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Abstract. MDS matrices are important building blocks providing diffusion function-
ality for the design of many symmetric-key primitives. In recent years, continuous
efforts are made on the construction of MDS matrices with small area footprints in
the context of lightweight cryptography. Just recently, Duval and Leurent (ToSC
2018/FSE 2019) reported some 32 × 32 binary MDS matrices with branch number
5, which can be implemented with only 67 XOR gates, whereas the previously known
lightest ones of the same size cost 72 XOR gates.
In this article, we focus on the construction of lightweight involutory MDS matrices,
which are even more desirable than ordinary MDS matrices, since the same circuit
can be reused when the inverse is required. In particular, we identify some involutory
MDS matrices which can be realized with only 78 XOR gates with depth 4, whereas the
previously known lightest involutory MDS matrices cost 84 XOR gates with the same
depth. Notably, the involutory MDS matrix we find is much smaller than the AES
MixColumns operation, which requires 97 XOR gates with depth 8 when implemented
as a block of combinatorial logic that can be computed in one clock cycle. However,
with respect to latency, the AES MixColumns operation is superior to our 78-XOR
involutory matrices, since the AES MixColumns can be implemented with depth 3
by using more XOR gates.
We prove that the depth of a 32 × 32 MDS matrix with branch number 5 (e.g., the
AES MixColumns operation) is at least 3. Then, we enhance Boyar’s SLP-heuristic
algorithm with circuit depth awareness, such that the depth of its output circuit is
limited. Along the way, we give a formula for computing the minimum achievable
depth of a circuit implementing the summation of a set of signals with given depths,
which is of independent interest. We apply the new SLP heuristic to a large set of
lightweight involutory MDS matrices, and we identify a depth 3 involutory MDS
matrix whose implementation costs 88 XOR gates, which is superior to the AES
MixColumns operation with respect to both lightweightness and latency, and enjoys
the extra involution property.
Keywords: Lightweight cryptography · MDS matrix · Involutory matrix · Low latency

1 Introduction
The development of pervasive computing and the demand for low-cost security have
stimulated intensive researches on the design of lightweight symmetric-key cryptographic
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algorithms. This often boils down to the search for lightweight yet cryptographically strong
diffusion and confusion components.

In practice, the diffusion components are typically realized with linear operations,
whose functionality, loosely speaking, is to spread the internal dependencies as much as
possible. The so-called Maximal Distance Separable (MDS) matrices are probably the most
preferable diffusion building blocks. When using MDS matrices as the diffusion layers in
iterative block ciphers, it is possible to achieve a desired number of differentially or linearly
active non-linear elements with a relatively small number of rounds, and therefore leading
to low-latency designs. Moreover, designs with MDS matrices typically enjoy simple and
clear security proofs, such as the case of AES [DR02]. Actually, it is exactly the elegant
security proof offered by AES that initiates the widely application of MDS matrix in the
design of symmetric-key primitives.

However, it is not an easy task to find lightweight MDS matrices, and it may be too
luxury to use an MDS matrix in a design targeting resource constrained devices. In such
situations, the designers compromise by employing almost MDS matrices [BBI+15, Ava17],
or linear operations that can be realized with several bitwise XORs [BJK+16], or even
bit-level permutations which can be implemented with a proper wiring [BKL+07]. Such
design strategy more often than not leads to a significant increase of the number of rounds,
and complicates the security proof remarkably. Therefore, it is an important endeavor to
construct lightweight MDS matrices. In particular, lightweight involutory MDS matrices
would be more preferable, since the same circuit can be reused when the inverse is required.
Actually, the idea of reusing involutory components in both encryption and decryption has
already been applied in some designs [BR00, SPR+04, BCG+12].

1.1 Related work
If the chip area is the sole consideration, one promising approach proposed by Guo,
Peyrin, and Poschmann to reduce the implementation footprint is to find a lightweight
matrix A such that Ak is MDS [GPP11, GPPR11]. The implementation of Ak can
be obtained by recursively “executing” the implementation of A k times. Then no
matter how complex Ak is, the cost is determined by A completely. However, this
approach comes at the expense of an increased number of clock cycles, which is not
desirable in low-latency applications. Therefore, in this work, we focus on the lightweight
constructions, where the full MDS matrix is implemented as a block of combinatorial
logic circuit such that it can be computed in one clock cycle. We refer the reader to
[GPP11, TTKS18, AF14, Ber13, GPV17, WWW12, CLM16] for more information on the
recursive constructions.

The initial attempts to find lightweight MDS matrices where the full matrix is im-
plemented mainly focus on the selection of matrix entries enjoying low hardware foot-
prints [SKOP15, BKL16, LS16, LW16, LW17, SS16a, SS16b, SS17, JPST17, ZWS18,
GLWL16]. This line of work makes a great step forward for our ability of construct-
ing lightweight MDS matrices and can be categorized as local optimizations. In particular,
with the knowledge of which kind of entries are better, one can construct MDS matrices
from some special classes of matrices, such as circulant, Hadamard, or Toeplitz matri-
ces [SKOP15, LS16, SS16b]. Some of these constructions lead to involutory MDS matrices.
In particular, Sim et al. observed that involutory MDS matrices can be implemented with
almost the same cost as non-involutory ones under some specific metric, the latter being
usually non-lightweight when the inverse matrix is required [SKOP15]. Note that here the
entries of a matrix are not restricted to finite field elements, and can be general linear
transformations. Actually, the idea of using general linear transformations leads to notable
improvement at the time [BKL16, LW16].

So far, we have a fairly deep understanding of the problem with respect to local
optimizations. Hence recent work tend to deal with the problem at a more essential level,
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viewing it as the well-known Shortest Linear straight-line Problem (SLP) and optimizing
globally. Indeed, this approach results in more accurate estimations of the cost of hardware
implementations. In [KLSW17], Kranz et al. shows that the AES MixColumns matrix can
be implemented with only 97 F2 × F2 → F2 XOR gates with Boyar’s tool [BMP13] based
on SLP heuristic, while the previous best implementation costs 103 XOR gates [JPST17].
Just recently in ToSC 2018/FSE 2019, Duval and Leurent reported some 32× 32 binary
MDS matrices which can be implemented with only 67 XOR gates by searching through
a set of circuits ordered by hardware cost and optimizing globally [DL18], whereas the
previously known lightest ones of the same size cost 72 XOR gates [KLSW17].

1.2 Our Contribution
First, we slightly generalize the structure of the involutory MDS matrix MKLSW (costs 84
XOR gates) proposed by Kranz, Leander, Stoffelen, and Wiemer [KLSW17], and try to
construct an involutory MDS matrix G of the generalized form with less 1’s than MKLSW in
its binary form based on some educated guesses. After applying the SLP heuristic [BMP13]
to G, it turns out that G can be implemented with only 80 XOR gates.

Then we further generalize the structure of G to a family of 4 × 4 matrices whose
entries are powers of a given 8× 8 binary matrix A. We show that every involutory matrix
in this family can be completely determined by 6 parameters taking integer values. We
search through a restricted range of matrices generated by these 6 parameters, and identify
some involutory MDS matrices which can be implemented with only 78 XOR gates, while
the previous best result requires 84 XOR gates.

Finally, we prove that the depth of a 32× 32 MDS matrix with branch number 5 (e.g.,
the AES MixColumns operation) is at least 3. Then we augment Boyar’s SLP-heuristic
algorithm [BMP13] with circuit depth awareness to limit the depths of its output circuits.
Along the way, we give a formula for computing the minimum achievable depth of a
circuit implementing the summation of a set of signals with given depths, which is of
independent interest. By applying this tool, we search through a large set of lightweight
involutory MDS matrices and identify one which can be implemented with 88 XOR gates,
whose circuit depth reaches the lower bound 3. A summary of the optimal matrices we
find is given in Table 1. We also try to synthesize the matrices from Table 1 with three
different technology libraries (NanGate 45 nm, SMIC 65nm and TSMC 28nm). In all cases, our
matrices exhibit lower area footprint. Taking the 97-XOR AES MDS matrix for example,
it takes 154.811996 um2 when synthesized with NanGate 45nm technology (194 GE), while
our 88-XOR matrix takes 140.447996 um2 (176 GE). Hence, our 88-XOR matrix enjoys
three advantages over the AES MDS matrix: it is involutory; its depth is 3 (the depth of
the 97-XOR AES MDS is 8; and its area footprint is lower. Moreover, we make all of our
code and results (matrices in binary representations with their actual implementations)
publicly available at

https://github.com/siweisun/involutory_mds

1.3 Organization
In Sect. 2, we give some preliminaries on finite fields and MDS matrices. Then metrics
used in this work for measuring the circuit cost are given in Sect. 3. In Sect. 4 we show
how to construct a lighter involutory matrix by generalizing a previously known involutory
MDS matrix. In Sect. 5, we consider further generalizations and search through a large set
of matrices to find lighter involutory MDS matrices. We prove a theorem on the lower
bound of the circuit depth of an 32× 32 MDS matrix with branch number 5, and enhance
Boyar’s SLP-heuristic algorithm to find lightweight involutory MDS matrices whose depths
reach the lower bound. Section 7 concludes the paper.

https://github.com/siweisun/involutory_mds


S. Li et al. 87

Table 1: A summary of the results. All matrices shown in the table are 32× 32 binary
matrices, and Mk(R) is the set of all k × k matrices whose entries are drawn from R. The
SLP column is obtained by applying Boyar’s SLP heuristic [BMP13], and SLP∗ means that
the result is obtained by applying a modified version of Boyar’s SLP heuristic with circuit
depth awareness presented in Sect. 6.

Matrix MDS Involutory SLP Depth Source
MAES ∈M4(F28) 3 7 97 8 [KLSW17]
MAES ∈M4(F28) 3 7 105 (SLP∗) 3 Sect. 6

MKLSW ∈M4(M2(F24)) 3 3 84 4 [KLSW17]
G ∈M4(M8(F2)) 3 3 80 4 Sect. 4
H ∈M4(M8(F2)) 3 3 78 4 Sect. 5
Q ∈M4(M8(F2)) 3 3 88 (SLP∗) 3 Sect. 6

2 Preliminaries
Let R be an arbitrary ring, and Mk(R) be the set of all k × k matrices whose entries are
drawn from R. Therefore, Mk(F2n) denotes the set of all k × k matrices over the finite
field of 2n elements, and Mk(GL(n,F2)) is the set of all k × k matrices whose elements
are taken from the general linear group GL(n,F2) formed by all invertible n× n matrices
over F2. Every matrix A in Mk(F2n) or Mk(GL(n,F2)) can be represented as an nk × nk
binary matrix, which we call the binary representation of A. We use In and On to denote
the n× n identity matrix and zero matrix over F2 respectively. We will omit the subscript
n whenever it is obvious from the context.

Given a vector x in Fnk2 , we denote by ωn(x) the number of non-zero n-bit chunks in x.
When n = 1, we simply write ω1(x) as ω(x), which is the well known Hamming weight of x.
The branch number Bn(A) of A ∈Mnk(F2) is defined as minx∈F2nk\{0}{ωn(x) + ωn(Ax)}.

Definition 1. An invertible nk × nk binary matrix A is MDS over k n-bit words if and
only if Bn(A) = k + 1. Furthermore, if an MDS matrix A satisfies that A = A−1, then we
call it an involutary MDS matrix.

Definition 2 (Characteristic polynomial [Wan03]). The characteristic polynomial f of a
binary matrix A ∈Mm(F2) is defined as f(x) = |xI +A| ∈ F2[x].

Lemma 1 ([DF04]). If f is a characteristic polynomial of A ∈Mm(F2), then f(A) = 0.

Definition 3 ([Con14]). Let A ∈Mm(F2), f ∈ F2[x] is the minimal polynomial of A if
and only if f(A) = 0, and for any g ∈ F2[x] such that g(A) = 0, deg(f) ≤ deg(g).

Note that a minimal polynomial of A ∈Mm(F2) can be reducible.

Definition 4 ([Wan03]). Let f = xm+am−1x
m−1 +· · ·+a1x+a0 ∈ F2[x]. The companion

matrix of f is defined as the m×m matrix

0 a0
1 0 a1

1
. . .

...
. . . 0 am−2

1 am−1


.

It is trivial to verify that the characteristic polynomial of f ’s companion matrix is f .

Lemma 2 ([BR99, LW16]). Let L be a matrix in Mk(Mn(F2)). Then L is an MDS
matrix (with branch number k + 1) if and only if all square sub-matrices G ∈Mt(Mn(F2))
of L are of full rank for 1 ≤ t ≤ k.
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Lemma 2 is employed in this paper to check the MDS property of our candidate
lightweight matrices.

3 Metrics

We estimate the hardware cost of a linear operation as the number of F2 × F2 → F2
XOR gates required in its implementation, where the implementation can be described
as a sequence of XOR and assignment operations xi ← xai ⊕ xbi with ai, bi < i. But,
for a given linear operation, it is NP-hard to obtain the minimum number of XOR gates
required [BMP08, BMP13], and only metrics determining the upper bounds are available.
The metrics used in this paper are listed in the following.

Direct XOR Count. Given a matrix A ∈Mnk(F2), the Direct XOR Count DXC(A) of
A is ω(A) − nk, that is, the number of 1s in the matrix A minus nk. This corresponds
to a naive implementation of A, where each row of A is implemented as is. DXC(A) is
essentially the same as the Hamming weight ω(A) of A up to a constant shift.

Global Optimization. Given a matrix A ∈Mnk(F2), we can obtain an estimation of its
hardware cost by finding a good linear straight-line program corresponding to A with
state-of-the-art automatic tools based on certain SLP heuristic [BMP13], and this metric is
denoted as SLP(A). Note that this is so far the most accurate estimation that is practical
for 32× 32 binary matrices.

In this work, eventually the hardware cost is estimated with Global Optimization.
However, before applying the Global Optimization, we first try to construct lighter
involutory MDS matrices with fairly low Direct XOR Count (i.e., matrices with low
Hamming weights). Finally, we would like to mention that there are other metrics (such as
the Sequential XOR Count [JPST17]) in the literature, and we refer the reader to [DL18]
for a clear discussion of the comparisons and limitations of different metrics.

Besides the circuit area (measured by the number of XOR gates required for an imple-
mentation), another important metric of an implementation is the latency, which imposes
constraint on the clock frequency at which the circuit can operate. The latency of an
implementation can be characterized by its depth.

Definition 5. Let M be an m ×m binary Matrix. Then the function fM : x ∈ Fm2 7→
Mx ∈ Fm2 can be implemented with a finite number of XOR gates. The critical path of
such an implementation is defined as the path between an input and output involving the
maximum number of XOR gates, and the depth of the implementation is the number of
XOR gates involved in the critical path.

4 Our Constructions

By applying the subfield construction [BNN+10, KPPY14] to the involutory MDS matrix


I4 C C2 I4
C I4 I4 C2

C3 C I4 C
C C3 C I4

 with C =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0


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proposed by Sarkar et al. [SS16b], Kranz et al. obtain so far the most lightweight involutory
MDS matrix in M4(M2(F24)), whose binary representation is

MKLSW =



I4 0 C 0 C2 0 I4 0
0 I4 0 C 0 C2 0 I4
C 0 I4 0 I4 0 C2 0
0 C 0 I4 0 I4 0 C2

C3 0 C 0 I4 0 C 0
0 C3 0 C 0 I4 0 C
C 0 C3 0 C 0 I4 0
0 C 0 C3 0 C 0 I4


.

The involutory MDS matrix MKLSW can be regarded as a matrix in M4(GL(8,F2)) of
the following form 

I8 A A2 I8
A I8 I8 A2

A3 A I8 A
A A3 A I8

 . (1)

Then we can generalize (1) and try to find lightweight involutory MDS matrices of the
following form

G =


I8 Al Ai I8
Al I8 I8 Ai

Aj Ak I8 Al

Ak Aj Al I8

 .

Observation 1. The matrix G ∈M4(GL(8,F2)) is involutory if and only if G2 = I which
implies A2l +Ai+j +Ak = O8 and Ai+k +Aj = O8.

According to Observation 1, to make G involutory, we have Ai+k +Aj = O8 and thus

G =


I8 Al Ai I8
Al I8 I8 Ai

Aj Ak I8 Al

Ak Aj Al I8

 =


I8 Al Ai I8
Al I8 I8 Ai

Ai+k Ak I8 Al

Ak Ai+k Al I8

 .

First, our goal is to find an involutory matrix G, such that DXC(G) is small. Since
DXC(G) = ω(G)− 32 = 4ω(Al) + 2ω(Ai) + 2ω(Ak) + 2ω(Ai+k) + 48− 32 and heuristically
ω(At) increases along with |t| when A is very sparse, we prefer instantiations of i, l, j and
k, such that |i|, |l|, |j| and |k| (the exponents of A appearing in G) are small.

According to [BKL16] (see Table 7 of [BKL16]), DXC(A) ≥ 2 if the characteristic
polynomial of A is an irreducible polynomial of degree 8. Therefore, we only consider A
whose characteristic polynomial is reducible. We find that if we choose

A =



0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


(2)

to be the companion matrix of x8 +x2 +1, whose characteristic polynomial is (x4 +x+1)2 =
x8 + x2 + 1, then DXC(A−4) = 6, DXC(A−3) = 4, DXC(A−2) = 2, DXC(A−1) = 1,
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Table 2: An implementation of G with 80 XOR gates and depth 4, where (x0, · · · , x31) are
input signals, (y0, · · · , y31) are output signals, and ti’s are intermediate signals.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t1 = x0 + x9 1 28 t28 = x31 + t16 2 55 t55 = x4 + t38 3
2 t2 = x1 + x8 1 29 t29 = x7 + t28 [y7] 3 56 t56 = t40 + t55 [y4] 4
3 t3 = x2 + t1 2 30 t30 = x7 + x19 1 57 t57 = x5 + x29 1
4 t4 = x10 + t2 2 31 t31 = x7 + x26 1 58 t58 = t6 + t57 [y5] 2
5 t5 = x3 + x30 1 32 t32 = x8 + t30 2 59 t59 = x9 + t34 3
6 t6 = x11 + x22 1 33 t33 = x29 + t32 [y29] 3 60 t60 = t36 + t59 [y9] 4
7 t7 = x0 + x27 1 34 t34 = x14 + t31 2 61 t61 = x10 + t7 2
8 t8 = x6 + x18 1 35 t35 = x20 + t34 [y20] 3 62 t62 = t8 + t61 [y10] 3
9 t9 = x15 + t7 2 36 t36 = x24 + t22 2 63 t63 = x11 + t32 3
10 t10 = x21 + t9 [y21] 3 37 t37 = x0 + t36 [y0] 3 64 t64 = t38 + t63 [y11] 4
11 t11 = x20 + t1 2 38 t38 = x28 + t2 2 65 t65 = x12 + t11 3
12 t12 = x30 + t11 [y30] 3 39 t39 = x22 + t38 [y22] 3 66 t66 = t13 + t65 [y12] 4
13 t13 = x29 + t3 3 40 t40 = x21 + t4 3 67 t67 = x13 + x21 1
14 t14 = x23 + t13 [y23] 4 41 t41 = x31 + t40 [y31] 4 68 t68 = t5 + t67 [y13] 2
15 t15 = x4 + x22 1 42 t42 = x12 + x23 1 69 t69 = x17 + t17 3
16 t16 = x13 + x16 1 43 t43 = x24 + t21 2 70 t70 = t19 + t69 [y17] 4
17 t17 = x31 + t15 2 44 t44 = x15 + t43 [y15] 3 71 t71 = x18 + t43 3
18 t18 = x14 + t17 [y14] 3 45 t45 = x30 + t42 2 72 t72 = t45 + t71 [y18] 4
19 t19 = t3 + t6 3 46 t46 = x6 + t45 [y6] 3 73 t73 = x19 + t26 3
20 t20 = x24 + t19 [y24] 4 47 t47 = t4 + t5 3 74 t74 = t28 + t73 [y19] 4
21 t21 = x5 + x23 1 48 t48 = x16 + t47 [y16] 4 75 t75 = x25 + t45 3
22 t22 = x14 + x17 1 49 t49 = x1 + t24 3 76 t76 = t47 + t75 [y25] 4
23 t23 = x6 + x25 1 50 t50 = t26 + t49 [y1] 4 77 t77 = x26 + t15 2
24 t24 = x15 + t8 2 51 t51 = x2 + t32 3 78 t78 = t16 + t77 [y26] 3
25 t25 = x28 + t24 [y28] 3 52 t52 = t34 + t51 [y2] 4 79 t79 = x27 + t21 2
26 t26 = x16 + t23 2 53 t53 = x3 + t9 3 80 t80 = t22 + t79 [y27] 3
27 t27 = x8 + t26 [y8] 3 54 t54 = t11 + t53 [y3] 4

DXC(A0) = 0, DXC(A) = 1, DXC(A2) = 2, DXC(A3) = 3, DXC(A4) = 4, and A8 +A2 +I =
0 according to Lemma 1.

It is easy to verify that the minimal polynomial of A is also x8 + x2 + 1 according to
Definition 3. Hence A8 + A2 + I = 0 and thus A8+d + A2+d + Ad = 0 for any integer
d. Therefore, solving the equation over two sets {A8+d, A2+d, Ad} = {A2l, A2i+k, Ak},
where A2i+k = Ai+j according to Observation 1, gives the solutions of l, i, and k such
that A2l +Ai+j +Ak = O8. We can enumerate all solutions and pick one which minimizes
4|l|+ 2|i|+ 2|k|+ 2|i+ j|. One such possible solution1 is

d = −4
l = 2
k = −2
i = −1

which transforms G into

G =


I8 A2 A−1 I8
A2 I8 I8 A−1

A−3 A−2 I8 A2

A−2 A−3 A2 I8

 .

By applying Boyar’s SLP-heuristic algorithm, we obtain an implementation of G with
only 80 XOR gates, which breaks the record of 84 XOR gates [KLSW17], and the actual
implementation can be found in Table 2

5 More Generalizations
The above result motivates us to consider a more generalized form:

M =


Aε11 Aε12 Aε13 Aε14

Aε21 Aε22 Aε23 Aε24

Aε31 Aε32 Aε33 Aε34

Aε41 Aε42 Aε43 Aε44

 =


I Aε12 Aε13 Aε14

Aε21 I Aε23 Aε24

Aε31 Aε32 I Aε34

Aε41 Aε42 Aε43 I

 .

1There are other possible solutions. However, we do not discuss them since all of them will be covered
in sebsequent sections.
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where ε11 = ε22 = · · · = ε44 = 0, A ∈ GL(8,F2) is the companion matrix of x8 + x2 + 1
shown in Equation (2), and εij are integers for 1 ≤ i, j ≤ 4. Without loss of generality, let

Aε42 = Ar+ε13

Aε43 = As+ε12

Aε24 = At+ε13

.

Since M is involutory and thus A2 = I, we can deduce that

M =


I Aε12 Aε13 Aε14

Aε12+s+t I Aε14+s Aε13+t

Aε13+r+t Aε14+r I Aε12+t

Aε14+r+s Aε13+r Aε12+s I

 (3)

and

(I, Aε12 , Aε13 , Aε14)


Aε11

Aε12+s+t

Aε13+r+t

Aε14+r+s

 = I,

which implies
A2ε12−r +A2ε13−s +A2ε14−t = 0. (4)

According to Equation (3), the matrix M can be completely determined by the
parameters ε12, ε13, ε14, r, s and t. Therefore, we inspect all (ε12, ε13, ε14, r, s, t) ∈ Z6

satisfying the following conditions2
−8 ≤ ε1j ≤ 8 for 1 ≤ j ≤ 4
0 ≤ r ≤ s ≤ t ≤ 8
A2ε12−r +A2ε13−s +A2ε14−t = 0

. (5)

Finally, we identify 5550 involutory MDS matrices whose Hamming weights are within
the range from 148 to 172. We apply Boyar’s SLP-heuristic algorithm to all these matrices
to obtain their lightweight implementations and the results are summarized in Table 3.

The above approach produces many equivalent matrices. For instance, let

M =


I Aε12 Aε13 Aε14

Aε12+s+t I Aε14+s Aε13+t

Aε13+r+t Aε14+r I Aε12+t

Aε14+r+s Aε13+r Aε12+s I

 ,

which is parameterized by (ε12, ε13, ε14, r, s, t). If we exchange the second row and third
row, and then exchange the second and third column, we obtain

M̃ =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I


T

M


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 =


I Aε13 Aε12 Aε14

Aε13+r+t I Aε14+r Aε12+t

Aε12+s+t Aε14+s I Aε13+t

Aε14+r+s Aε12+s Aε13+r I

 ,

corresponding to the parameter (ε13, ε12, ε14, s, r, t). Obviously, M̃ is an involutory MDS
matrix if and only if M is involutory and MDS. In addition, from any implementation of
M , we can derive an implementation of M̃ with the same circuit size and depth. Hence,
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Table 3: A summary of the result. The first row means that we identify a set of 18
matrices whose Hamming weight and DXC are 148 and 116 respectively. The maximal
and minimal XOR gate counts of these matrices after applying Boyar’s SLP heuristic are
80, and the minimum circuit depth is 4.

ω(A) #Matrices DXC(A) min SLP(A) max SLP(A) min depth(A)
148 18 116 80 80 4
149 48 117 80 80 4
150 72 118 80 83 4
151 48 119 83 84 4
152 60 120 83 87 4
153 72 121 80 84 4
154 84 122 80 86 4
155 24 123 86 87 5
156 72 124 86 87 4
157 96 125 82 84 5
158 156 126 80 90 4
159 0 – – – –
160 210 128 78 90 4
161 144 129 79 84 4
162 204 130 79 89 4
163 192 131 79 91 5
164 300 132 78 93 4
165 312 133 79 88 5
166 324 134 80 93 4
167 336 135 80 94 5
168 600 136 78 99 4
169 384 137 79 97 4
170 504 138 80 98 4
171 528 139 81 99 4
172 762 140 79 102 4

the parameters (ε12, ε13, ε14, r, s, t), and (ε13, ε12, ε14, s, r, t) are equivalent. We list all
equivalent parameters in Table 4.

Every entry in the rightmost column of Table 4 is the cycle notation of a permutation
π over {1, 2, 3, 4}. The parameter in the same row is obtained by permute the columns
and rows of

M =


I Aε12 Aε13 Aε14

Aε12+s+t I Aε14+s Aε13+t

Aε13+r+t Aε14+r I Aε12+t

Aε14+r+s Aε13+r Aε12+s I


according to π. Taking the 4th row for example, we have π = (2, 4, 3), and the transforma-
tion is performed as follows(
I8 0 0 0
0 0 0 I8
0 I8 0 0
0 0 I8 0

)T (
I Aε12 Aε13 Aε14

Aε12+s+t I Aε14+s Aε13+t

Aε13+r+t Aε14+r I Aε12+t

Aε14+r+s Aε13+r Aε12+s I

)(
I8 0 0 0
0 0 0 I8
0 I8 0 0
0 0 I8 0

)
=
(

I Aε13 Aε14 Aε12

Aε13+r+t I Aε12+t Aε14+r

Aε14+r+s Aε12+s I Aε13+r

Aε12+s+t Aε14+s Aε13+t I

)
,

from which we can see that (ε13, ε14, ε12, s, t, r) and (ε12, ε13, ε14, r, s, t) are equivalent.
However, such equivalences are not visible to Boyar’s tool [BMP13] due to its heuristic
nature, where the orders of the rows and columns do matter. That is, Boyar’s tool may

2These conditions can be relaxed to find potentially better matrices.
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Table 4: A list of equivalent parameters, where the Transformation column corresponds
to certain column and row permutations explained in the following.

No. Parameter Transformation
1 (ε12, ε13, ε14, r, s, t) –
2 (ε12, ε14, ε13, r, t, s) (3, 4)
3 (ε13, ε12, ε14, s, r, t) (2,3)
4 (ε13, ε14, ε12, s, t, r) (2,4,3)
5 (ε14, ε12, ε13, t, r, s) (2,3,4)
6 (ε14, ε13, ε12, t, s, r) (2,4)
7 (ε12 + s+ t, ε13 + t, ε14 + s, r − s,−t) (1,2)(3,4)
8 (ε12 + s+ t, ε14 + s, ε13 + t, r,−t,−s) (1,2)
9 (ε13 + t, ε12 + s+ t, ε14 + s,−s, r,−t) (1,3,4,2)
10 (ε13 + t, ε14 + s, ε12 + s+ t,−s,−t, r) (1,4,2)
11 (ε14 + s, ε12 + s+ t, ε13 + t,−t, r,−s) (1,3,2)
12 (ε14 + s, ε13 + t, ε12 + s+ t,−t,−s, r) (1,4,3,2)
13 (ε12 + t, ε13 + r + t, ε14 + r,−r, s,−t) (1,3)(2,4)
14 (ε12 + t, ε14 + r, ε13 + r + t,−r,−t, s) (1,4,2,3)
15 (ε13 + r + t, ε12 + t, ε14 + r, s,−r,−t) (1,2,4,3)
16 (ε13 + r + t, ε14 + r, ε12 + t, s,−t,−r) (1,2,3)
17 (ε14 + r, ε12 + t, ε13 + r + t,−t,−r, s) (1,4,3)
18 (ε14 + r, ε13 + r + t, ε12 + t,−t, s,−r) (1,3)
19 (ε12 + s, ε13 + r, ε14 + r + s,−r,−s, t) (1,4)(2,3)
20 (ε12 + s, ε14 + r + s, ε13 + r,−r, t,−s) (1,3,2,4)
21 (ε13 + r, ε12 + s, ε14 + r + s,−s,−r, t) (1,4)
22 (ε13 + r, ε14 + r + s, ε12 + s,−s, t,−r) (1,3,4)
23 (ε14 + r + s, ε12 + s, ε13 + r, t,−r,−s) (1,2,4)
24 (ε14 + r + s, ε13 + r, ε12 + s, t,−s,−r) (1,2,3,4)

output circuits with different sizes and depths for two equivalent matrices. Therefore, in
our experiment, we still need to search through all matrices we generated, and pick the
ones with better implementations. One of the optimal matrices we find is

H =


I8 I8 I8 A4

A4 I8 A6 A2

A2 A4 I8 A2

A6 I8 A2 I8


corresponding to the parameter (0, 0, 4, 0, 2, 2), where A is the companion matrix of
x8 + x2 + 1 shown in Equation (2). The actual implementation of H is given in Table 5.

6 Searching for Low-latency Involutory MDS Matrices
In the previous section, we identify an involutory MDS Matrix which can be implemented
with 78 XOR gates whose circuit depth is 4. Although this matrix is good with respect
to lightweightness, we find that it is inferior to AES MixColumns operation in terms of
latency. The lightest implementation (97 XOR gates) of the AES MixColumns operation
is of depth 8, and if we increase the number of XOR gates, the AES MixColumns can be
implemented with depth 3. In the following, we show that depth 3 is optimal.

Theorem 1. The circuit depth of an MDS matrix A ∈M4(GL(8,F2)) with branch number
5 is at least 3.
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Table 5: An implementation of H, corresponding to parameter (0, 0, 4, 0, 2, 2), with 78 XOR
gates and depth 4, where (x0, · · · , x31) are input signals, (y0, · · · , y31) are output signals,
and ti’s are intermediate signals.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t1 = x6 + x12 1 27 t27 = t1 + t14 2 53 t53 = t2 + t40 2
2 t2 = x7 + x13 1 28 t28 = t12 + t27 [y12] 3 54 t54 = t38 + t53 [y13] 3
3 t3 = x18 + x30 1 29 t29 = t3 + t26 3 55 t55 = t4 + t52 3
4 t4 = x19 + x31 1 30 t30 = t7 + t29 [y10] 4 56 t56 = t8 + t55 [y11] 4
5 t5 = x2 + x22 1 31 t31 = t11 + t27 3 57 t57 = t37 + t53 3
6 t6 = x3 + x23 1 32 t32 = t29 + t31 [y18] 4 58 t58 = t55 + t57 [y19] 4
7 t7 = x4 + x10 1 33 t33 = t18 + t31 [y30] 4 59 t59 = t44 + t57 [y31] 4
8 t8 = x5 + x11 1 34 t34 = t18 + t20 3 60 t60 = t44 + t46 3
9 t9 = x16 + x28 1 35 t35 = t29 + t34 [y4] 4 61 t61 = t55 + t60 [y5] 4
10 t10 = x17 + x29 1 36 t36 = x28 + t34 [y28] 4 62 t62 = x29 + t60 [y29] 4
11 t11 = x6 + x14 1 37 t37 = x7 + x15 1 63 t63 = x0 + x8 1
12 t12 = x22 + x26 1 38 t38 = x23 + x27 1 64 t64 = t9 + t63 [y0] 2
13 t13 = t11 + t12 [y6] 2 39 t39 = t37 + t38 [y7] 2 65 t65 = x1 + x9 1
14 t14 = x0 + x20 1 40 t40 = x1 + x21 1 66 t66 = t10 + t65 [y1] 2
15 t15 = x8 + t5 2 41 t41 = x9 + t6 2 67 t67 = x14 + t5 2
16 t16 = x24 + t15 [y24] 3 42 t42 = x25 + t41 [y25] 3 68 t68 = t9 + t67 [y14] 3
17 t17 = x6 + x20 1 43 t43 = x7 + x21 1 69 t69 = x15 + t6 2
18 t18 = x30 + t1 2 44 t44 = x31 + t2 2 70 t70 = t10 + t69 [y15] 3
19 t19 = x16 + t18 [y16] 3 45 t45 = x17 + t44 [y17] 3 71 t71 = t9 + t12 2
20 t20 = x4 + t3 2 46 t46 = x5 + t4 2 72 t72 = t24 + t71 [y26] 4
21 t21 = x8 + t20 [y8] 3 47 t47 = x9 + t46 [y9] 3 73 t73 = t10 + t38 2
22 t22 = x28 + t7 2 48 t48 = x29 + t8 2 74 t74 = t50 + t73 [y27] 4
23 t23 = x22 + t22 [y22] 3 49 t49 = x23 + t48 [y23] 3 75 t75 = t13 + t15 3
24 t24 = x2 + t22 3 50 t50 = x3 + t48 3 76 t76 = t17 + t75 [y20] 4
25 t25 = t20 + t24 [y2] 4 51 t51 = t46 + t50 [y3] 4 77 t77 = t39 + t41 3
26 t26 = x24 + t17 2 52 t52 = x25 + t43 2 78 t78 = t43 + t77 [y21] 4

Proof. Let

A =


A1,1 A1,2 A1,3 A1,4
A2,1 A2,2 A2,3 A2,4
A3,1 A3,2 A3,3 A3,4
A4,1 A4,2 A4,3 A4,4

 with Ai,j ∈ GL(8,F2) (6)

be an MDS matrix with branch number 5 whose circuit depth is 2, which implies that
each of the 4× 8 = 32 rows of A contains at most four 1’s. Then the Hamming weight of
each row of the 8× 8 submatrix Ai,j is 1. Otherwise, there is one row of some submatrix
Ai,j whose Hamming weight is 0, which contradicts our assumption that A is MDS (see
Lemma 2). Moreover, each column of Ai,j contains only one 1. Otherwise we can identify
two linearly dependent rows, which is a contradiction to the MDS property. Therefore,
Ai,j is a permutation matrix. Now let us consider the submatrix

A′ =
(
A1,1 A1,2
A2,1 A2,2

)
.

The Hamming weights of each row and each column of A′ is 2. Thus, the sum of the
2 × 8 = 16 rows of A′ is a zero vector, meaning that A′ is not invertible. This is a
contradiction to the MDS property of A.

Therefore, our goal is to find lightweight involutory matrices whose circuit depth is
3. Hopefully, we can identify one that is lighter than the MixColumns operation of AES,
which does not enjoy the involutory property. For a given 32× 32 matrix, Boyar’s SLP-
heuristic algorithm [BMP13] is virtually the best tool available for finding its lightweight
implementation. However, Boyar’s algorithm aims at minimizing the number of XOR gates
of an implementation regardless of its circuit depth, which is not applicable in our scenario.

Given a set of input signals and a set of linear predicates represented as a binary
matrix, Boyar’s algorithm repeatedly picks two signals according to some rules, adds them
together as a new signal, and puts this new signal into the signal set. Intuitively, after
each iteration the signal set becomes “closer” to the set of linear predicates according to a
notion of distance. The algorithm stops executing if and only if the distance becomes 0,
that is, the set of signals compute the set of linear predicates.

In the following, we enhance Boyar’s algorithm with circuit depth awareness. Basically,
we modify Boyar’s algorithm by only picking signals which are not going to exceed a
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specified depth bound, and defining a new notion of distance which takes the circuit depth
into account. The details are presented in Algorithm 1, where the subroutine Pick() picks
two elements from the current signal set S such that when the exclusive-or of these two
elements are put into the signal sets S, the sum of the values in the new distance vector
∆ is minimized among all possible choices of the selected two elements, and ties will be
resolved by maximizing the Euclidean norm of ∆. This strategy is exactly the same as
Boyar’s method [BMP13], except that the distances in ∆ are computed according to our
new definition presented in the following.

Algorithm 1: SLP heuristic with bounded circuit depth
Input: An m× n binary matrix M representing m linear predicates in n variables,

i.e., (y1, · · · , ym) = M(x1, · · · , xn)T , and a positive integer H
Output: S = [x1, x2, · · · , xn, xn+1, xn+2, · · · , xn+l] such that d(xj) ≤ H for all j,

and for any yk with 1 ≤ k ≤ m, yk can be computed by one element in
Sl, where xn+j = xa + xb, xa, xb ∈ {x1, · · · , xn+j−1} for j ≥ 1.

1 /* Initialization */
2 S ← [x1, x2, · · · , xn] /* The input signals */
3 D ← [0, 0, · · · , 0] /* D[i] keeps track of the circuit depth of S[i] */
4 ∆← [δH(S, y1), · · · , δH(S, ym)] /* The distances */

5 if ∆[i] =∞ for some i then
6 return Infeasible
7 end
8 /* M can not be implemented within the depth bound H */

9 j ← n
10 while ∆ 6= 0 do
11 j ← j + 1
12 if ∃(x′a, x′b) ∈ S such that yt = x′a + x′b for some t ∈ {1, · · · ,m} then
13 (xa, xb)← (x′a, x′b)
14 else
15 (xa, xb) ← Pick(S, D, H)
16 end
17 xj ← xa + xb
18 S ← S ∪ [xj ]
19 depth(xj)← max(D[a], D[b]) + 1 /* Compute the depth of x_j */
20 D ← D ∪ [depth(xj)]
21 ∆← [δH(S, y1), · · · , δH(S, ym)] /* Update the distances */
22 end

23 return S

Let S be a sequence of signals. For any linear predicate f , we define δH(S, f) as the
minimum number of additions (XOR gates) required to implement f with input signals from
S, such that the depth of the implementation is not greater than H. We call δH(S, f) the
H-Distance from S to f . Note that our notion of distance is different from Boyar’s in that
if δH(S, f) = k, we not only require that f can be obtained by k additions, but also that
there exits an implementation of k additions within depth H. If f can not be implemented
within depth H, we have δH(S, f) = ∞. In what follows, we use δ(S, f) to denote the
distance defined in Boyar’s work [BMP13], where the circuit depth is not considered.

Example 1. Let S = [x1, x2, x3, x4, x5], and f = x2 + x3 + x4 + x5. Then δ(S, f) =
δ2(S, f) = 3, and f can be implemented as x6 = x2 + x3, x7 = x4 + x5, and x8 = x6 + x7,
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x1x2
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v1 + v2 + v3
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(a) Implementation I (depth 4)

x1x2

x3x4
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x6
x7

x8

x9

v1 + v2 + v3

v1

v2

v3

(b) Implementation II (depth 5)

Figure 1: Two implementations of the same summation v1 + v2 + v3 with different circuit
depths, where the depths of v1, v2 and v3 are 2, 0, and 3 respectively.

where x8 computes f , whose depth is 2.

Example 2. Let S = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x3 + x6] (note that the depths
of x6 and x7 are 1 and 2 respectively), and f = x2 + x3 + x4 + x5. Then δ(S, f) = 1,
and f can be implemented as x5 + x7, whose depth is 3, while δ2(S, f) = 2, and f can be
implemented within depth 2 as x8 = x3 + x5, x9 = x6 + x8, where x9 computes f .

Example 3. Let S = [x1, x2, x3, x4, x5] , and f = x1 + x2 + x3 + x4 + x5. Then it is easy
to check that δ(S, f) = 4, and δ2(S, f) =∞.

In Algorithm 1, we need a method to compute the minimal circuit depth of v1 + · · ·+vk,
where the depths of vi’s are known. Note that there are many different ways of implementing
v1 + · · ·+ vk which lead to different circuit depths as illustrated in Fig. 1. To deal with
this, we prove the following theorem.

Theorem 2. Let {v1, v2, · · · , vn} be a set of signals with depth(vi) = di, then the lower
bound of the depth of the circuit implementing z = v1+· · ·+vn is dlog2

∑n
i=1 2die. Moreover,

there is always a circuit implementing z with depth dlog2
∑n
i=1 2die, i.e., the lower bound

is always achievable.

Proof. We prove by induction on k, the number of terms in the summation. For n = 1
and n = 2, Theorem 2 holds obviously. Assuming that it holds for all k < n, we show in
the following that it also holds for k = n.

Without loss of generality, any implementation of z = v1 + · · · + vn is of the form
z = za + zb, where za = vi1 + · · ·+ viq , zb = vj1 + · · ·+ vjn−q , and

{vi1 , · · · , viq} ∪ {vj1 , · · · , vjn−q} = {v1, v2, · · · , vn}.

Then depth(z) = max{depth(za),depth(zb)}+ 1. According to the induction hypothesis,
we have

depth(za) ≥ dlog2

q∑
t=1

2dit e,

depth(zb) ≥ dlog2

n−q∑
t=1

2djt e.
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Therefore, we can obtain that

depth(z) ≥ max{dlog2

q∑
t=1

2dit e, dlog2

n−q∑
t=1

2djt e}+ 1

≥ max{1 + dlog2

q∑
t=1

2dit e, 1 + dlog2

n−q∑
t=1

2djt e}

≥ max{dlog2 2
q∑
t=1

2dit e, dlog2 2
n−q∑
t=1

2djt e} ≥ dlog2

n∑
i=1

2die.

Next, we show that the lower bound is achievable. First, we sort the set {v1, · · · , vn}
of signals with non-decreasing depths. Then, we remove the leftmost two signals with the
same depth, and insert the signal of their sum into the depth-ordered list. Without loss
of generality, we assume that {v1, · · · , vn} is already in order, and depth(v1) = depth(v2).
After we update the set according to the above rule, we have a new set of signals
{v1 + v2, v3, · · · , vn}. Note that such operation preserves the sum

∑
x 2depth(x), that

is
2depth(v1) + · · ·+ 2depth(vn) = 2depth(v1+v2) + 2depth(v3) + · · ·+ 2depth(vn).

We repeat the above operations until we obtain a set of signals {z1, · · · , zm} with
depth(zi) = qi such that q1 < q2 < · · · < qm. Now, we are ready to give the imple-
mentation achieving the lower bound. First, if m > 1, we add z1 and z2 and obtain
zm+1 = z1 + z2 whose depth depth(zm+1) = q2 + 1; Then we add zm+1 and z3 and
obtain zm+2 whose depth depth(zm+2) = q3 + 1; · · · ; Finally, we add z2m−2 and zm
and obtain z which implements v1 + · · · + vn whose depth depth(z) = qm + 1. Since
2qm+1 > 2q1 + · · · + 2qm = 2depth(v1) + · · · + 2depth(vn) > 2qm , we can derive that
qm + 1 = dlog2

∑n
i=1 2die.

If m = 1, depth(z) = q1, and 2depth(v1) + · · · + 2depth(vn) is exactly a power of 2. In
this case, we have q1 = log2

∑n
i=1 2di

In our algorithm, initially S is the sequence of all input signals. We maintain a list ∆
to track the H-distances of the output signals from S. At the same time, we keep a list D
such that D[i] is the circuit depth of S[i]. At each iteration, we pick two different elements
from S with Pick(S,D,H). Basically, we create a new element for S whose circuit depth
is not greater than H by adding the two elements returned by Pick() which minimizes the
sum of the new H-distances, where ties are resolved by maximizing the Euclidean norm
of the new ∆. This strategy is the same as Boyar’s SLP heuristic, and we refer the reader
to [BMP13] for more information. Our algorithm is best illustrated by running through a
toy example.

Example 4. Let the set of input signals be {x1, x2, x3, x4, x5}, and

y1 = x1 + x2 + x3

y2 = x2 + x4 + x5

y3 = x1 + x3 + x4 + x5

y4 = x2 + x3 + x4

y5 = x1 + x2 + x4

y6 = x2 + x3 + x4 + x5

, which can be represented as

 1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

 (7)

We execute the Algorithm 1 with H = 2.

Step 0. S0 = [x1, x2, x3, x4, x5], D0 = [0, 0, 0, 0, 0], and ∆0 = [2, 2, 3, 2, 2, 3].
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Step 1. S1 = S0 ∪ [x6 = x2 + x4] = [x1, x2, x3, x4, x5, x6 = x2 + x4], D1 = [0, 0, 0, 0, 0, 1],
and ∆1 = [2, 1, 3, 1, 1, 2].

Step 2. S2 = S1 ∪ [x7 = x5 + x6] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 + x6],
D2 = [0, 0, 0, 0, 0, 1, 2], and ∆2 = [2, 0, 3, 1, 1, 2], where x7 computes x2 + x5 + x4.

Step 3. S3 = S2∪[x8 = x3+x6] = [x1, x2, x3, x4, x5, x6 = x2+x4, x7 = x5+x6, x8 = x3+x6],
D3 = [0, 0, 0, 0, 0, 1, 2, 2], and ∆3 = [2, 0, 3, 0, 1, 2], where x8 computes x2 + x3 + x4.

Step 4. S4 = S3 ∪ [x9 = x1 + x6] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 + x6, x8 =
x3 + x6, x9 = x1 + x6], D4 = [0, 0, 0, 0, 0, 1, 2, 2, 2], and ∆4 = [2, 0, 3, 0, 0, 2], where x9
computes x1 + x2 + x4.

Step 5. S5 = S4 ∪ [x10 = x1 + x3] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 + x6, x8 =
x3 +x6, x9 = x1 +x6, x10 = x1 +x3], D5 = [0, 0, 0, 0, 0, 1, 2, 2, 2, 1], and ∆5 = [1, 0, 2, 0, 0, 2].

Step 6. S6 = S5 ∪ [x11 = x2 + x10] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 + x6, x8 =
x3 + x6, x9 = x1 + x6, x10 = x1 + x3, x11 = x2 + x10], D6 = [0, 0, 0, 0, 0, 1, 2, 2, 2, 1, 2], and
∆6 = [0, 0, 2, 0, 0, 2], where x11 computes x1 + x2 + x3.

Step 7. S7 = S6 ∪ [x12 = x3 + x5] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 +
x6, x8 = x3 + x6, x9 = x1 + x6, x10 = x1 + x3, x11 = x2 + x10, x12 = x3 + x5], D7 =
[0, 0, 0, 0, 0, 1, 2, 2, 2, 1, 2, 1], and ∆7 = [0, 0, 2, 0, 0, 1].

Step 8. S8 = S7 ∪ [x13 = x6 + x12] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 + x6, x8 =
x3 + x6, x9 = x1 + x6, x10 = x1 + x3, x11 = x2 + x10, x12 = x3 + x5, x13 = x6 + x12], D8 =
[0, 0, 0, 0, 0, 1, 2, 2, 2, 1, 2, 1, 2], and ∆8 = [0, 0, 2, 0, 0, 0], where x13 computes x2+x3+x4+x5.

Step 9. S9 = S8∪ [x14 = x1 +x4] = [x1, x2, x3, x4, x5, x6 = x2 +x4, x7 = x5 +x6, x8 = x3 +
x6, x9 = x1 +x6, x10 = x1 +x3, x11 = x2 +x10, x12 = x3 +x5, x13 = x6 +x12, x14 = x1 +x4],
D9 = [0, 0, 0, 0, 0, 1, 2, 2, 2, 1, 2, 1, 2, 1], and ∆9 = [0, 0, 1, 0, 0, 0].

Step 10. S10 = S9 ∪ [x15 = x12 + x14] = [x1, x2, x3, x4, x5, x6 = x2 + x4, x7 = x5 + x6, x8 =
x3 + x6, x9 = x1 + x6, x10 = x1 + x3, x11 = x2 + x10, x12 = x3 + x5, x13 = x6 + x12, x14 =
x1+x4, x15 = x12+x14], D10 = [0, 0, 0, 0, 0, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2], and ∆10 = [0, 0, 0, 0, 0, 0],
where x15 computes x1 + x3 + x4 + x5.

We apply this algorithm to all matrices we generated in Sect. 5, and the lightest one
achieving the lower bound of the circuit depth (i.e., 3) we find is Q,

Q =


I8 I8 A−2 A−2

A10 I8 A2 A4

A6 I8 I8 A6

A4 I8 A4 I8


corresponding to the parameter (0,−2,−2, 2, 4, 6), where A the companion matrix of
x8 + x2 + 1 shown in Equation (2). The actual implementation of Q is given in Table 6.

Remark. In Sects. 4-6, we only show the best matrices we find. We present a summary of
all other results we obtained in Supplementary materials A and B, where we only show the
parameter resulting in better circuit when equivalences are encountered. Moreover, The
raw data and source code are also submitted as supplementary material along the paper.

7 Conclusion
In this work, we find so far the lightest 32× 32 involutory MDS matrices whose branch
number is 5 by searching through a large set of matrices whose entries are the powers of
the companion matrix of x8 + x2 + 1. Moreover, we enhance Boyar’s SLP heuristic with
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Table 6: An implementation of Q, corresponding to parameter (0,−2,−2, 2, 4, 6), with
88 XOR gates and depth 3, where (x0, · · · , x31) are input signals, (y0, · · · , y31) are output
signals, and ti’s are intermediate signals.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t1 = x4 + x20 1 31 t31 = x5 + x23 1 61 t61 = x14 + x26 1
2 t2 = x5 + x21 1 32 t32 = t14 + t31 [y5] 2 62 t62 = t25 + t61 [y14] 3
3 t3 = x6 + x22 1 33 t33 = x6 + x16 1 63 t63 = x14 + x30 1
4 t4 = x7 + x23 1 34 t34 = t19 + t33 [y6] 2 64 t64 = t21 + t63 [y30] 2
5 t5 = x2 + x26 1 35 t35 = x22 + x30 1 65 t65 = x15 + x27 1
6 t6 = x3 + x27 1 36 t36 = t9 + t35 2 66 t66 = t27 + t65 [y15] 3
7 t7 = x4 + x28 1 37 t37 = t8 + t36 [y10] 3 67 t67 = x15 + x31 1
8 t8 = x10 + t7 2 38 t38 = t34 + t36 [y22] 3 68 t68 = t23 + t67 [y31] 2
9 t9 = x0 + x16 1 39 t39 = x7 + x17 1 69 t69 = x18 + t5 2
10 t10 = x5 + x29 1 40 t40 = t20 + t39 [y7] 2 70 t70 = t8 + t69 [y18] 3
11 t11 = x11 + t10 2 41 t41 = x23 + x31 1 71 t71 = x19 + t6 2
12 t12 = x1 + x17 1 42 t42 = t12 + t41 2 72 t72 = t11 + t71 [y19] 3
13 t13 = x12 + x30 1 43 t43 = t11 + t42 [y11] 3 73 t73 = x20 + t7 2
14 t14 = x13 + x31 1 44 t44 = t40 + t42 [y23] 3 74 t74 = t22 + t73 [y20] 3
15 t15 = x8 + x24 1 45 t45 = x8 + x16 1 75 t75 = x21 + t10 2
16 t16 = t1 + t15 [y24] 2 46 t46 = t5 + t45 [y16] 2 76 t76 = t24 + t75 [y21] 3
17 t17 = x9 + x25 1 47 t47 = x0 + x24 1 77 t77 = x6 + x28 1
18 t18 = t2 + t17 [y25] 2 48 t48 = t21 + t47 2 78 t78 = t13 + t77 2
19 t19 = x14 + x24 1 49 t49 = t46 + t48 [y0] 3 79 t79 = t36 + t78 [y28] 3
20 t20 = x15 + x25 1 50 t50 = t22 + t48 [y12] 3 80 t80 = x7 + x29 1
21 t21 = x2 + x18 1 51 t51 = x8 + t3 2 81 t81 = t14 + t80 2
22 t22 = x6 + t13 2 52 t52 = t7 + t51 [y8] 3 82 t82 = t42 + t81 [y29] 3
23 t23 = x3 + x19 1 53 t53 = x9 + x17 1 83 t83 = x10 + x26 1
24 t24 = x7 + t14 2 54 t54 = t6 + t53 [y17] 2 84 t84 = t1 + t3 2
25 t25 = x2 + t1 2 55 t55 = x1 + x25 1 85 t85 = t83 + t84 [y26] 3
26 t26 = t8 + t25 [y2] 3 56 t56 = t23 + t55 2 86 t86 = x11 + x27 1
27 t27 = x3 + t2 2 57 t57 = t54 + t56 [y1] 3 87 t87 = t2 + t4 2
28 t28 = t11 + t27 [y3] 3 58 t58 = t24 + t56 [y13] 3 88 t88 = t86 + t87 [y27] 3
29 t29 = x4 + x22 1 59 t59 = x9 + t4 2
30 t30 = t13 + t29 [y4] 2 60 t60 = t10 + t59 [y9] 3

circuit depth awareness, which enables us to identify so far the lightest 32× 32 involutory
MDS matrix whose circuit depth is 3, achieving the provable lower bound for a 32× 32
MDS matrix. Along the way, we present a formula, which is of independent interest, for
computing the minimum achievable depth of a circuit implementing the summation of a
set of signals with given depths. The results of this work can be potentially applied in the
design of lightweight and low-latency symmetric-key primitives.
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A A List of Involutory MDS Matrices

ω(A) = 148, DXC(A) = 116
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−2,−1, 2, 0, 0, 0) 80 4
2 (−2, 1,−2, 0, 0, 2) 80 4

ω(A) = 149, DXC(A) = 117
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−3,−2, 1, 1, 1, 1) 80 4
2 (−1, 0, 3,−1,−1,−1) 80 4

ω(A) = 150, DXC(A) = 118
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−3,−2, 2, 0, 0, 2) 80 4
2 (−3, 1,−1, 0, 0, 2) 80 4
3 (−4,−2, 1, 0, 2, 2) 80 4
4 (0,−3,−2, 0, 2, 2) 83 4
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ω(A) = 151, DXC(A) = 119
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−4, 0,−2, 1, 1, 3) 83 4
2 (0, 4, 0,−1,−1,−3) 83 5

ω(A) = 152, DXC(A) = 120
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−4, 0,−1, 0, 0, 4) 86 5
2 (−3, 0,−3, 1, 1, 3) 83 4
3 (1, 4,−1,−1,−1,−3) 83 4

ω(A) = 153, DXC(A) = 121
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−3,−3, 1, 0, 2, 2) 80 5
2 (−4,−3, 0, 2, 2, 2) 83 4
3 (0, 1, 4,−2,−2,−2) 83 5

ω(A) = 154, DXC(A) = 122
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−3, 0,−2, 0, 0, 4) 86 4
2 (−1,−4,−2, 0, 2, 4) 86 4
3 (−4,−3, 1, 1, 1, 3) 80 5
4 (0, 1, 3,−1,−1,−3) 80 5

ω(A) = 155, DXC(A) = 123
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−5, 0,−2, 0, 2, 4) 86 5

ω(A) = 156, DXC(A) = 124
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−4, 0,−3, 0, 2, 4) 86 5
2 (−1,−4,−3, 1, 3, 3) 86 4
3 (5, 0, 1,−1,−3,−3) 86 4

ω(A) = 157, DXC(A) = 125
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−5,−3, 0, 1, 3, 3) 83 5
2 (1, 1, 4,−1,−3,−3) 82 5
3 (−4,−4, 0, 1, 3, 3) 83 5
4 (2, 0, 4,−1,−3,−3) 83 5

ω(A) = 158, DXC(A) = 126
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−4,−3, 2, 0, 0, 4) 80 5
2 (−4,−4, 1, 0, 2, 4) 80 5
3 (−1,−3,−3, 0, 2, 4) 86 4
4 (−5,−1,−2, 1, 1, 5) 89 5
5 (1, 5, 0,−1,−1,−5) 89 5
6 (−4,−1,−4, 2, 2, 4) 86 4
7 (2, 5, 0,−2,−2,−4) 85 6
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ω(A) = 160, DXC(A) = 128
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (1, 2, 5, 0, 0, 0) 82 5
2 (0, 1, 5, 0, 0, 2) 80 5
3 (0, 4, 2, 0, 0, 2) 80 5
4 (1, 4, 1, 0, 0, 2) 78 4
5 (0, 0, 4, 0, 2, 2) 78 4
6 (0, 1, 4, 1, 1, 1) 79 5
7 (2, 3, 6,−1,−1,−1) 79 5
8 (−4,−1,−3, 1, 1, 5) 89 5
9 (2, 5,−1,−1,−1,−5) 89 4
10 (−5,−1,−3, 2, 2, 4) 86 5
11 (1, 5, 1,−2,−2,−4) 85 5

ω(A) = 161, DXC(A) = 129
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (3, 0, 1, 0, 2, 2) 80 5
2 (−5,−3, 1, 0, 2, 4) 80 6
3 (0, 3, 0, 1, 1, 3) 79 7
4 (4, 7, 2,−1,−1,−3) 79 4
5 (−5,−4, 0, 2, 2, 4) 83 5
6 (1, 2, 4,−2,−2,−4) 82 5

ω(A) = 162, DXC(A) = 130
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (0, 3, 1, 0, 0, 4) 80 7
2 (−1, 1, 4, 0, 2, 2) 80 5
3 (2, 0, 0, 0, 2, 4) 80 4
4 (−5,−4, 0, 0, 4, 4) 85 6
5 (−2,−4,−3, 0, 4, 4) 88 4
6 (−1, 0, 4, 1, 1, 3) 79 5
7 (3, 4, 6,−1,−1,−3) 79 5
8 (−5,−4,−1, 3, 3, 3) 86 5
9 (1, 2, 5,−3,−3,−3) 85 5

ω(A) = 163, DXC(A) = 131
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−1, 3, 1, 1, 1, 3) 81 5
2 (3, 7, 3,−1,−1,−3) 81 5
3 (−5,−1,−4, 1, 3, 5) 88 6
4 (3, 5, 0,−1,−3,−5) 88 6
5 (−2,−5,−3, 1, 3, 5) 88 5
6 (6, 1, 1,−1,−3,−5) 88 5
7 (−1, 0, 3, 2, 2, 2) 79 5
8 (3, 4, 7,−2,−2,−2) 80 5
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ω(A) = 164, DXC(A) = 132
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−1, 0, 5, 0, 0, 4) 81 7
2 (−5,−1,−1, 0, 0, 6) 92 4
3 (−4,−1,−2, 0, 0, 6) 92 4
4 (−2, 0, 4, 0, 2, 4) 80 5
5 (−1, 3, 0, 0, 2, 4) 78 5
6 (−6,−1,−2, 0, 2, 6) 91 5
7 (−2,−5,−2, 0, 2, 6) 91 4
8 (−6,−3, 0, 0, 4, 4) 84 6
9 (2,−1, 0, 1, 3, 3) 80 7
10 (8, 3, 4,−1,−3,−3) 81 5
11 (−6,−1,−3, 1, 3, 5) 88 6
12 (2, 5, 1,−1,−3,−5) 88 5
13 (−2,−4,−4, 1, 3, 5) 88 4
14 (6, 2, 0,−1,−3,−5) 87 6

ω(A) = 165, DXC(A) = 133
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (1,−1, 0, 0, 4, 4) 81 5
2 (−5,−4, 1, 1, 1, 5) 80 6
3 (1, 2, 3,−1,−1,−5) 80 6
4 (−1, 2, 0, 1, 1, 5) 79 7
5 (5, 8, 2,−1,−1,−5) 79 5
6 (−2, 0, 3, 1, 3, 3) 80 5
7 (4, 4, 7,−1,−3,−3) 81 5
8 (−1,−1, 3, 1, 3, 3) 79 5
9 (5, 3, 7,−1,−3,−3) 81 6
10 (1,−1,−1, 1, 3, 5) 79 7
11 (9, 5, 3,−1,−3,−5) 82 6
12 (−2,−5,−4, 2, 4, 4) 88 5
13 (6, 1, 2,−2,−4,−4) 87 6

ω(A) = 166, DXC(A) = 134
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−1, 3, 2, 0, 0, 4) 82 7
2 (−2, 3, 1, 0, 2, 4) 81 5
3 (−1,−1, 4, 0, 2, 4) 81 5
4 (2,−1, 1, 0, 2, 4) 81 5
5 (−2,−4,−3, 0, 2, 6) 91 5
6 (1,−1, 0, 0, 2, 6) 83 5
7 (−5,−5, 0, 1, 3, 5) 83 6
8 (3, 1, 4,−1,−3,−5) 82 6
9 (−2, 2, 0, 2, 2, 4) 80 5
10 (4, 8, 4,−2,−2,−4) 82 5
11 (−1, 2,−1, 2, 2, 4) 80 5
12 (5, 8, 3,−2,−2,−4) 82 7
13 (−6,−4,−1, 2, 4, 4) 85 6
14 (2, 2, 5,−2,−4,−4) 84 5
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ω(A) = 167, DXC(A) = 135
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (5,−2, 0, 0, 2, 2) 90 5
2 (−5,−1,−3, 0, 2, 6) 91 5
3 (1,−2, 0, 1, 3, 5) 82 5
4 (9, 4, 4,−1,−3,−5) 82 5
5 (−2,−1, 3, 2, 2, 4) 80 5
6 (4, 5, 7,−2,−2,−4) 83 6
7 (−6,−2,−3, 2, 2, 6) 91 6
8 (2, 6, 1,−2,−2,−6) 90 5
9 (−5,−2,−4, 2, 2, 6) 91 5
10 (3, 6, 0,−2,−2,−6) 89 6
11 (−5,−5,−1, 2, 4, 4) 86 6
12 (3, 1, 5,−2,−4,−4) 86 7
13 (1,−2,−1, 2, 4, 4) 80 5
14 (9, 4, 5,−2,−4,−4) 83 6

ω(A) = 168, DXC(A) = 136
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−3,−1, 5, 0, 0, 0) 97 5
2 (−1, 1, 7, 0, 0, 0) 91 5
3 (−4,−2, 5, 0, 0, 2) 98 6
4 (−4, 4,−1, 0, 0, 2) 98 5
5 (−2, 0, 7, 0, 0, 2) 90 5
6 (−2, 4,−3, 0, 0, 2) 94 4
7 (−2, 6, 1, 0, 0, 2) 92 6
8 (0, 6,−1, 0, 0, 2) 90 4
9 (−1, 2, 1, 0, 0, 6) 79 5
10 (−2, 2, 0, 0, 2, 6) 78 5
11 (0,−2, 0, 0, 4, 6) 82 5
12 (0,−1,−1, 0, 4, 6) 81 6
13 (−4,−2, 4, 1, 1, 1) 96 5
14 (−2, 0, 6,−1,−1,−1) 97 5
15 (−2, 0, 6, 1, 1, 1) 90 5
16 (0, 2, 8,−1,−1,−1) 90 6
17 (−2,−1, 4, 1, 1, 5) 82 5
18 (4, 5, 6,−1,−1,−5) 81 5
19 (−6,−4, 0, 1, 3, 5) 82 6
20 (2, 2, 4,−1,−3,−5) 82 6
21 (0,−2,−1, 1, 5, 5) 81 5
22 (10, 4, 5,−1,−5,−5) 83 6
23 (−2, 1,−1, 2, 2, 6) 79 5
24 (6, 9, 3,−2,−2,−6) 81 6
25 (0,−2,−2, 2, 4, 6) 78 4
26 (10, 6, 4,−2,−4,−6) 84 6
27 (−2,−1, 2, 3, 3, 3) 80 5
28 (4, 5, 8,−3,−3,−3) 83 6
29 (−5,−2,−5, 3, 3, 5) 88 6
30 (3, 6, 1,−3,−3,−5) 88 6
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ω(A) = 169, DXC(A) = 137
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (3,−4,−2, 0, 2, 2) 96 6
2 (−3, 0, 3, 0, 4, 4) 83 7
3 (−1, 5,−2, 1, 1, 3) 90 4
4 (3, 9, 0,−1,−1,−3) 92 5
5 (−2, 2, 1, 1, 1, 5) 83 7
6 (4, 8, 3,−1,−1,−5) 83 7
7 (−2, 1, 0, 1, 1, 7) 83 5
8 (6, 9, 2,−1,−1,−7) 82 5
9 (−2, 2,−1, 1, 3, 5) 79 5
10 (6, 8, 3,−1,−3,−5) 82 6
11 (0,−2,−1, 1, 3, 7) 82 5
12 (10, 6, 3,−1,−3,−7) 83 6
13 (−6,−2,−4, 3, 3, 5) 87 6
14 (2, 6, 2,−3,−3,−5) 87 5
15 (−2, 1,−2, 3, 3, 5) 79 5
16 (6, 9, 4,−3,−3,−5) 84 6

ω(A) = 170, DXC(A) = 138
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−1, 5,−1, 0, 0, 4) 92 5
2 (−2, 1, 1, 0, 0, 8) 86 5
3 (−5,−2, 4, 0, 2, 2) 96 5
4 (−1,−2, 6, 0, 2, 2) 92 7
5 (−2, 5,−2, 0, 2, 4) 93 5
6 (4,−1,−2, 0, 2, 4) 93 5
7 (1,−2, 1, 0, 2, 6) 83 7
8 (0,−2, 0, 0, 2, 8) 86 5
9 (−2,−1, 3, 0, 4, 4) 82 6
10 (−6,−1,−4, 0, 4, 6) 90 6
11 (−3, 5, 0, 1, 1, 3) 93 6
12 (1, 9, 2,−1,−1,−3) 92 6
13 (−6,−2,−2, 1, 1, 7) 94 4
14 (2, 6, 0,−1,−1,−7) 93 4
15 (−3,−1, 3, 1, 3, 5) 81 5
16 (5, 5, 7,−1,−3,−5) 81 5
17 (−3, 2, 0, 1, 3, 5) 83 6
18 (5, 8, 4,−1,−3,−5) 83 6
19 (−2,−2, 2, 2, 4, 4) 80 5
20 (6, 4, 8,−2,−4,−4) 84 6
21 (−3, 1,−1, 3, 3, 5) 82 5
22 (5, 9, 5,−3,−3,−5) 82 5
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ω(A) = 171, DXC(A) = 139
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (−3,−4, 4, 0, 2, 2) 96 7
2 (−3, 0, 6, 0, 2, 2) 91 6
3 (−5, 3,−2, 1, 1, 3) 98 6
4 (−1, 7, 0,−1,−1,−3) 98 7
5 (−2, 4,−2, 1, 1, 5) 92 5
6 (4, 10, 0,−1,−1,−5) 92 6
7 (−5,−2,−3, 1, 1, 7) 93 5
8 (3, 6,−1,−1,−1,−7) 93 5
9 (4,−3,−1, 1, 3, 3) 92 5
10 (10, 1, 3,−1,−3,−3) 94 5
11 (−2,−2, 3, 1, 3, 5) 82 5
12 (6, 4, 7,−1,−3,−5) 84 6
13 (−3, 1, 0, 2, 2, 6) 84 6
14 (5, 9, 4,−2,−2,−6) 81 5
15 (−3,−1, 2, 2, 4, 4) 81 5
16 (5, 5, 8,−2,−4,−4) 82 5
17 (0,−3,−1, 2, 4, 6) 83 5
18 (10, 5, 5,−2,−4,−6) 82 5
19 (−6,−5,−1, 3, 3, 5) 85 7
20 (2, 3, 5,−3,−3,−5) 84 6
21 (0,−3,−2, 3, 5, 5) 81 6
22 (10, 5, 6,−3,−5,−5) 83 6
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ω(A) = 172, DXC(A) = 140
No. (ε12, ε13, ε14, r, s, t) SLP(A) depth(A)
1 (2, 3, 6, 0, 0, 0) 84 5
2 (1, 2, 6, 0, 0, 2) 84 5
3 (−3, 5, 1, 0, 0, 4) 96 8
4 (0, 1, 6, 0, 0, 4) 87 5
5 (−5,−4, 2, 0, 0, 6) 80 6
6 (−2,−1, 5, 0, 0, 6) 83 6
7 (−2, 2, 2, 0, 0, 6) 84 7
8 (−2, 4,−1, 0, 0, 6) 94 5
9 (−4, 5, 0, 0, 2, 4) 94 5
10 (4,−3, 0, 0, 2, 4) 96 6
11 (−6,−4, 1, 0, 2, 6) 82 6
12 (−2,−2, 4, 0, 2, 6) 82 5
13 (3,−2,−2, 0, 2, 6) 95 5
14 (−3, 1, 0, 0, 2, 8) 79 5
15 (2, 0, 1, 0, 4, 4) 86 4
16 (−7,−1,−3, 0, 4, 6) 89 7
17 (−3,−4,−4, 0, 4, 6) 90 5
18 (1, 0, 0, 0, 4, 6) 88 5
19 (−3, 3,−4, 1, 1, 3) 94 5
20 (1, 7,−2,−1,−1,−3) 94 6
21 (−7,−2,−3, 1, 3, 7) 94 6
22 (3, 6, 1,−1,−3,−7) 92 6
23 (0,−3, 0, 1, 3, 7) 85 6
24 (10, 5, 4,−1,−3,−7) 81 5
25 (−7,−4,−1, 1, 5, 5) 86 7
26 (3, 2, 5,−1,−5,−5) 86 7
27 (−6,−5,−1, 1, 5, 5) 87 8
28 (4, 1, 5,−1,−5,−5) 86 6
29 (−3,−1, 5, 2, 2, 2) 92 6
30 (1, 3, 9,−2,−2,−2) 93 5
31 (−7,−2,−4, 2, 4, 6) 90 6
32 (3, 6, 2,−2,−4,−6) 89 6
33 (−6,−5,−2, 4, 4, 4) 87 7
34 (2, 3, 6,−4,−4,−4) 87 6
35 (−3,−2, 1, 4, 4, 4) 82 5
36 (5, 6, 9,−4,−4,−4) 83 6
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B A List of Involutory MDS Matrices with Depth 3

ω(A) = 148, DXC(A) = 116, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−2,−1, 2, 0, 0, 0) 90
2 (−2, 1,−2, 0, 0, 2) 90

ω(A) = 149, DXC(A) = 117, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−3,−2, 1, 1, 1, 1) 90
2 (−1, 0, 3,−1,−1,−1) 90

ω(A) = 150, DXC(A) = 118, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−3,−2, 2, 0, 0, 2) 91
2 (−3, 1,−1, 0, 0, 2) 90
3 (−4,−2, 1, 0, 2, 2) 90
4 (0,−3,−2, 0, 2, 2) 93
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ω(A) = 151, DXC(A) = 119, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−4, 0,−2, 1, 1, 3) 94
2 (0, 4, 0,−1,−1,−3) 94

ω(A) = 152, DXC(A) = 120, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−4, 0,−1, 0, 0, 4) 96
2 (−3, 0,−3, 1, 1, 3) 93
3 (1, 4,−1,−1,−1,−3) 94

ω(A) = 153, DXC(A) = 121, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−3,−3, 1, 0, 2, 2) 93
2 (−4,−3, 0, 2, 2, 2) 94
3 (0, 1, 4,−2,−2,−2) 95

ω(A) = 154, DXC(A) = 122, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−3, 0,−2, 0, 0, 4) 95
2 (−1,−4,−2, 0, 2, 4) 95
3 (−4,−3, 1, 1, 1, 3) 94
4 (0, 1, 3,−1,−1,−3) 93

ω(A) = 155, DXC(A) = 123, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−5, 0,−2, 0, 2, 4) 96

ω(A) = 156, DXC(A) = 124, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−4, 0,−3, 0, 2, 4) 97
3 (5, 0, 1,−1,−3,−3) 96

ω(A) = 157, DXC(A) = 125, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
2 (1, 1, 4,−1,−3,−3) 95
3 (−4,−4, 0, 1, 3, 3) 96
4 (2, 0, 4,−1,−3,−3) 97

ω(A) = 158, DXC(A) = 126, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−4,−3, 2, 0, 0, 4) 97
2 (−4,−4, 1, 0, 2, 4) 96
5 (1, 5, 0,−1,−1,−5) 97
7 (2, 5, 0,−2,−2,−4) 97
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ω(A) = 160, DXC(A) = 128, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (1, 2, 5, 0, 0, 0) 94
2 (0, 1, 5, 0, 0, 2) 93
3 (0, 4, 2, 0, 0, 2) 94
4 (1, 4, 1, 0, 0, 2) 93
5 (0, 0, 4, 0, 2, 2) 92
6 (0, 1, 4, 1, 1, 1) 93
7 (2, 3, 6,−1,−1,−1) 93
9 (2, 5,−1,−1,−1,−5) 98
11 (1, 5, 1,−2,−2,−4) 97

ω(A) = 161, DXC(A) = 129, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (3, 0, 1, 0, 2, 2) 93
3 (0, 3, 0, 1, 1, 3) 92
4 (4, 7, 2,−1,−1,−3) 92
6 (1, 2, 4,−2,−2,−4) 98

ω(A) = 162, DXC(A) = 130, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (0, 3, 1, 0, 0, 4) 92
2 (−1, 1, 4, 0, 2, 2) 93
3 (2, 0, 0, 0, 2, 4) 92
6 (−1, 0, 4, 1, 1, 3) 92
7 (3, 4, 6,−1,−1,−3) 93
9 (1, 2, 5,−3,−3,−3) 98

ω(A) = 163, DXC(A) = 131, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−1, 3, 1, 1, 1, 3) 94
2 (3, 7, 3,−1,−1,−3) 93
6 (6, 1, 1,−1,−3,−5) 96
7 (−1, 0, 3, 2, 2, 2) 94
8 (3, 4, 7,−2,−2,−2) 94

ω(A) = 164, DXC(A) = 132, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−1, 0, 5, 0, 0, 4) 93
3 (−4,−1,−2, 0, 0, 6) 99
4 (−2, 0, 4, 0, 2, 4) 92
5 (−1, 3, 0, 0, 2, 4) 92
9 (2,−1, 0, 1, 3, 3) 93
10 (8, 3, 4,−1,−3,−3) 92
12 (2, 5, 1,−1,−3,−5) 100
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ω(A) = 165, DXC(A) = 133, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (1,−1, 0, 0, 4, 4) 93
4 (−1, 2, 0, 1, 1, 5) 92
5 (5, 8, 2,−1,−1,−5) 92
6 (−2, 0, 3, 1, 3, 3) 94
7 (4, 4, 7,−1,−3,−3) 92
8 (−1,−1, 3, 1, 3, 3) 90
9 (5, 3, 7,−1,−3,−3) 93
10 (1,−1,−1, 1, 3, 5) 90
11 (9, 5, 3,−1,−3,−5) 95
13 (6, 1, 2,−2,−4,−4) 97

ω(A) = 166, DXC(A) = 134, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−1, 3, 2, 0, 0, 4) 95
2 (−2, 3, 1, 0, 2, 4) 93
3 (−1,−1, 4, 0, 2, 4) 93
4 (2,−1, 1, 0, 2, 4) 94
6 (1,−1, 0, 0, 2, 6) 93
9 (−2, 2, 0, 2, 2, 4) 94
10 (4, 8, 4,−2,−2,−4) 92
11 (−1, 2,−1, 2, 2, 4) 90
12 (5, 8, 3,−2,−2,−4) 93
14 (2, 2, 5,−2,−4,−4) 100

ω(A) = 167, DXC(A) = 135, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (5,−2, 0, 0, 2, 2) 97
3 (1,−2, 0, 1, 3, 5) 94
4 (9, 4, 4,−1,−3,−5) 93
5 (−2,−1, 3, 2, 2, 4) 90
6 (4, 5, 7,−2,−2,−4) 93
8 (2, 6, 1,−2,−2,−6) 100
10 (3, 6, 0,−2,−2,−6) 98
13 (1,−2,−1, 2, 4, 4) 91
14 (9, 4, 5,−2,−4,−4) 95
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ω(A) = 168, DXC(A) = 136, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−3,−1, 5, 0, 0, 0) 99
2 (−1, 1, 7, 0, 0, 0) 98
3 (−4,−2, 5, 0, 0, 2) 101
4 (−4, 4,−1, 0, 0, 2) 102
5 (−2, 0, 7, 0, 0, 2) 96
6 (−2, 4,−3, 0, 0, 2) 100
7 (−2, 6, 1, 0, 0, 2) 97
8 (0, 6,−1, 0, 0, 2) 96
9 (−1, 2, 1, 0, 0, 6) 93
10 (−2, 2, 0, 0, 2, 6) 92
11 (0,−2, 0, 0, 4, 6) 94
12 (0,−1,−1, 0, 4, 6) 93
13 (−4,−2, 4, 1, 1, 1) 101
14 (−2, 0, 6,−1,−1,−1) 98
15 (−2, 0, 6, 1, 1, 1) 96
16 (0, 2, 8,−1,−1,−1) 98
17 (−2,−1, 4, 1, 1, 5) 93
18 (4, 5, 6,−1,−1,−5) 93
21 (0,−2,−1, 1, 5, 5) 91
22 (10, 4, 5,−1,−5,−5) 96
23 (−2, 1,−1, 2, 2, 6) 90
24 (6, 9, 3,−2,−2,−6) 95
25 (0,−2,−2, 2, 4, 6) 88
26 (10, 6, 4,−2,−4,−6) 98
27 (−2,−1, 2, 3, 3, 3) 91
28 (4, 5, 8,−3,−3,−3) 93
30 (3, 6, 1,−3,−3,−5) 99

ω(A) = 169, DXC(A) = 137, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (3,−4,−2, 0, 2, 2) 101
2 (−3, 0, 3, 0, 4, 4) 92
3 (−1, 5,−2, 1, 1, 3) 98
4 (3, 9, 0,−1,−1,−3) 97
5 (−2, 2, 1, 1, 1, 5) 95
6 (4, 8, 3,−1,−1,−5) 94
7 (−2, 1, 0, 1, 1, 7) 93
8 (6, 9, 2,−1,−1,−7) 93
9 (−2, 2,−1, 1, 3, 5) 90
10 (6, 8, 3,−1,−3,−5) 93
11 (0,−2,−1, 1, 3, 7) 91
12 (10, 6, 3,−1,−3,−7) 96
14 (2, 6, 2,−3,−3,−5) 100
15 (−2, 1,−2, 3, 3, 5) 88
16 (6, 9, 4,−3,−3,−5) 96
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ω(A) = 170, DXC(A) = 138, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−1, 5,−1, 0, 0, 4) 97
2 (−2, 1, 1, 0, 0, 8) 94
3 (−5,−2, 4, 0, 2, 2) 102
4 (−1,−2, 6, 0, 2, 2) 97
5 (−2, 5,−2, 0, 2, 4) 97
6 (4,−1,−2, 0, 2, 4) 98
7 (1,−2, 1, 0, 2, 6) 95
8 (0,−2, 0, 0, 2, 8) 94
9 (−2,−1, 3, 0, 4, 4) 91
11 (−3, 5, 0, 1, 1, 3) 98
12 (1, 9, 2,−1,−1,−3) 99
15 (−3,−1, 3, 1, 3, 5) 94
16 (5, 5, 7,−1,−3,−5) 92
17 (−3, 2, 0, 1, 3, 5) 93
18 (5, 8, 4,−1,−3,−5) 92
19 (−2,−2, 2, 2, 4, 4) 88
20 (6, 4, 8,−2,−4,−4) 94
21 (−3, 1,−1, 3, 3, 5) 92
22 (5, 9, 5,−3,−3,−5) 93

ω(A) = 171, DXC(A) = 139, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (−3,−4, 4, 0, 2, 2) 102
2 (−3, 0, 6, 0, 2, 2) 98
3 (−5, 3,−2, 1, 1, 3) 105
4 (−1, 7, 0,−1,−1,−3) 106
5 (−2, 4,−2, 1, 1, 5) 97
6 (4, 10, 0,−1,−1,−5) 99
9 (4,−3,−1, 1, 3, 3) 97
10 (10, 1, 3,−1,−3,−3) 99
11 (−2,−2, 3, 1, 3, 5) 90
12 (6, 4, 7,−1,−3,−5) 93
13 (−3, 1, 0, 2, 2, 6) 94
14 (5, 9, 4,−2,−2,−6) 96
15 (−3,−1, 2, 2, 4, 4) 96
16 (5, 5, 8,−2,−4,−4) 92
17 (0,−3,−1, 2, 4, 6) 92
18 (10, 5, 5,−2,−4,−6) 94
21 (0,−3,−2, 3, 5, 5) 89
22 (10, 5, 6,−3,−5,−5) 96
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ω(A) = 172, DXC(A) = 140, depth(A) = 3
No. (ε12, ε13, ε14, r, s, t) SLP∗(A)
1 (2, 3, 6, 0, 0, 0) 98
2 (1, 2, 6, 0, 0, 2) 100
3 (−3, 5, 1, 0, 0, 4) 104
4 (0, 1, 6, 0, 0, 4) 98
6 (−2,−1, 5, 0, 0, 6) 94
7 (−2, 2, 2, 0, 0, 6) 96
8 (−2, 4,−1, 0, 0, 6) 99
9 (−4, 5, 0, 0, 2, 4) 103
10 (4,−3, 0, 0, 2, 4) 102
12 (−2,−2, 4, 0, 2, 6) 92
13 (3,−2,−2, 0, 2, 6) 101
14 (−3, 1, 0, 0, 2, 8) 92
15 (2, 0, 1, 0, 4, 4) 102
18 (1, 0, 0, 0, 4, 6) 103
19 (−3, 3,−4, 1, 1, 3) 103
20 (1, 7,−2,−1,−1,−3) 103
22 (3, 6, 1,−1,−3,−7) 103
23 (0,−3, 0, 1, 3, 7) 93
24 (10, 5, 4,−1,−3,−7) 96
26 (3, 2, 5,−1,−5,−5) 101
29 (−3,−1, 5, 2, 2, 2) 97
30 (1, 3, 9,−2,−2,−2) 100
32 (3, 6, 2,−2,−4,−6) 103
34 (2, 3, 6,−4,−4,−4) 102
35 (−3,−2, 1, 4, 4, 4) 89
36 (5, 6, 9,−4,−4,−4) 94
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