## Boomerang Connectivity Table Revisited

## Ling Song ${ }^{1,2}$, Xianrui Qin ${ }^{3}$, Lei Hu²

1. Nanyang Technological University, Singapore
2. Institute of Information Engineering, CAS, China
3. Shandong University, China

## Boomerang Attacks

Proposed by [Wag99] to combine two diff. trails:

- $E_{0}: \operatorname{Pr}[\alpha \rightarrow \beta]=p$
- $E_{1}: \operatorname{Pr}[\gamma \rightarrow \delta]=q$

Distinguishing probability:

$$
p^{2} q^{2}
$$



## Boomerang Attacks

Proposed by [Wag99] to combine two diff. trails:

- $E_{0}: \operatorname{Pr}[\alpha \rightarrow \beta]=p$
- $E_{1}: \operatorname{Pr}[\gamma \rightarrow \delta]=q$

Distinguishing probability:

$$
p^{2} q^{2}
$$

Boomerang attacks: When you send it properly, it always comes back to you.


## Boomerang Attacks

Proposed by [Wag99] to combine two diff. trails:

- $E_{0}: \operatorname{Pr}[\alpha \rightarrow \beta]=p$
- $E_{1}: \operatorname{Pr}[\gamma \rightarrow \delta]=q$

Distinguishing probability:

$$
p^{2} q^{2}
$$

Boomerang attacks: When you send it properly, it always comes back to you.

https://www.australiathegift.com.au/shop/boomerang-with-stand/
[Wag99]: Assumed two trails are independent.

## Two Trails in Boomerang Attacks

## Dependency can help attackers

- [BDD03]: Middle-round S-box trick
- [BK09]: Boomerang switch: Ladder switch / Feistel switch / S-box switch


## Dependency can spoil attacks.

- [Mer09]: Incompatible trails


## Sandwich Attacks [DKS10]



## Sandwich Attacks [DKS10]


$r=\operatorname{Pr}\left[x_{3} \oplus x_{4}=\beta \mid\left(x_{1} \oplus x_{2}=\beta\right) \wedge\left(y_{1} \oplus y_{3}=\gamma\right) \wedge\left(y_{2} \oplus y_{4}=\gamma\right)\right]_{4 / 24}$

## $\mathrm{BCT}[C H P+18]$

## Boomerang Connectivity Table (BCT)

- Calculate $r$ theoretically when $E_{m}$ is composed of a single S-box layer.
- Unify previous observations on the S-box (incompatibilities and switches)



## Our Work

## Motivation

- The actual boundaries of $E_{m}$ which contains dependency
- How to calculate $r$ when $E_{m}$ contains multiple rounds?


## Contribution

- Generalized framework of BCT
- Determine the boundaries of $E_{m}$
- Calculate $r$ of $E_{m}$ in the sandwich attack


## DDT: Difference Distribution Table

## $D D T(\alpha, \beta)=\#\left\{x \in\{0,1\}^{n} \mid S(x) \oplus S(x \oplus \alpha)=\beta\right\}$



SKINNY's 4-bit S-box

## BCT: Boomerang Connectivity Table

$$
B C T(\alpha, \beta)=\#\left\{x \in\{0,1\}^{n} \mid S^{-1}(S(x) \oplus \beta) \oplus S^{-1}(S(x \oplus \alpha) \oplus \beta)=\alpha\right\}
$$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |  |  | 9 | a | b | c | d | e | f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 1 | 16 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 8 | 8 | 0 | 0 | 0 | 0 |
| 2 | 16 | 8 | 0 | 8 | 8 | 16 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 4 | 16 | 0 | 8 | 0 | 0 | 0 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 0 | 0 |
| 5 | 16 | 0 | 8 | 0 | 0 | 0 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 0 | 0 |
| 6 | 16 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 |
| 7 | 16 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
| 8 | 16 | 4 | 0 | 4 | 4 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| 9 | 16 | 4 | 0 | 4 | 4 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| a | 16 | 4 | 0 | 4 | 4 | 8 | 4 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 |
| b | 16 | 4 | 0 | 4 | 4 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| c | 16 | 0 | 8 | 0 | 0 | 0 | 2 | 2 | 4 | 4 | 4 | 4 | 0 | 0 | 2 | 2 |
| d | 16 | 0 | 8 | 0 | 0 | 0 | 2 | 2 | 4 | 4 | 4 | 4 | 0 | 0 | 2 | 2 |
| e | 16 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 |
| f | 16 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 2 |

SKINNY's 4-bit S-box

## Relation between DDT and BCT

193 ${ }^{2}$

## Let

$$
\begin{aligned}
& \mathcal{X}_{\mathrm{DDT}}(\alpha, \beta) \triangleq\left\{x \in \mathbb{F}_{2}^{n}: S(x) \oplus S(x \oplus \alpha)=\beta\right\}, \\
& \mathcal{Y}_{\mathrm{DDT}}(\alpha, \beta) \triangleq\left\{S(x) \in \mathbb{F}_{2}^{n}: x \in \mathbb{F}_{2}^{n}, S(x) \oplus S(x \oplus \alpha)=\beta\right\} .
\end{aligned}
$$

## Relation between DDT and BCT

## Let

$$
\begin{aligned}
& \mathcal{X}_{\mathrm{DDT}}(\alpha, \beta) \triangleq\left\{x \in \mathbb{F}_{2}^{n}: S(x) \oplus S(x \oplus \alpha)=\beta\right\} \\
& \mathcal{Y}_{\mathrm{DDT}}(\alpha, \beta) \triangleq\left\{S(x) \in \mathbb{F}_{2}^{n}: x \in \mathbb{F}_{2}^{n}, S(x) \oplus S(x \oplus \alpha)=\beta\right\}
\end{aligned}
$$



Proposition $1([\mathrm{BC} 18])$. For any permutation $S$ of $\mathbb{F}_{2}^{n}$, for all $\alpha, \beta \in \mathbb{F}_{2}^{n}$, we have

$$
\begin{equation*}
\operatorname{BCT}(\alpha, \beta)=\operatorname{DDT}(\alpha, \beta)+\sum_{\gamma \neq 0, \beta} \#\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \cap\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \oplus \beta\right)\right) . \tag{1}
\end{equation*}
$$

Note that, due to symmetry, Eq. 1 is equivalent to

$$
\operatorname{BCT}(\alpha, \beta)=\operatorname{DDT}(\alpha, \beta)+\sum_{\gamma \neq 0, \alpha} \#\left(\mathcal{X}_{\mathrm{DDT}}(\gamma, \beta) \cap\left(\mathcal{X}_{\mathrm{DDT}}(\gamma, \beta) \oplus \alpha\right)\right)
$$

## Relation between DDT and BCT

## Let

$$
\begin{aligned}
& \mathcal{X}_{\mathrm{DDT}}(\alpha, \beta) \triangleq\left\{x \in \mathbb{F}_{2}^{n}: S(x) \oplus S(x \oplus \alpha)=\beta\right\}, \\
& \mathcal{Y}_{\mathrm{DDT}}(\alpha, \beta) \triangleq\left\{S(x) \in \mathbb{F}_{2}^{n}: x \in \mathbb{F}_{2}^{n}, S(x) \oplus S(x \oplus \alpha)=\beta\right\} .
\end{aligned}
$$



Proposition 1 ( $[\mathrm{BC} 18])$. For any permutation $S$ of $\mathbb{F}_{2}^{n}$, for all $\alpha, \beta \in \mathbb{F}_{2}^{n}$, we have

$$
\begin{equation*}
\operatorname{BCT}(\alpha, \beta)=\operatorname{DDT}(\alpha, \beta)+\sum_{\gamma \neq 0, \beta} \#\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \cap\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \oplus \beta\right)\right) . \tag{1}
\end{equation*}
$$

Note that, due to symmetry, Eq. 1 is equivalent to

$$
\operatorname{BCT}(\alpha, \beta)=\operatorname{DDT}(\alpha, \beta)+\sum_{\gamma \neq 0, \alpha} \#\left(\mathcal{X}_{\mathrm{DDT}}(\gamma, \beta) \cap\left(\mathcal{X}_{\mathrm{DDT}}(\gamma, \beta) \oplus \alpha\right)\right) .
$$

## Eq. 1 can be re-written as

$$
\operatorname{BCT}(\alpha, \beta)=\sum_{\gamma} \#\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \cap\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \oplus \beta\right)\right)
$$

## New Explanation of BCT

$r$ for $E_{m}$ with one S-box layer at the boundary of $E_{0}$ and $E_{1}$

$$
\begin{aligned}
& \operatorname{BCT}(\alpha, \beta)= \sum_{\gamma} \#\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \cap\left(\mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma) \oplus \beta\right)\right): \\
& r=\frac{\operatorname{BCT}(\alpha, \beta)}{2^{n}}=\sum_{\gamma} \frac{\operatorname{DDT}(\alpha, \gamma)}{2^{n}} \cdot \frac{\#\left\{y \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma): y \oplus \beta \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)\right\}}{\# \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)}
\end{aligned}
$$

## New Explanation of BCT

$r$ for $E_{m}$ with one S-box layer at the boundary of $E_{0}$ and $E_{1}$

$r=\frac{\operatorname{BCT}(\alpha, \beta)}{2^{n}}=\sum_{\gamma} \frac{\operatorname{DDT}(\alpha, \gamma)}{2^{n}} \cdot \frac{\#\left\{y \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma): y \oplus \beta \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)\right\}}{\# \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)}$
Similarly,
$r=\frac{\operatorname{BCT}(\alpha, \beta)}{2^{n}}=\sum_{\gamma^{\prime}} \frac{\operatorname{DDT}\left(\gamma^{\prime}, \beta\right)}{2^{n}} \cdot \frac{\#\left\{x \in \mathcal{X}_{\mathrm{DDT}}\left(\gamma^{\prime}, \beta\right): x \oplus \alpha \in \mathcal{X}_{\mathrm{DDT}}\left(\gamma^{\prime}, \beta\right)\right\}}{\# \mathcal{X}_{\mathrm{DDT}}\left(\gamma^{\prime}, \beta\right)}$

## New Explanation of BCT


$r$ for $E_{m}$ with one S-box layer at the boundary of $E_{0}$ and $E_{1}$
$r=\frac{\operatorname{BCT}(\alpha, \beta)}{2^{n}}=\sum_{\gamma} \frac{\operatorname{DDT}(\alpha, \gamma)}{2^{n}} \cdot \frac{\#\left\{y \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma): y \oplus \beta \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)\right\}}{\# \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)}$
Similarly,
$r=\frac{\operatorname{BCT}(\alpha, \beta)}{2^{n}}=\sum_{\gamma^{\prime}} \frac{\operatorname{DDT}\left(\gamma^{\prime}, \beta\right)}{2^{n}} \cdot \frac{\#\left\{x \in \mathcal{X}_{\mathrm{DDT}}\left(\gamma^{\prime}, \beta\right): x \oplus \alpha \in \mathcal{X}_{\mathrm{DDT}}\left(\gamma^{\prime}, \beta\right)\right\}}{\# \mathcal{X}_{\mathrm{DDT}}\left(\gamma^{\prime}, \beta\right)}$
In this case, $\alpha$ and $\beta$ are regarded as fixed.

## Generalization: S-box in $E_{0}$ or $E_{1}$



## Generalization: S-box in $E_{0}$ or $E_{1}$



What if $\alpha$ or $\beta$ (crossing differences) are not fixed?

## Generalization: S-box in $E_{0}$



## Generalization: S-box in $\mathrm{E}_{0}$

(1) $\beta$ is independent of the upper trail

$$
\begin{aligned}
& \bar{r}=\frac{\operatorname{DDT}(\alpha, \gamma)}{2^{n}} \cdot \sum_{\beta} \frac{\#\left\{y \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma): y \oplus \beta \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)\right\}}{\# \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)} \cdot \operatorname{Pr}\left(y_{1} \oplus y_{3}=\beta\right) \\
& r=\sum_{\gamma} \bar{r}=\sum_{\beta} \frac{\mathrm{BCT}(\alpha, \beta)}{2^{n}} \cdot \operatorname{Pr}\left(y_{1} \oplus y_{3}=\beta\right) \\
& \text { Upper trail Lower trail }
\end{aligned}
$$

## Generalization: S-box in $E_{0}$

(1) $\beta$ is independent of the upper trail

$$
\begin{aligned}
& \bar{r}=\frac{\operatorname{DDT}(\alpha, \gamma)}{2^{n}} \cdot \sum_{\beta} \frac{\#\left\{y \in \mathcal{Y}_{\text {Dor }}(\alpha, \gamma): y \oplus \beta \in \mathcal{Y}_{\text {Dor }}(\alpha, \gamma)\right\}}{\# y_{\text {Dor }}(\alpha, \gamma)} \cdot \operatorname{Pr}\left(y_{1} \oplus y_{3}=\beta\right) \text {. } \\
& r=\sum_{\gamma}^{\bar{r}}=\sum_{\beta} \frac{\operatorname{BCT}(\alpha, \beta)}{2^{n}} \quad \operatorname{Pr}\left(y_{1} \oplus y_{3}=\beta\right) \\
& \text { (2) } \beta \text { is uniformly distributed } \\
& \bar{r}=\left(\frac{\operatorname{DDT}(\alpha, \gamma)}{2^{n}}\right)^{2} \\
& \text { Upper trail Lower trail }
\end{aligned}
$$

which becomes identical to $p^{2} q^{2}$ in the classical boomerang attack.

## Generalization: S-box in $E_{1}$

(1) $\alpha$ is independent of the lower trail

$$
\begin{aligned}
& \bar{r}=\frac{\operatorname{DDT}(\gamma, \beta)}{2^{n}} \cdot \sum_{\alpha} \frac{\#\left\{x \in \mathcal{X}_{\mathrm{DDT}}(\gamma, \beta): x \oplus \alpha \in \mathcal{X}_{\mathrm{DDT}}(\gamma, \beta)\right\}}{\# \mathcal{X}_{\mathrm{DT}}(\gamma, \beta)} \cdot \operatorname{Pr}\left(x_{1} \oplus x_{2}=\alpha\right) \\
& r=\sum_{\gamma} \bar{r}=\sum_{\alpha} \frac{\mathrm{BCT}(\alpha, \beta)}{2^{n}} \operatorname{Pr}\left(x_{1} \oplus x_{2}=\alpha\right) \\
& \text { (2) } \alpha \text { is uniformly distributed } \\
& \bar{r}=\left(\frac{\operatorname{DDT}(\gamma, \beta)}{2^{n}}\right)^{2}
\end{aligned}
$$

which becomes identical to $p^{2} q^{2}$ in the classical boomerang attack.

## Generalization: Interrelated S-boxes



S-boxes $A$ and $B$ are interrelated.

## Generalization: Interrelated S-boxes



S-boxes $A$ and $B$ are interrelated.

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{BCT}}(\alpha, \beta, \gamma) \triangleq \#\left\{x \in \mathbb{F}_{2}^{n}: S^{-1}(S(x) \oplus \beta) \oplus S^{-1}(S(x \oplus \alpha) \oplus \beta)=\alpha,\right. \\
& \left.x \oplus S^{-1}(S(x) \oplus \beta)=\gamma\right\} .
\end{aligned}
$$

## Generalization: Interrelated S-boxes



Upper trail Lower trail

Lower crossing diff. ( $\beta$ ) of A comes from $B$.

S-boxes $A$ and $B$ are interrelated.

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{BCT}}(\alpha, \beta, \gamma) \triangleq \#\left\{x \in \mathbb{F}_{2}^{n}: S^{-1}(S(x) \oplus \beta) \oplus S^{-1}(S(x \oplus \alpha) \oplus \beta)=\alpha,\right. \\
& \left.x \oplus S^{-1}(S(x) \oplus \beta)=\gamma\right\} . \\
& \bar{r}=\sum_{\alpha^{\prime}} \frac{\mathrm{DDT}(\alpha, \gamma)}{2^{n}} \cdot \operatorname{Pr}\left(\gamma \rightarrow \alpha^{\prime}\right) \frac{\mathcal{D}_{\mathrm{BCT}}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)}{2^{n}} \cdot \operatorname{Pr}\left(\gamma^{\prime} \rightarrow \beta\right) . \quad r=\sum_{\gamma} \sum_{\gamma^{\prime}} \bar{r} . \\
& \frac{\#\left\{y \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma): y \oplus \beta \in \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)\right\}}{\# \mathcal{Y}_{\mathrm{DDT}}(\alpha, \gamma)}
\end{aligned}
$$

## Generalized Framework of BCT

1. Initialization: $E_{m} \leftarrow E_{1}^{\text {first }} \| E_{0}^{\text {last }}$.

2. Prepend $E_{m}$ with one more round
a) If the lower crossing differences are distributed uni formly, peel off the first round and go to Step 4.
b) Go to Step 3
3. Append $E_{m}$ with one more round
a) If the upper crossing differences are distributed uni formly, peel off the last round and go to Step 5.
b) Go to Step 4.
4. Calculate $r$ using formulas in the previous slides

Boundaries of $E_{m}$ : where crossing differences are distr ibuted (almost) uniformly.

## Applications

Re-evaluate prob of four BM dist. of SKINNY

- Prev: prob evaluated by $\hat{p}^{2} \hat{q}^{2}$
- New: prob evaluated by the generalized BCT

Construct related-subkey BM dist. Of AES-128

- Prev: related-subkey BM dist. Of AES-192/256
- New: 6-round related-subkey BM dist. Of AES128 with $2^{-109.42}$


## SKINNY

SKINNY [BJK+16] is an SPN cipher, with a linear key schedule.

- SKINNY-n-† where $n$ is block size and $\dagger$ tweakev size


Example $E_{m}$ of SKINNY-64-128 in the relatedtweakey setting

- Upper trail: 2 rounds, $2^{-8}$
- Lower trail: 4 rounds, $2^{-14}$
- $p^{2} q^{2}=2^{-44}$


## $E_{m}$ with 6 Middle Rounds

| Rd | Diff before and after SB | $\Delta K$ | $\boldsymbol{\nabla K}$ | Pr. |
| :---: | :--- | :--- | :--- | :---: |
| R1 | $0,0,0,0,0,0,0,0,0,0,0, b, 0,0,0,0$ <br> $0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0$ | $0,0,0,0,0,0,0,0$ | $b, 0,0,0,0,0,0,0$ | $2^{-2}$ |
| R2 | $0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0$ |  |  |  |
| $0,8,0,0,0,0,0,0,0,8,0,0,0,8,0,0$ | $0,0,0,0,0, c, 0,0$ | $0,0,0,0,5,0,0,0$ | $2^{-2 * 3}$ |  |
| R3 | $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2$ |  |  |  |
| $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3$ | $0,0,0,0,0,0,0,0$ | $0,0,3,0,0,0,0,0$ | $2^{-2}$ |  |
| R4 | $0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0$ <br> $0,0,0,0,0,0, d, 0,0,0,0,0,0,0, c, 0$ | $0,0,0,3,0,0,0,0$ | $0,0,0,0,0,0,9,0$ | $2^{-3 * 2}$ |
| R5 | $0, c, 0,0,0,0,0,0,0,0,0,4,0,0,0,0$ <br> $0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0$ | $0,0,0,0,0,0,0,0$ | $0,0,0,0,2,0,0,0$ | $2^{-2 * 2}$ |
| R6 | $0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0$ <br> $0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$ | $0,0,0,0,0,0,0, d$ | $0,0,0,0,0,1,0,0$ | $2^{-2}$ |

## Evaluation of $r$

| Rounds | $\boldsymbol{p}^{\mathbf{2}} \boldsymbol{q}^{\mathbf{2}}$ | $\widehat{\boldsymbol{p}}^{\mathbf{2}} \widehat{\boldsymbol{q}}^{\mathbf{2}}$ | $r$ (new) |
| :---: | :---: | :---: | :---: |
| $1+1$ | $2^{-16}$ | $2^{-8.41}$ | $2^{-2}$ |
| $2+1$ | $2^{-20}$ | $\ldots$ | $2^{-2.79}$ |
| $2+2$ | $2^{-32}$ | $\ldots$ | $2^{-5.69}$ |
| $2+3$ | $2^{-40}$ | $\ldots$ | $2^{-10.56}$ |
| $2+4$ | $2^{-44}$ | $2^{-29.91}$ | $2^{-12.96}$ |

Experiments confirm the results of $r$.

## Summary of the results on SKINNY

Prob. of BM dist. and comparison

| Ver. | n | $\boldsymbol{E}_{\boldsymbol{m}}$ |  | $\boldsymbol{E}=\widetilde{\boldsymbol{E}}_{\mathbf{1}} \circ \boldsymbol{E}_{\boldsymbol{m}} \circ \widetilde{\boldsymbol{E}}_{\mathbf{0}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\left\|\boldsymbol{E}_{\boldsymbol{m}}\right\|$ | $r$ | $\|E\|$ | $\widetilde{p}^{2} \widetilde{q}^{2} r$ | $\hat{p}^{2} \widehat{q}^{2}[\mathrm{LGS} 17]$ |
|  | 64 | $6(13)$ | $2^{-12.96}$ | 17 | $2^{-29.78}$ | $2^{-48.72}$ |
|  | 128 | $5(12)$ | $2^{-11.45}$ | 18 | $2^{-77.83}$ | $2^{-103.84}$ |
| n-3n | 64 | $5(17)$ | $2^{-10.50}$ | 22 | $2^{-42.98}$ | $2^{-54.94}$ |
|  | 128 | $5(17)$ | $2^{-9.88}$ | 22 | $2^{-48.30}$ | $2^{-76.84}$ |

- Take seconds to calculate $r$


## Summary of the results on SKINNY

Prob. of BM dist. and comparison

| Ver. | n | $\boldsymbol{E}_{\boldsymbol{m}}$ |  | $\boldsymbol{E}=\widetilde{\boldsymbol{E}}_{\mathbf{1}} \circ \boldsymbol{E}_{\boldsymbol{m}} \circ \widetilde{\boldsymbol{E}}_{\mathbf{0}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\left\|\boldsymbol{E}_{\boldsymbol{m}}\right\|$ | $r$ | $\|E\|$ | $\tilde{p}^{2} \tilde{q}^{2} r$ | $\hat{p}^{2} \hat{q}^{2}[\mathrm{LGS} 17]$ |
|  | 64 | $6(13)$ | $2^{-12.96}$ | 17 | $2^{-29.78}$ | $2^{-48.72}$ |
|  | 128 | $5(12)$ | $2^{-11.45}$ | 18 | $2^{-77.83}$ | $2^{-103.84}$ |
| $\mathrm{n}-3 \mathrm{n}$ | 64 | $5(17)$ | $2^{-10.50}$ | 22 | $2^{-42.98}$ | $2^{-54.94}$ |
|  | 128 | $5(17)$ | $2^{-9.88}$ | 22 | $2^{-48.30}$ | $2^{-76.84}$ |

- Take seconds to calculate $r$
- Experiments confirm the results of $r$ and the 17-round dist. of SKINNY-64-128


## 6-round related-subkey BM dist. Of AES-128

3-round related-key differential trails:

- 2 trails, 5 active S-boxes, $2^{-31}$
- 18 trails, 6 active $S$-boxes, $2^{-36}, 2^{-37}, 2^{-38}$

| $2^{-31}$ | Round | Before AK | Subkey diff. | Before SB | After SB | After SR | $p_{r}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R1 | $\begin{array}{cccc} \hline \text { 8c } & 1 \mathrm{f} & 8 \mathrm{c} & 00 \\ 01 & 99 & 01 & 00 \\ 8 \mathrm{~d} & 00 & 8 \mathrm{~d} & \mathrm{c} 2 \\ 37 & 00 & 8 \mathrm{~d} & 00 \end{array}$ | 8c 00 8c 00 <br> 01000100 <br> 8d $008 d 00$ <br> $8 d 008 d 00$ | $\begin{array}{llll} \hline 00 & 1 f & 00 & 00 \\ 00 & 99 & 00 & 00 \\ 00 & 00 & 00 & c 2 \\ \text { ba } & 00 & 00 & 00 \end{array}$ | $\begin{array}{lllll} \hline 00 & \text { a3 } & 00 & 00 \\ 00 & 8 d & 00 & 00 \\ 00 & 00 & 00 & 46 \\ 97 & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & \text { a3 } & 00 & 00 \\ 8 d & 00 & 00 & 00 \\ 00 & 46 & 00 & 00 \\ 00 & 97 & 00 & 00 \end{array}$ | $\left(2^{-6}\right)^{8}$ |  |
|  | R2 | 8c 8c 0000 <br> 01 fe 0000 <br> 8d 8d 0000 <br> 8d 8d 0000 | $\begin{array}{lllll} \hline 8 \mathrm{c} & 8 \mathrm{c} & 00 & 00 \\ 01 & 01 & 00 & 00 \\ 8 \mathrm{~d} & 8 \mathrm{~d} & 00 & 00 \\ 8 \mathrm{~d} & 8 \mathrm{~d} & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & \text { ed } & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 8 d & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 8 d & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | $\left(2^{-7}\right)^{2}$ |  |
|  | R3 | $\begin{array}{llll} \hline 8 \mathrm{c} & 00 & 00 & 00 \\ 01 & 00 & 00 & 00 \\ 8 d & 00 & 00 & 00 \\ 8 d & 00 & 00 & 00 \end{array}$ | $\begin{array}{lllll} \hline 8 \mathrm{c} & 00 & 00 & 00 \\ 01 & 00 & 00 & 00 \\ 8 d & 00 & 00 & 00 \\ 8 d & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | 00 00 00 00 <br> 00 00 00 00 <br> 00 00 00 00 <br> 00 00 00 00 | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | 1 |  |
| $2^{-37}$ | R4 | 0a 87 0a 00 0c bc f6 00 060006 fb $23000600$ | 0a 00 0a 00 0c 00 0c 00 06000600 06000600 | 00870000 <br> 00 bc fa 00 <br> 000000 fb <br> 19000000 | 00740000 <br> 00064 e 00 <br> 0000006 c <br> 5c 000000 | 00740000 <br> 064 e 0000 <br> 006 c 0000 <br> 005 c 0000 | $2^{-33.42}$ | $\tilde{p}^{2} \tilde{q}^{2} r=2^{-109.42}$ |
|  | R5 | $\begin{array}{llll} \hline \text { Oa } & 0 a & 00 & 00 \\ \text { Oc } & 00 & 00 & 00 \\ 06 & 06 & 00 & 00 \\ 06 & 06 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 0 a & 0 a & 00 & 00 \\ 0 c & 0 c & 00 & 00 \\ 06 & 06 & 00 & 00 \\ 06 & 06 & 00 & 00 \end{array}$ | $\begin{array}{lllll} 00 & 00 & 00 & 00 \\ 00 & 0 & 0 & 0 & 00 \\ 00 & 0 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} 00 & 00 & 00 & 00 \\ 00 & 06 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 06 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | $\left(2^{-7}\right)^{2}$ |  |
|  | R6 | $\begin{array}{llll} \hline \text { Oa } & 00 & 00 & 00 \\ \text { Oc } & 00 & 00 & 00 \\ 06 & 00 & 00 & 00 \\ 06 & 00 & 00 & 00 \end{array}$ | $\begin{array}{lllll} \hline 0 \mathrm{a} & 00 & 00 & 00 \\ 0 \mathrm{c} & 00 & 00 & 00 \\ 06 & 00 & 00 & 00 \\ 06 & 00 & 00 & 00 \end{array}$ | $\begin{array}{llll} \hline 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{array}$ | 00 00 00 00 <br> 00 00 00 00 <br> 00 00 00 00 <br> 00 00 00 00 | 00 00 00 00 <br> 00 00 00 00 <br> 00 00 00 00 <br> 00 00 00 00 | 1 |  |

## Discussion

## Length of $E_{m}$ :

- Mainly determined by the diffusion effect of the linear la yer
- Density of active cells of the trails
$r$ :
Strongly affected by the DDT and BCT of the S-box


## Limitation of the generalized BCT :

For a long $E_{m}$ with large and strong S-boxes, calculating $r$ mig ht be a time-consuming task, e.g., $\mathrm{T}>2^{35}$.

## Concluding Remarks

Generalized $B C T$ : for calculating $r$ in the sandwich attack

1: identify the boundaries of dependency
2: calculate $r$
Problems to investigate:

- Extension to non S-box based ciphers
- Improving previous boomerang attacks



## Thank you for your attention!!

Slides credit to Yu Sasaki


