240,219,147,46,153,186,23,54,241.187,20,205,95,193,249,24,101$, $90,226,92,239,33,129,28,60,66,139,1,142,79,5,132,2,174,227,106,143$, $160,6,11,237,152,127,212,211,31,235,52,44,81,234,200,72,171,242,42$, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, $183,93,135,21,161,150,41,16,123,154,199,243,145,120,111,157,158,178$, $177,50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,223$, $245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,224,15,236$, $222,122,148,176,188,220,232,40,80,78,51,10,74,167,151,96,115,30,0$, $98,68,26,184,56,130,100,159,38,65,173,69,70,146,39,94,85,47,140,163$, $165,125,105,213,149,59,7,88,179,64,134,172,29,247,48,55,107,228,136$, $217,231,137,225,27,131,73,76,63,248,254,141,83,170,144,202,216,133$, $97,32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,89,166$, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

How does π work?

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

Previous decompositions: the TU-decomposition

- Multiplication in $\mathbb{F}_{2^{4}}$

I Inversion in $\mathbb{F}_{2^{4}}$
$\nu_{0} \approx$ Discrete logarithm in $\mathbb{F}_{2^{4}}$
$\nu_{1}, \sigma 4 \times 4$ permutations
$\phi 4 \times 4$ function
α, ω Linear permutations

Published in 2016 ${ }^{1}$.
${ }^{1}$ A. Biryukov, L. Perrin, A. Udovenko. Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr1. EUROCRYPT'16.

Previous decompositions: the TU-decomposition

- Multiplication in $\mathbb{F}_{2^{4}}$

I Inversion in $\mathbb{F}_{2^{4}}$
$\nu_{0} \approx$ Discrete logarithm in $\mathbb{F}_{2^{4}}$
$\nu_{1}, \sigma 4 \times 4$ permutations
$\phi 4 \times 4$ function
α, ω Linear permutations

Published in 2016 ${ }^{1}$.
${ }^{1}$ A. Biryukov, L. Perrin, A. Udovenko. Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr1. EUROCRYPT'16.

Previous decompositions: the TU-decomposition

- Multiplication in $\mathbb{F}_{2^{4}}$

I Inversion in $\mathbb{F}_{2^{4}}$
$\nu_{0} \approx$ Discrete logarithm in $\mathbb{F}_{2^{4}}$
$\nu_{1}, \sigma 4 \times 4$ permutations
$\phi 4 \times 4$ function
α, ω Linear permutations

Published in 2016 ${ }^{1}$.
ν_{1} is differentially 16-uniform (the worst possible for differential cryptanalysis)!

[^0]
Previous decompositions: log-based

- Published in 2017^{2}

■ Completely different decomposition!

■ Uses $\mathrm{a} \approx$ discrete log. in $\mathbb{F}_{2^{8}}$.

[^1]
What then?

Our results show that the algebraic structure, whose presence was known thanks to [PUB16], is stronger than hinted in this paper. The permutation π may have been built using one of the known decompositions. However, we think it more likely that each of these decompositions is a consequence of a strong algebraic structure used to design it, probably one related to a finite field exponential. Still this "master decomposition", from which the other would be consequences, remains elusive. Unfortunately, unless the Russian secret service release their design strategy, their exact process is likely to remain a mystery, if nothing else because of the existence of alternative decompositions: which exists by design and which is a mere side-effect of this design?

Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Released by the designers

The following slides ${ }^{3}$ are about Kuznyechik.

Синтез нелинейного преобразования

Выбор из известных классов

- близкие к оптимальным значения некоторых криштографических параметров
- очевидная аналитическая структура
- обращение элемента в поле

Случайньй поиск с заданным ограничением на параметры
не оптимальны по совокупности значений основных криптографических характеристик

- не обладают выраженным аналитическим строением

Selection from known classes

- close to optimal values of some cryptographic parameters
- obvious analytical structure
- finite field inversion

Random search with a given limit on the parameters

- are not optimal when considering the aggregate of the values of the basic cryptographic properties
- do not have a pronounced analytical structure

[^2]
Released by the designers

The following slides ${ }^{3}$ are about Kuznyechik.

Синтез нелинейного преобразования

Выбор из известных классов

- близкие к оптимальным значения некоторых криштографических параметров
- очевидная аналитическая структура
- обращение элемента в поле

Случайный понск с заданным ограничением на параметры
не оптимальны по совокупности значений основных криптографических характеристик

- не обладают выраженным аналитическим строением

Selection from known classes

- close to optimal values of some cryptographic parameters
- obvious analytical structure
- finite field inversion

Random search with a given limit on the parameters

- are not optimal when considering the aggregate of the values of the basic cryptographic properties

■ do not have a pronounced analytical structure

[^3]
Obtained from the designers

By Saarinen and Brumleyo ${ }^{4}$ (2015)

" Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

[^4]
Obtained from the designers

By Saarinen and Brumleyo ${ }^{4}$ (2015)

" Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

At ISO/IEC (Jun. 2018)

- The designers did not use the TU-decomposition.
- Aim: best possible differential/linear properties from an "optimized random search".
- Before the SHA-3 competition, the crypto community did not care about parameters origin and neither did the Streebog designers.

[^5]
Obtained from the designers

By Saarinen and Brumleyo ${ }^{4}$ (2015)

" Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

At ISO/IEC (Jun. 2018)

- The designers did not use the TU-decomposition.

■ Aim: best possible differential/linear properties from an "optimized random search".

- Before the SHA-3 competition, the crypto community did not care about parameters origin and neither did the Streebog designers. (?)

[^6]
Obtained from the designers

By Saarinen and Brumleyo ${ }^{4}$ (2015)

" Randomization using various building blocks was simply iterated until a "good enough" permutation was found. This was seen as an effective countermeasure against yet-unknown attacks. "

At ISO/IEC (Jun. 2018)

- The designers did not use the TU-decomposition.

■ Aim: best possible differential/linear properties from an "optimized random search".

- Before the SHA-3 competition, the crypto community did not care about parameters origin and neither did the Streebog designers. (?)

At CrossFyre 2018 (Sep. 2018)

During Q\&A, a Russian cryptographer claimed the TU-decomposition is correct.

[^7]
Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

Partitions of $\mathbb{F}_{2^{2 m}}$

Multiplicative cosets

Any element of $\mathbb{F}_{2^{2 m m}}^{*}$ can be written $\alpha^{i+\left(2^{m}+1\right) j}$, so that

$$
\mathbb{F}_{2^{2 m}}=\{0\} \cup\left(\bigcup_{i=0}^{2^{m}} \alpha^{i} \odot \mathbb{F}_{2^{*}}^{*}\right)=\mathbb{F}_{2^{m}} \cup\left(\bigcup_{i=1}^{2^{m}} \alpha^{i} \odot \mathbb{F}_{2^{m}}^{*}\right) .
$$

Partitions of $\mathbb{F}_{2^{2 m}}$

Multiplicative cosets

Any element of $\mathbb{F}_{2^{2 m m}}^{*}$ can be written $\alpha^{i+\left(2^{m}+1\right) j}$, so that

$$
\mathbb{F}_{2^{2 m}}=\{0\} \cup\left(\bigcup_{i=0}^{2^{m}} \alpha^{i} \odot \mathbb{F}_{2^{m}}^{*}\right)=\mathbb{F}_{2^{m}} \cup\left(\bigcup_{i=1}^{2^{m}} \alpha^{i} \odot \mathbb{F}_{2^{m}}^{*}\right)
$$

Additive cosets

$\mathbb{F}_{2^{m}}$ is a vector subspace of dimension m of $\mathbb{F}_{2^{2 m}}$.
\Longrightarrow there exists a subspace W of $\mathbb{F}_{2^{2 m}}$ such that $\operatorname{dim}(W)=m$ and

$$
\mathbb{F}_{2^{2 m}}=\bigcup_{w \in W} w \oplus \mathbb{F}_{2^{m}}=w \cup\left(\bigcup_{w \in W} w \oplus \mathbb{F}_{2^{m}}^{*}\right)
$$

Partitions of $\mathbb{F}_{2^{2 m}}$

Multiplicative cosets

Any element of $\mathbb{F}_{2^{2 m m}}^{*}$ can be written $\alpha^{i+\left(2^{m}+1\right) j}$, so that

$$
\mathbb{F}_{2^{2 m}}=\{0\} \cup\left(\bigcup_{i=0}^{2^{m}} \alpha^{i} \odot \mathbb{F}_{2^{m}}^{*}\right)=\mathbb{F}_{2^{m}} \cup\left(\bigcup_{i=1}^{2^{m}} \alpha^{i} \odot \mathbb{F}_{2^{m}}^{*}\right)
$$

Additive cosets

$\mathbb{F}_{2^{m}}$ is a vector subspace of dimension m of $\mathbb{F}_{2^{2 m}}$.
\Longrightarrow there exists a subspace W of $\mathbb{F}_{2^{2 m}}$ such that $\operatorname{dim}(W)=m$ and

$$
\mathbb{F}_{2^{2 m}}=\bigcup_{w \in W} w \oplus \mathbb{F}_{2^{m}}=w \cup\left(\bigcup_{w \in W} w \oplus \mathbb{F}_{2^{m}}^{*}\right)
$$

Both partitions involve one vector space of dimension m and 2^{m} "almost spaces" of size $2^{m}-1$.

Here we go again!

- New tool: a vector space search algorithm!

Here we go again!

■ New tool: a vector space search algorithm!

■ Expected: one space of dimension 4 mapped to another (when the right branch is 0).

Here we go again!

- New tool: a vector space search algorithm!
- Expected: one space of dimension 4 mapped to another (when the right branch is 0).

■ The tool found 2 such patterns!

Here we go again!

- New tool: a vector space search algorithm!
- Expected: one space of dimension 4 mapped to another (when the right branch is 0).

■ The tool found 2 such patterns!

- This transition can be generalized to "almost space" trails.

Here we go again!

■ New tool: a vector space search algorithm!

■ Expected: one space of dimension 4 mapped to another (when the right branch is 0).

■ The tool found 2 such patterns!

- This transition can be generalized to "almost space" trails.
- 16 of them!

Cosets to cosets

$\mathbb{F}_{2^{8}}$

$$
\pi\left(\mathbb{F}_{2^{8}}\right)=\mathbb{F}_{2^{8}}
$$

Cosets to cosets

$\mathbb{F}_{2^{8}}$

$$
\pi\left(\mathbb{F}_{2^{8}}\right)=\mathbb{F}_{2^{8}}
$$

Cosets to cosets

Cosets to cosets

Cosets to cosets

π maps the partition of $\mathbb{F}_{2^{8}}$ into multiplicative cosets of $\mathbb{F}_{2^{4}}^{*}$ to its partition into additive cosets of $\mathbb{F}_{2^{4}}^{*}$!

The TKlog

A TKlog, denoted $\mathscr{T}_{\kappa, s}$, operates on $\mathbb{F}_{2^{2 m}}$ and uses:
■ α : a generator of $\mathbb{F}_{2^{2 m}}$,
■ κ : an affine function $\mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2^{2 m}}$ with $\left\langle\kappa\left(\mathbb{F}_{2}^{m}\right) \cup \mathbb{F}_{2^{m}}\right\rangle=\mathbb{F}_{2^{2 m}}$,
■ s: a permutation of $\mathbb{Z} /\left(2^{m}-1\right) \mathbb{Z}$.

It works as follows:

$$
\begin{cases}\mathscr{T}_{\kappa, s}(0) & =\kappa(0), \\ \mathscr{T}_{\kappa, s}\left(\left(\alpha^{2^{m}+1}\right)^{j}\right) & =\kappa\left(2^{m}-j\right), \text { for } 1 \leq j \leq 2^{m}-1 \\ \mathscr{T}_{\kappa, s}\left(\alpha^{i+\left(2^{m}+1\right) j}\right) & =\kappa\left(2^{m}-i\right) \oplus\left(\alpha^{2^{m}+1}\right)^{s(j)}, \text { for } 0<i, 0 \leq j<2^{m}-1\end{cases}
$$

Some properties

Separation

π satisfies the following set equalities

$$
\begin{cases}\pi\left(\mathbb{F}_{2^{4}}\right) & =\kappa\left(\mathbb{F}_{2}^{4}\right) \\ \pi\left(\alpha^{i} \odot \mathbb{F}_{2^{4}}^{*}\right) & =\kappa(16-i) \oplus \mathbb{F}_{2^{m}}^{*}, \forall i \neq 0\end{cases}
$$

Its restriction to each multiplicative coset is always the same:

$$
\mathscr{T}_{\kappa, s}\left(\alpha^{i+\left(2^{m}+1\right) j}\right)=\underbrace{\kappa\left(2^{m}-i\right)}_{\in \kappa\left(\mathbb{F}_{2}^{m}\right)} \oplus \underbrace{\left(\alpha^{2^{m}+1}\right)^{s(j)}}_{\in \mathbb{F}_{2^{m}}^{*}}
$$

Some properties

Separation

π satisfies the following set equalities

$$
\begin{cases}\pi\left(\mathbb{F}_{2^{4}}\right) & =\kappa\left(\mathbb{F}_{2}^{4}\right) \\ \pi\left(\alpha^{i} \odot \mathbb{F}_{2^{4}}^{*}\right) & =\kappa(16-i) \oplus \mathbb{F}_{2^{m}}^{*}, \forall i \neq 0\end{cases}
$$

Its restriction to each multiplicative coset is always the same:

$$
\mathscr{T}_{\kappa, s}\left(\alpha^{i+\left(2^{m}+1\right) j}\right)=\underbrace{\kappa\left(2^{m}-i\right)}_{\in \kappa\left(\mathbb{F}_{2}^{m}\right)} \oplus \underbrace{\left(\alpha^{2^{m}+1}\right)^{s(j)}}_{\in \mathbb{F}_{2^{m}}^{*}}
$$

If s depended on i then the coset-to-coset properties would still hold. π is even simpler than that!

Some properties

Separation

π satisfies the following set equalities

$$
\begin{cases}\pi\left(\mathbb{F}_{2^{4}}\right) & =\kappa\left(\mathbb{F}_{2}^{4}\right) \\ \pi\left(\alpha^{i} \odot \mathbb{F}_{2^{4}}^{*}\right) & =\kappa(16-i) \oplus \mathbb{F}_{2^{m}}^{*}, \forall i \neq 0\end{cases}
$$

Its restriction to each multiplicative coset is always the same:

$$
\mathscr{T}_{\kappa, s}\left(\alpha^{i+\left(2^{m}+1\right) j}\right)=\underbrace{\kappa\left(2^{m}-i\right)}_{\in \kappa\left(\mathbb{F}_{2}^{m}\right)} \oplus \underbrace{\left(\alpha^{2^{m}+1}\right)^{s(j)}}_{\in \mathbb{F}_{2^{m}}^{*}}
$$

If s depended on i then the coset-to-coset properties would still hold. π is even simpler than that!

The missing link
A TKlog instance always has a TU-decomposition identical to that in the EC'16 paper.

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

Partition-based backdoors (1/2)

In^{5}, Bannier introduced a backdoor such that, regardless of the key schedule:

$$
x \in \mathcal{V}_{i} \Leftrightarrow E_{k}(x) \in \mathcal{W}_{i}
$$

where the \mathcal{V}_{i} and \mathcal{W}_{i} are affine spaces of constant dimension.

Theorem (simplified)

In order to enable a partition-based backdoor, an S-box S of $\mathbb{F}_{2}^{2 m}$ must be such that

$$
\left(\omega^{-1} \circ S \circ \alpha^{-1}\right)(x, y)=T_{y}(x) \oplus u(y)
$$

for some linear permutations α, ω.

[^8]
Partition-based backdoors (1/2)

In^{5}, Bannier introduced a backdoor such that, regardless of the key schedule:

$$
x \in \mathcal{V}_{i} \Leftrightarrow E_{k}(x) \in \mathcal{W}_{i}
$$

where the \mathcal{V}_{i} and \mathcal{W}_{i} are affine spaces of constant dimension.

Theorem (simplified)

In order to enable a partition-based backdoor, an S-box S of $\mathbb{F}_{2}^{2 m}$ must be such that

$$
\left(\omega^{-1} \circ S \circ \alpha^{-1}\right)(x, y)=T_{y}(x) \oplus u(y)
$$

for some linear permutations α, ω.
In other words:

$$
s\left(\alpha^{-1}(0, y) \oplus \mathcal{V}\right)=\omega(0, u(y)) \oplus \mathcal{W}, \text { where } \begin{cases}\mathcal{V} & =\alpha^{-1}\left(\left\{(x, 0), x \in \mathbb{F}_{2}^{m}\right\}\right) \\ \mathcal{W} & =\omega\left(\left\{(x, 0), x \in \mathbb{F}_{2}^{m}\right\}\right)\end{cases}
$$

[^9]
Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor, it is necessary to have an S-box mapping additive cosets of a subspace to additive cosets of a subspace.

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor, it is necessary to have an S-box mapping additive cosets of a subspace to additive cosets of a subspace.
π does not.

Partition-based backdoors (2/2)

What Bannier established is that, in order to have a partition-preserving backdoor, it is necessary to have an S-box mapping additive cosets of a subspace to additive cosets of a subspace.
π does not.

But.

The linear layer of Streebog interacts with both additive and multiplicative cosets of $\mathbb{F}_{2^{4}}$!

000

The linear layer of Streebog

5.4 Линейное преобразование множества двоичных векторов

Линейное преобразование / множества двоичных векторов V_{64} задается умножением справа на матрицу A над полем $G F(2)$, строки которой записаны ниже последовательно в шестнадцатеричном виде. Строка матрицы с номером $j, j=0, \ldots, 63$, записанная в виде $a_{j, 15} \ldots a_{j, 0}$, где $a_{j, 1} \in \mathbb{Z}_{16} . j=0, \ldots, 15$, есть $\operatorname{Vec}_{4}\left(a_{j 15}\right)\|\ldots\| \operatorname{Vec}_{4}\left(a_{j, 0}\right)$.

Be20才aa72ba0b470	47107ddd9b505a38
$60022 \mathrm{c} 38990 \mathrm{a4c07}$	3601161cf205268d
a011d380818e8f40	5086e740ce47c920
Oad97808d06cb404	05e23c0468365a02
90dab52a387ae76f	486dd4151c3dfdb9
092e94218d243cba	8a174a9ec8121e5d
$9 \mathrm{~d} 4 \mathrm{df05d5f661451}$	c0a878a0a1330aa6
18150f14b9ec46dd	0c84890ad27623e0
86275df09ce8aaa8	439da0784e745554
e230140fc0802984	$71180 \mathrm{a8960409a42}$
456c34887a3805b9	ac361a443d1c8cd2
$9 \mathrm{bcf4486248d9f5d}$	c3e9224312c8c1a0
e4fa2054a80b329c	727d102a548b194e
492c024284fbaec0	aa16012142 135760
70a6a56e2440598e	3853dc371220a247
07e095624504536	8 d

ad08b0e0c3282d1c 1b8e0b0e798c13c8 2843id2067adea10 8c711e02341b2d01 24b86a840e90f0d2 4585254f64090fa0 60543 c50de970553 0642ca05693b9f70 afc0503c273aa42a b60c05ca30204d21 561 b 0 d 22900 e 4669 offa11af0964ee50 39 b 008152 acb 8227 550b8e9e21f7a530 1ca76e95091051ad c83862965601dd1b
d8045870ef14980e 83478 b 07 b 2468764 14 aff010bdd87508 46b60t011a83988e 125 c 354207487869 acc-9ca9328a8950 302a1e286fc58ca7 0321658 cba93c138 d960281e9d1d5215 5b068c651810a89e 2b838811480723ba f97d86d98a327728 $9258048415 e b 419$ d 48b474f9ef5dc18 Oedd37c48a08a6d8 641 c 314 b 2 b 8 ee 083

000

The linear layer of Streebog

5.4 Линейное преобразование множества двоичных векторов

Линейное преобразование / множества двоичных векторов V_{64} задается умножением справа на матрицу A над полем $G F(2)$, строки которой записаны ниже последовательно в шестнадцатеричном виде. Строка матрицы с номером $j, j=0, \ldots, 63$, записанная в виде $a_{j, 15} \ldots a_{j, 0}$, где $a_{j, 1} \in \mathbb{Z}_{16} . j=0, \ldots, 15$, есть $\operatorname{Vec}_{4}\left(a_{j 15}\right)\|\ldots\| \operatorname{Vec}_{4}\left(a_{j, 0}\right)$.

Be20faa72ba0b470	47107ddd9b505a38
60022c38f90a4c07	3601161cf205268d
a011d380818e8440	5086e740ce47c920
Oad97808d06cb404	05e23c0468365a02
90dab52a387ae76f	486dd4151c3dfdb9
092 e 94218 d 243 cba	8a174a9ec8121e5d
$9 \mathrm{~d} 4 \mathrm{df05d5f661451}$	c0a878a0a1330aa6
18150f14b9ec46dd	0c84890ad27623e0
$86275 \mathrm{df09}$ ce8aaa8	439da0784e745554
e230140fc0802984	$71180 \mathrm{a8960409a42}$
456 c 34887 a 3805 b 9	ac361a443d1c8cd2
$9 \mathrm{bcf4486248d9f5d}$	c3e9224312c8c1a0
e4fa2054a80b329c	727d102a548b194e
492c024284fbaeco	aa16012142 135760
70a6a56e2440598e	3853dc371220a247
07e095624504536c	8d70c431ac02a736

ad08b0e0c3282d1c 1b8e0b0e798c13c8 2843id2067adea10 8c711e02341b2d01 24b86a840e90f0d2 4585254f64090fa0 $60543 \mathrm{c} 50 \mathrm{de970553}$ $0642 \mathrm{ca} 05693 \mathrm{~b} 9 \mathrm{f7} 70$ afc0503c273aa42a b60c05ca30204d21 561 b0d22900e4669 effa11af0964ee50 39b008152acb8227 550b8e9e2177a530 1ca76e95091051ad c83862965601dd1b
d8045870ef14980e 83478b07b2468764 14 aff010bdd87508 46b60t011a83988e 125 c 354207487869 accc9ca9328a8950 302a1e286fc58ca7 0321658cba93c138 d960281e9d1d5215 5b068c651810a89e 2b838811480723ba f97d86d98a327728 $9258048415 \mathrm{eb419d}$ a48b474 9 ef5dc 18 Oedd37c48a08a6d8 641 c 314 b 2 b 8 ee 083

It is actually an 8×8 matrix of $\mathbb{F}_{2^{8} \ldots}$

000

The linear layer of Streebog

5.4 Линейное преобразование множества двоичных векторов

Линейное преобразование / множества двоичных векторов V_{64} задается умножением справа на матрицу A над полем $G F(2)$, строки которой записаны ниже последовательно в шестнадцатеричном
 есть $\operatorname{Vec}_{4}\left(a_{j 15}\right)\|\ldots\| \operatorname{Vec}_{4}\left(a_{j, 0}\right)$.

Be20才aa72ba0b470	47107ddd9b505a38
$60022 \mathrm{c} 38990 \mathrm{a4c07}$	3601161cf205268d
a011d380818e8f40	5086e740ce47c920
Oad97808d06cb404	05e23c0468365a02
90dab52a387ae76f	486dd4151c3dfdb9
092e94218d243cba	8a174a9ec8121e5d
$9 \mathrm{~d} 4 \mathrm{df05d5f661451}$	c0a878a0a1330aa6
18150f14b9ec46dd	0c84890ad27623e0
86275df09ce8aaa8	439da0784e745554
e230140fc0802984	$71180 \mathrm{a8960409a42}$
456c34887a3805b9	ac361a443d1c8cd2
$9 \mathrm{bcf4486248d9f5d}$	c3e9224312c8c1a0
e4fa2054a80b329c	727d102a548b194e
492c024284fbaec0	aa16012142 135760
70a6a56e2440598e	3853dc371220a247
07e095624504536	8 d

ad08b0e0c3282d1c 1b8e0b0e798c13c8 2843fd2067adea10 8c711e02341b2d01 24b86a840e90f0d2 4585254f64090fa0 60543 c50de970553 0642ca05693b9f70 afc0503c273aa42a b60c05ca30204d21 561b0d22900e4669 effa11af0964ee50 39b008152acb8227 550b8e9e2177a530 1ca76e95091051ad c83862965601dd1b
d8045870ef14980e 83478b07b2468764 14 aff010bdd87508 46b60t011a83988e 125 c 354207487869 accc9ca9328a8950 302a1e286fc58ca7 0321658 cba93c138 d960281e9d1d5215 5b068c651810a89e 2b838811480723ba f97d86d98a327728 $9258048415 \mathrm{eb419d}$ a48b474 9 ef5dc 18 Oedd37c48a08a6d8 641 c 314 b 2 b 8 ee 083

It is actually an 8×8 matrix of $\mathbb{F}_{2^{8}}$... defined in the same field as π !

Subfield to multiplicative cosets

$$
L=\left[\begin{array}{cccccccc}
83 & 47 & 8 \mathrm{~b} & 07 & \mathrm{~b} 2 & 46 & 87 & 64 \\
46 & \mathrm{~b} 6 & 0 \mathrm{f} & 01 & 1 \mathrm{a} & 83 & 98 & 8 \mathrm{e} \\
\mathrm{ac} & \mathrm{cc} & 9 \mathrm{c} & \mathrm{a} 9 & 32 & 8 \mathrm{a} & 89 & 50 \\
03 & 21 & 65 & 8 \mathrm{c} & \mathrm{ba} & 93 & \mathrm{c} 1 & 38 \\
5 \mathrm{~b} & 06 & 8 \mathrm{c} & 65 & 18 & 10 & \mathrm{a} & 9 \mathrm{e} \\
\mathrm{f} & 7 \mathrm{~d} & 86 & \mathrm{~d} 9 & 8 \mathrm{a} & 32 & 77 & 28 \\
\mathrm{a} 4 & 8 \mathrm{~b} & 47 & 4 \mathrm{f} & 9 \mathrm{e} & \mathrm{f5} & \mathrm{dc} & 18 \\
64 & 1 \mathrm{c} & 31 & 4 \mathrm{~b} & 2 \mathrm{~b} & 8 \mathrm{e} & \mathrm{e} 0 & 83
\end{array}\right] .
$$

If $X=(x, 0, \ldots, 0)$, then

$$
x \times L=\left(x \odot L_{0,0}, x \odot L_{0,1}, \ldots, x \odot L_{0,7}\right)
$$

Subfield to multiplicative cosets

$$
L=\left[\begin{array}{cccccccc}
83 & 47 & 8 \mathrm{~b} & 07 & \mathrm{~b} 2 & 46 & 87 & 64 \\
46 & \mathrm{~b} 6 & 0 \mathrm{f} & 01 & 1 \mathrm{a} & 83 & 98 & 8 \mathrm{e} \\
\mathrm{ac} & \mathrm{cc} & 9 \mathrm{c} & \mathrm{a} 9 & 32 & 8 \mathrm{a} & 89 & 50 \\
03 & 21 & 65 & 8 \mathrm{c} & \mathrm{ba} & 93 & \mathrm{c} 1 & 38 \\
5 \mathrm{~b} & 06 & 8 \mathrm{c} & 65 & 18 & 10 & \mathrm{a} & 9 \mathrm{e} \\
\mathrm{f} & 7 \mathrm{~d} & 86 & \mathrm{~d} 9 & 8 \mathrm{a} & 32 & 77 & 28 \\
\mathrm{a} 4 & 8 \mathrm{~b} & 47 & 4 \mathrm{f} & 9 \mathrm{e} & \mathrm{f5} & \mathrm{dc} & 18 \\
64 & 1 \mathrm{c} & 31 & 4 \mathrm{~b} & 2 \mathrm{~b} & 8 \mathrm{e} & \mathrm{e} 0 & 83
\end{array}\right] .
$$

If $X=(x, 0, \ldots, 0)$, then

$$
x \times L=\left(x \odot L_{0,0}, x \odot L_{0,1}, \ldots, x \odot L_{0,7}\right)
$$

Open problems

- Is there a stronger hidden structure in L ?

■ Can we leverage these properties to attack Streebog (or Kuznyechik)?

Some natural questions

■ Isn't it possible to find a decomposition in any permutation?

■ Others have used exponential/log-based S-boxes... why is it wrong this time?

- What is so special about this 3rd (!) decomposition? Why would this one be the one used by the designers?

Some natural questions

■ Isn't it possible to find a decomposition in any permutation?
No.

■ Others have used exponential/log-based S-boxes... why is it wrong this time?

■ What is so special about this 3rd (!) decomposition? Why would this one be the one used by the designers?

Some natural questions

■ Isn't it possible to find a decomposition in any permutation?
No.

■ Others have used exponential/log-based S-boxes... why is it wrong this time? Because it's not a logarithm, it maps $\mathbb{F}_{2^{8}}$ to itself (and not $\mathbb{Z} / 2^{8} \mathbb{Z}$). It also interacts in a very non-trivial way with the linear layer of Streebog.

■ What is so special about this 3rd (!) decomposition? Why would this one be the one used by the designers?

000

The presence of the TKlog has to be deliberate

\# 8-bit permutations

$$
256!\approx 2^{1684}
$$

\# 8-bit TKlogs

$$
\underbrace{16}_{\text {polynomial }} \times \underbrace{2^{30.3}}_{\text {lin. part of } \kappa} \times \underbrace{2^{8}}_{\kappa(0)} \times \underbrace{15!}_{s} \approx 2^{82.6}
$$

\# 8-bit affine permutations

The presence of the TKlog has to be deliberate

\# 8-bit permutations

$$
256!\approx 2^{1684}
$$

\# 8-bit TKlogs

\# 8-bit affine permutations

If a "random permutation generator" returned an affine permutation, you would conclude that it did so on purpose. The situation is the same for TKlogs.

Possible generation algorithm

1 Generate a random TKlog
2 Are both linearity and diff. uniformity the best possible for a TKlog?

- if not, go back to 1 .
- if yes, then output the TKlog

Possible generation algorithm

1 Generate a random TKlog
2 Are both linearity and diff. uniformity the best possible for a TKlog?

- if not, go back to 1 .
- if yes, then output the TKlog

We only need to generate $\approx 2^{10.6}$ instances (experimental result).

The result closely resembles π and it is not better than a "regular" logarithm.

Outline

1 Introduction

2 All that we knew about π

3 What is its actual structure?

4 Why π looks worrying

5 Conclusion

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in $\pi \ldots$
... is a deliberate choice by its designers,
... is very reminiscent of a known backdoor structure.

Conclusion

```
https://who.paris.inria.fr/Leo.Perrin/pi.html
```

The TKlog structure in π...
... is a deliberate choice by its designers, ... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their "random generation process" could output an S-box mapping cosets of $\mathbb{F}_{2^{4}}^{*}$ to cosets of $\mathbb{F}_{2^{4}}^{*}$ in the same field as the one used for the linear layer of Streebog, and why that might be a good thing...

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...
... is a deliberate choice by its designers, ... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their "random generation process" could output an S-box mapping cosets of $\mathbb{F}_{2^{4}}^{*}$ to cosets of $\mathbb{F}_{2^{4}}^{*}$ in the same field as the one used for the linear layer of Streebog, and why that might be a good thing...
... Do not use these algorithms.

Conclusion

https://who.paris.inria.fr/Leo.Perrin/pi.html

The TKlog structure in π...
... is a deliberate choice by its designers, ... is very reminiscent of a known backdoor structure.

Until the designers of Streebog and Kuznyechik explain how their "random generation process" could output an S-box mapping cosets of $\mathbb{F}_{2^{4}}^{*}$ to cosets of $\mathbb{F}_{2^{4}}^{*}$ in the same field as the one used for the linear layer of Streebog, and why that might be a good thing...
... Do not use these algorithms.
Do not standardize them.

Components

- $s=[0,12,9,8,7,4,14,6,5,10,2,11,1,3,13]$
- κ is such that $\kappa(x)=\kappa(0) \oplus \Lambda(x)$, where

$$
\begin{aligned}
& \kappa(0)=\mathrm{FC} \\
& \Lambda(1)=1, \Lambda(2)=26, \Lambda(4)=24, \Lambda(8)=30 .
\end{aligned}
$$

Λ only activates 4 output bits:

$$
\Lambda(x) \& 36=\Lambda(x) .
$$

Anomalies

[^0]: ${ }^{1}$ A. Biryukov, L. Perrin, A. Udovenko. Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr1. EUROCRYPT'16.

[^1]: ${ }^{2}$ L. Perrin, A. Udovenko. Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog. ToSC vol. 16.

[^2]: ${ }^{3}$ Vassilij Shishkin. Design principles of the perspective block encryption algorithm with a block length of 128 bits. https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

[^3]: ${ }^{3}$ Vassilij Shishkin. Design principles of the perspective block encryption algorithm with a block length of 128 bits. https://www.ruscrypto.ru/resource/archive/rc2013/files/03_shishkin.pdf

[^4]: ${ }^{4}$ M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

[^5]: ${ }^{4}$ M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

[^6]: ${ }^{4}$ M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

[^7]: ${ }^{4}$ M. Saarinen, B. Brumleyo. WHIRLBOB, the Whirlpool Based Variant of STRIBOB. NordSec 2015.

[^8]: ${ }^{5}$ Arnaud Bannier. Combinatorial Analysis of Block Ciphers With Trapdoors. PhD thesis ENSAM 2017.

[^9]: ${ }^{5}$ Arnaud Bannier. Combinatorial Analysis of Block Ciphers With Trapdoors. PhD thesis ENSAM 2017.

