troduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations

CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks

Christof Beierle Gregor Leander Amir Moradi Shahram Rasoolzadeh

SnT, University of Luxembourg

Horst Görtz Institute for IT Security, Ruhr University Bochum

FSE 2019 March 25, 2019

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction ●○○○	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Physica	Attacks			

• Secrets stored in/processed by an implementation of a primitive can be recovered by **Physical Attacks**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction ●○○○	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Physica	l Attacks			

- Secrets stored in/processed by an implementation of a primitive can be recovered by **Physical Attacks**.
- Differential Fault Analysis (DFA) attacks are one of the most powerful class of them.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction ●○○○	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Physica	I Attacks			

- Secrets stored in/processed by an implementation of a primitive can be recovered by **Physical Attacks**.
- Differential Fault Analysis (DFA) attacks are one of the most powerful class of them.

・ロト ・四ト ・ヨト ・ヨト

Introduction ●○○○	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Physica	Attacks			

- Secrets stored in/processed by an implementation of a primitive can be recovered by **Physical Attacks**.
- Differential Fault Analysis (DFA) attacks are one of the most powerful class of them.

Introduction ○●○○	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Impeccable Circuite ¹				

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M_t : The adversary is able to make at most *t* cells of the entire circuit faulty at only one (/every) clock cycle.

¹Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203. 🚊 🗠 🔍

	000	0000000	oo	oo	
Impeccable Circuite ¹					

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M_t : The adversary is able to make at most *t* cells of the entire circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

¹Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203. 🚊 🗠 ໑....

000	000	0000000	00	00	
Impeccable Circuits ¹					

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M_t : The adversary is able to make at most *t* cells of the entire circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

Independence Property

To prevent fault propagation, the coordinate functions of each operation have to be implemented independently.

¹Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203. 🚊 🗠 🔍

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
0000				

Independence Property

Example (Skinny's MixColumn:)

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
0000				

Independence Property

Example (Skinny's MixColumn:)

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations

Independence Property

Example (Skinny's MixColumn:)

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Motivat	ion			

・ コット (雪) (小田) (コット 日)

Results of Impeccable Circuits

 Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Motivati	ion			

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.
- There is a big gap between the implementation size of unprotected and protected circuits.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Motivot	ion			

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.
- There is a big gap between the implementation size of unprotected and protected circuits.

Goals

- Protection against DFA Attacks with efficient hardware implementation
- Tweakable and providing decryption with little implementation area overhead
- Using known design methods for easier security analysis

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Motivoti	<u></u>			

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.
- There is a big gap between the implementation size of unprotected and protected circuits.

Goals

- Protection against DFA Attacks with efficient hardware implementation
- Tweakable and providing decryption with little implementation area overhead
- Using known design methods for easier security analysis

• Skinny-like structure with 128-bit key, 64-bit block & tweak

Introduction	CRAFT Specification ●○○	Design Rationale	Security Analysis	Hardware Implementations
Structu	́е			

32 rounds: 31 identical rounds and last linear round

イロト 不得 トイヨト イヨト

3

• Internal state: viewed as 4×4 matrix of nibbles

Introduction	CRAFT Specification ●○○	Design Rationale	Security Analysis	Hardware Implementations
Structu	re			

- 32 rounds: 31 identical rounds and last linear round
- Internal state: viewed as 4 × 4 matrix of nibbles

Introduction 0000	CRAFT Specification ○●○	Design Rationale	Security Analysis	Hardware Implementations
	-			

Introduction	CRAFT Specification ○●○	Design Rationale	Security Analysis	Hardware Implementations
D	E			

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• MixColumn(MC):

Involutory binary matrix *M* is multiplied to each column.

Introduction	CRAFT Specification ○●○	Design Rationale	Security Analysis	Hardware Implementations
	the second second			

- MixColumn (MC): Involutory binary matrix *M* is multiplied to each column.
- AddConstants;(ARC;):

4-bit value a_i and 3-bit b_i are xored to the 4th & 5th nibbles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	CRAF ○●○	T Specification	Design Rationale	Security Analysis	Hardware Implementations
	-				

- MixColumn (MC): Involutory binary matrix *M* is multiplied to each column.
- AddConstants; (ARC;):
 4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• AddTweakey; (ATK;):

Tweakey $TK_{i \mod 4}$ is xored to the state.

Introduction	CRAFT Specification ○●○	Design Rationale	Security Analysis	Hardware Implementations
	terre d'anne a			

- MixColumn (MC): Involutory binary matrix *M* is multiplied to each column.
- AddConstants; (ARC;):
 4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.
- AddTweakey_i (ATK_i):
 Tweakey TK_i mod 4 is xored to the state.
- PermuteNibbles (PN): Involutory permutation *P* is applied on the nibble positions.

Introduction	CRAFT Specification ○●○	Design Rationale	Security Analysis	Hardware Implementations
D				

- MixColumn (MC): Involutory binary matrix *M* is multiplied to each column.
- AddConstants; (ARC;):
 4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.
- AddTweakey_i (ATK_i):
 Tweakey TK_i mod 4 is xored to the state.
- PermuteNibbles (PN): Involutory permutation *P* is applied on the nibble positions.
- SubBox(SB):

4-bit involutory Sbox S is applied to each nibble.

If (K_0, K_1) are two 64-bit halves of the key and T is the tweak, then

$$TK_0 = K_0 \oplus T$$
$$TK_1 = K_1 \oplus T$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Introduction	CRAFT Specification ○○●	Design Rationale	Security Analysis	Hardware Implementations
Tweake	v Schedule			

If (K_0, K_1) are two 64-bit halves of the key and *T* is the tweak, then

$$TK_0 = K_0 \oplus T$$

$$TK_1 = K_1 \oplus T$$

$$TK_2 = K_0 \oplus Q(T)$$

$$TK_3 = K_1 \oplus Q(T)$$

where Q is a circular permutation on the position of tweak nibbles:

[12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	CRAFT Specification	Design Rationale ●000000	Security Analysis	Hardware Implementations

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
		• 000 000		

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

 $SB \circ PN = PN \circ SB$

$$\label{eq:mc_arc} \begin{split} \text{MC} \circ \text{Arc} \circ \text{Arc} & \circ \text{Arc} \circ \text{Mc} \\ \text{TK}' & = \text{MC}(\text{TK}) \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
		000000		

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$\begin{array}{l} \mathcal{DEC} \begin{array}{l} {}^{RC_0, \cdots, RC_{31}}_{TK_0, \cdots, TK_3} = \\ = \left(\texttt{ATK}_3 \circ \texttt{ARC}_{31} \circ \texttt{MC} \circ \texttt{SB} \circ \texttt{PN} \circ \texttt{ATK}_2 \circ \texttt{ARC}_{30} \circ \texttt{MC} \circ \cdots \circ \\ \circ \texttt{SB} \circ \texttt{PN} \circ \texttt{ATK}_0 \circ \texttt{ARC}_0 \circ \texttt{MC} \right)^{-1} \end{array}$$

・ロト ・聞ト ・ヨト ・ヨト 三日

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
		000000		

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$\mathcal{DEC} \begin{array}{l} \mathcal{RC}_{0}, \cdots, \mathcal{RC}_{31} = \\ = (\mathsf{ATK}_3 \circ \mathsf{ARC}_{31} \circ \mathsf{MC} \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_2 \circ \mathsf{ARC}_{30} \circ \mathsf{MC} \circ \cdots \circ \\ \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_0 \circ \mathsf{ARC}_0 \circ \mathsf{MC})^{-1} \\ = \mathsf{MC} \circ \mathsf{ARC}_0 \circ \mathsf{ATK}_0 \circ \mathsf{PN} \circ \mathsf{SB} \circ \cdots \circ \\ \circ \mathsf{MC} \circ \mathsf{ARC}_{30} \circ \mathsf{ATK}_2 \circ \mathsf{PN} \circ \mathsf{SB} \circ \mathsf{MC} \circ \mathsf{ARC}_{31} \circ \mathsf{ATK}_3 \end{array}$$

・ロト ・聞ト ・ヨト ・ヨト 三日

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
		000000		

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$\mathcal{DEC} \begin{array}{l} \mathcal{RC}_{0}, \cdots, \mathcal{RC}_{31} = \\ = (\mathsf{ATK}_3 \circ \mathsf{ARC}_{31} \circ \mathsf{MC} \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_2 \circ \mathsf{ARC}_{30} \circ \mathsf{MC} \circ \cdots \circ \\ \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_0 \circ \mathsf{ARC}_0 \circ \mathsf{MC})^{-1} \\ = \mathsf{MC} \circ \mathsf{ARC}_0 \circ \mathsf{ATK}_0 \circ \mathsf{PN} \circ \mathsf{SB} \circ \cdots \circ \\ \circ \mathsf{MC} \circ \mathsf{ARC}_{30} \circ \mathsf{ATK}_2 \circ \mathsf{PN} \circ \mathsf{SB} \circ \mathsf{MC} \circ \mathsf{ARC}_{31} \circ \mathsf{ATK}_3 \end{array}$$

・ロト ・聞ト ・ヨト ・ヨト 三日

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
		000000		

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
		0000000		

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$\mathcal{DEC} \begin{array}{l} \mathcal{RC}_{0}, \cdots, \mathcal{RC}_{31} = \\ = (\mathsf{ATK}_3 \circ \mathsf{ARC}_{31} \circ \mathsf{MC} \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_2 \circ \mathsf{ARC}_{30} \circ \mathsf{MC} \circ \cdots \circ \\ \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_0 \circ \mathsf{ARC}_0 \circ \mathsf{MC})^{-1} \\ = \mathsf{MC} \circ \mathsf{ARC}_0 \circ \mathsf{ATK}_0 \circ \mathsf{PN} \circ \mathsf{SB} \circ \cdots \circ \\ \circ \mathsf{MC} \circ \mathsf{ARC}_{30} \circ \mathsf{ATK}_2 \circ \mathsf{PN} \circ \mathsf{SB} \circ \mathsf{MC} \circ \mathsf{ARC}_{31} \circ \mathsf{ATK}_3 \\ = \mathsf{ATK}_0' \circ \mathsf{ARC}_0 \circ \mathsf{MC} \circ \mathsf{SB} \circ \mathsf{PN} \circ \cdots \circ \\ \circ \mathsf{ATK}_2' \circ \mathsf{ARC}_{30} \circ \mathsf{MC} \circ \mathsf{SB} \circ \mathsf{PN} \circ \mathsf{ATK}_3' \circ \mathsf{ARC}_{31} \circ \mathsf{MC} \\ = \mathcal{ENC} \begin{array}{c} \mathcal{RC}_{31}, \cdots, \mathcal{RC}_0 \\ \mathcal{TK}_3', \cdots, \mathcal{TK}_0' \end{array} \right\}$$

Introduction	CRAFT Specification	Design Rationale ○○○○●○○	Security Analysis	Hardware Implementations
Sbox				

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Sbox				

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sbox & Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox.

Introduction	CRAFT Specification	Design Rationale ○○○○●○○	Security Analysis	Hardware Implementations
Sbox				

Sbox & Redundant Sbox

For each Sbox, we need to implement a *Redundant Sbox*. For example, in case of 4-bit redundancy:

$$S_4 = F_4 \circ S \circ F_4^{-1}$$

where F_4 is a multiplication with

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Sbox				

Sbox & Redundant Sbox

For each Sbox, we need to implement a *Redundant Sbox*. For example, in case of 4-bit redundancy:

$$S_4 = F_4 \circ S \circ F_4^{-1}$$

where F_4 is a multiplication with

Problem

There are 46 206 736 involutory 4-bit Sboxes which implementing and synthesizing all of them is impossible.

Introduction	CRAFT Specification	Design Rationale ○○○○○●○	Security Analysis	Hardware Implementations
Sbox				

• Because of *Independence Property*, each coordinate function of Sbox must be implemented separately.

・ コット (雪) (小田) (コット 日)

Introduction	CRAFT Specification	Design Rationale ○○○○○●○	Security Analysis	Hardware Implementations
Shov				

- Because of *Independence Property*, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	CRAFT Specification	Design Rationale ○○○○○●○	Security Analysis	Hardware Implementations
Sbox				

- Because of *Independence Property*, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	CRAFT Specification	Design Rationale ○○○○○●○	Security Analysis	Hardware Implementations
Sbox				

- Because of *Independence Property*, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• There are 12 870 four-bit balanced Boolean functions.

Introduction	CRAFT Specification	Design Rationale ○○○○○●○	Security Analysis	Hardware Implementations
Shox				

- Because of *Independence Property*, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- There are 12 870 four-bit balanced Boolean functions.
- Up to bit permutation-equivalence, there are only 730.

Introduction	CRAFT Specification	Design Rationale ○○○○○●○	Security Analysis	Hardware Implementations
Shox				

- Because of *Independence Property*, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.
- There are 12 870 four-bit balanced Boolean functions.
- Up to bit permutation-equivalence, there are only 730.

Results for Sbox

Among all the smallest found Soxes, we use the Midori's one.

Introduction	CRAFT Specification	Design Rationale ○○○○○●	Security Analysis	Hardware Implementations
There is a				

Key Schedule

Round key updating method needs at least 128 registers.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Round key alternating method needs 64 multiplexers.

Introduction	CRAFT Specification	Design Rationale ○○○○○●	Security Analysis	Hardware Implementations
-				

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

• Xoring the tweak with key.

Introduction	CRAFT Specification	Design Rationale ○○○○○●	Security Analysis	Hardware Implementations
-				

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.
- To prevent Time-Data-Memory Trade-off attacks, tweak cannot be always the same when round keys are equal.

Introduction	CRAFT Specification	Design Rationale ○○○○○●	Security Analysis	Hardware Implementations
-				

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.
- To prevent Time-Data-Memory Trade-off attacks, tweak cannot be always the same when round keys are equal.
- Solution: using 64 multiplexers to choose T or a nibble-wise permutation of it, Q(T).

Introduction	CRAFT Specification	Design Rationale ○○○○○●	Security Analysis	Hardware Implementations
-				

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.
- To prevent Time-Data-Memory Trade-off attacks, tweak cannot be always the same when round keys are equal.
- Solution: using 64 multiplexers to choose T or a nibble-wise permutation of it, Q(T).
- To provide maximum possible security against TDM-TO attack, *Q* must be circular (there are $15! \approx 2^{40}$).
- Trying 1000 of them, *Q* is the one with most active Sboxes in related-tweak differential attack.

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Security	/			

Security Analysis

- Time-Data-Memory Trade-off
- (Truncated / Impossible) (ST/RT) Differential
- (Linear Hulls / Zero-Correlation) Linear
- Integral
- Meet in the Middle
- (Linear Subspace/Nonlinear) Invariant Attacks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
Security	1			

Security Analysis

- Time-Data-Memory Trade-off
- (Truncated / Impossible) (ST/RT) Differential
- (Linear Hulls / Zero-Correlation) Linear
- Integral
- Meet in the Middle
- (Linear Subspace/Nonlinear) Invariant Attacks

Security Claim

- 124 bit security in the related-tweak model
- No claim in chosen-key, known-key or related-key models

Introduction	CRAFT Specification	Design Rationale	Security Analysis ○●	Hardware Implementations

Accelerated Exhaustive Search

Related-key Property:

If $\Delta = (x, x, ..., x)$, since $Q(\Delta) = \Delta$, both (K_0, K_1, T) and $(K_0 + \Delta, K_1 + \Delta, T + \Delta)$ cause the same tweakeys:

 $TK_i = TK'_i \quad (0 \le i \le 3)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	CRAFT Specification	Design Rationale	Security Analysis ○●	Hardware Implementations

Accelerated Exhaustive Search

Related-key Property:

If $\Delta = (x, x, ..., x)$, since $Q(\Delta) = \Delta$, both (K_0, K_1, T) and $(K_0 + \Delta, K_1 + \Delta, T + \Delta)$ cause the same tweakeys:

 $TK_i = TK'_i \quad (0 \le i \le 3)$

Attack Procedure:

- Attacker asks for encryption of the same plaintext *P* under 16 different tweaks of $T, T + \Delta_1, \ldots, T + \Delta_{15}$: C_0, C_1, \ldots, C_{15} .
- By setting one of the key nibbles to zero, for each of 2¹²⁴ possible key candidate (K^{*}₀, K^{*}₁), he computes C^{*}, the encryption of P using K^{*}₀, K^{*}₁ and T.
- If C^{*} is equal to C_x, then (K^{*}₀ + Δ_x, K^{*}₁ + Δ_x) is a candidate for the master key.

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations ●○

Hardware Implementations

Area (GE) Comparison of Round-based Implementation using IBM 130nm ASIC Library

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations ○●
Summa	ry			

CRAFT:

Implementation

- A lightweight tweakable block cipher with effiCient pRotection Against DFA aTtacks
- The smallest block cipher with 128-bit key in the round-based implementation (950 GE)
- Lower area overhead to support a 64-bit tweak (245 GE)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lower area overhead to support decryption (140 GE)

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations ○●
Summai	ſV			

CRAFT:

Implementation

- A lightweight tweakable block cipher with effiCient pRotection Against DFA aTtacks
- The smallest block cipher with 128-bit key in the round-based implementation (950 GE)
- Lower area overhead to support a 64-bit tweak (245 GE)
- Lower area overhead to support decryption (140 GE)

Security

Providing 124-bit security in the related-tweak model

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
The End	ł			

Thank you for your attention.

Looking forward for further analysis by you

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations

Time-Data-Memory Trade-off Attack

- Attacker fixes the tweakeys to $TK_0 = 0$, $TK_1 = X$, $TK_2 = T'$ and $TK_3 = X + T'$.
- For plaintext P and all possible X and T', he computes the ciphertext C_{T',X} and saves X in the index (T', C) of table T.
- For all possible tweaks *T*, attacker requests for encryption of *P*; *C*_T.
- For each of *T*, he gets a candidate for $K_0 + K_1$ by looking up to the index $(T + Q(T), C_T)$ of T.
- 2^{64+dim{T+Q(T)}} pre-computations, 2^{64+dim{T+Q(T)}} memory, 2⁶⁵ online computions and 2⁶⁴ data.
- All online attack: $2^{64+\dim\{T+Q(T)\}}$ computations, 2^{64} data and memory.

CRAFT Specification Introduction **Design Rationale** Hardware Implementations 15-Round Meet-in-the-Middle Attacks K_0 K_1 \mathcal{R}_0 MC \mathcal{R}_1 MC PN PN ARC₀ ARC₁ SB SB ATK_0 ATK₁ \mathcal{R}_2 \mathcal{R}_3 \mathcal{R}_4 MC MC MC PN PN PN ARC₂ ARC₃ ARC4 SB SB SB ATK_2 ATK₃ ATK_0 \mathcal{R}_5 MC \mathcal{R}_6 MC ARC₆ \mathcal{R}_7 MC PN PN PN ARC₇ ARC₅ SB SB SB ATK₁ ATK₂ ATK3 matching \mathcal{R}_8 MC \mathcal{R}_{9} \mathcal{R}_{10} MC MC PN PN SB PN ARC₉ ARC₈ ARC10 SB SB ATKo ATK1 ATK₂ \mathcal{R}_{11} MC \mathcal{R}_{12} MC \mathcal{R}_{13} MC PN PN PN ARC11 ARC12 ARC13 SB SB SB ATK₃ ATK₀ ATK₁

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations
13-Ro	ound Integral	Distinguishe	r	
			$ \begin{array}{c c} \mathcal{R}_{0} & \text{MC} \\ \hline \Lambda & \Lambda & \Lambda & \Lambda \\ \hline \Lambda & \Lambda & \Lambda & \Lambda \\ \hline \Lambda & \Lambda & \Lambda & \Lambda \\ \hline \Lambda & \Lambda & \Lambda & \Lambda \\ \hline \Lambda & \Lambda & \Lambda & \Lambda \\ \hline \Lambda & \Lambda & \Lambda & \Lambda \\ \hline \end{array} \\ \begin{array}{c} \mathcal{R}_{0} & \text{MC} \\ \mathcal{R}_{0} & \text{MC} $	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	R4 MC PN A A AAC4 SB A A ATK0 A A A A A	R5 MC PN A ARC5 SB A A A	Re MC PN ARCe ARCe SB ATK2 A SB	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} C & A & C & C \\ \hline A & A & C & C \\ \hline C & C & A & C \\ \hline A & U & C & A \end{array}$
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \mathcal{R}_{11} & \text{WC} \\ \hline A & A & U & C \\ \hline A & C & C & C \\ C & U & U & A \\ \hline U & A & A \\ \hline A & C & C & C \\ \hline \end{array} \xrightarrow{\text{ATK}_3} \begin{array}{c} U & U & U & U & B \\ \hline U & A & A \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & A \\ \hline C & U & U & A \\ \hline U & A & A \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & A \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & U \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & U \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & U \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & A \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & U & A \\ \hline \end{array} \xrightarrow{\text{VC}} \begin{array}{c} U & A \\ \end{array} \xrightarrow{\text{VC}} \begin{array}{\tilde$	$\begin{array}{c c} \mathcal{R}_{12} & MC \\ \hline \mathbf{A} & \mathbf{U} & \mathbf{A} & \mathbf{A} & ABC_{12} & \mathbf{U} & \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \hline \mathbf{U} & \mathbf{U} & \mathbf{C} & \mathbf{A} & ATK_0 & \mathbf{U} & \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \hline \mathbf{A} & \mathbf{A} & \mathbf{U} & \mathbf{A} \\ \mathbf{U} & \mathbf{U} & \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \hline \mathbf{U} & \mathbf{U} & \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \hline \end{array} \right)$	

Introduction CRAFT Specification Design Rationale ooooo Security Analysis oo

Enc. & Dec. Algorithms

Input : X: plaintext $K_0||K_1: cipher key$ T: tweak **Output**: *Y*: *ciphertext* $TK_0 \leftarrow K_0 \oplus T$ $TK_1 \leftarrow K_1 \oplus T$ $TK_2 \leftarrow K_0 \oplus Q(T)$ $TK_3 \leftarrow K_1 \oplus Q(T)$ $Y \leftarrow X$ for $i \leftarrow 0$ to 31 do $Y \leftarrow MC(Y)$ $Y_{4.5} \leftarrow Y_{4.5} \oplus RC_i$ $Y \leftarrow Y \oplus TK_{i \mod 4}$ if $i \neq 31$ then $\begin{array}{c|c} Y \leftarrow \mathsf{PN}(Y) \\ Y \leftarrow \mathsf{SB}(Y) \end{array}$ end end

Input :X: ciphertext $K_0||K_1: cipher key$ T: tweak **Output**: Y: plaintext $TK_0 \leftarrow MC(K_0 \oplus T)$ $TK_1 \leftarrow MC(K_1 \oplus T)$ $TK_2 \leftarrow MC(K_0 \oplus Q(T))$ $TK_3 \leftarrow MC(K_1 \oplus Q(T))$ $Y \leftarrow X$ for $i \leftarrow 31$ to 0 do $Y \leftarrow MC(Y)$ $Y_{4,5} \leftarrow Y_{4,5} \oplus RC_i$ $Y \leftarrow Y \oplus TK_i \mod 4$ if $i \neq 0$ then $\begin{array}{c|c} Y \leftarrow \mathsf{PN}(Y) \\ Y \leftarrow \mathsf{SB}(Y) \end{array}$ end end

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementations

Implementation Results

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementation

Round-based Implementation with Fault Detection

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	CRAFT Specification	Design Rationale	Security Analysis	Hardware Implementation

Round-based Implementation with Fault Detection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ