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Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.

Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1 

𝐹𝐾

P C

𝐹𝐾



Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.
Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1 

𝐹𝐾

P C

𝐹𝐾



Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.
Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1 

𝐹𝐾

P C

𝐹𝐾



Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.
Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1 

𝐹𝐾

P C

𝐹𝐾



Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Impeccable Circuits 1

Two general construction for Concurrent Error Detection

Adversary Model
Univariate(/Multivariate) Model,Mt :
The adversary is able to make at most t cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

Independence Property
To prevent fault propagation, the coordinate functions of each
operation have to be implemented independently.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.
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Independence Property

Example (Skinny’s MixColumn:)
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Motivation

Results of Impeccable Circuits
Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

There is a big gap between the implementation size of
unprotected and protected circuits.

Goals
Protection against DFA Attacks with efficient hardware
implementation
Tweakable and providing decryption with little
implementation area overhead
Using known design methods for easier security analysis

Skinny-like structure with 128-bit key, 64-bit block & tweak
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Structure

R0 R1 Ri R30 R′31· · · · · ·

TK0 TK1 TKi mod 4 TK2 TK3

RC0 RC1 RCi RC30 RC31

32 rounds: 31 identical rounds and last linear round
Internal state: viewed as 4× 4 matrix of nibbles

RTi mod4RCiMC

SB

SB
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SBL Shift
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R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11
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6 5 4 7

1 2 3 0
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Round Functions

RTi mod4RCiMC

SB

SB
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SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11
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MixColumn(MC):
Involutory binary matrix M is multiplied to each column.
AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.
AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.
PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.
SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.
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Tweakey Schedule

If (K0,K1) are two 64-bit halves of the key and T is the tweak,
then

TK0 = K0 ⊕ T
TK1 = K1 ⊕ T

TK2 = K0 ⊕Q(T )
TK3 = K1 ⊕Q(T )

where Q is a circular permutation on the position of tweak
nibbles:

[12,10,15,5, 14,8,9,2, 11,3,7,4, 6,0,1,13]
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One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

SB ◦ PN = PN ◦ SB

MC ◦ ARC ◦ ATK = ATK′ ◦ ARC ◦ MC
TK′ = MC(TK)
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tweakeys and reverse order of round constants.

DEC RC0,··· ,RC31
TK0,··· ,TK3

=

= (ATK3 ◦ ARC31 ◦ MC ◦ SB ◦ PN ◦ ATK2 ◦ ARC30 ◦ MC ◦ · · · ◦
◦SB ◦ PN ◦ ATK0 ◦ ARC0 ◦ MC)−1

= MC ◦ ARC0 ◦ ATK0 ◦ PN ◦ SB ◦ · · · ◦
◦MC ◦ ARC30 ◦ ATK2 ◦ PN ◦ SB ◦ MC ◦ ARC31 ◦ ATK3

= ATK′0 ◦ ARC0 ◦ MC ◦ SB ◦ PN ◦ · · · ◦
◦ATK′2 ◦ ARC30 ◦ MC ◦ SB ◦ PN ◦ ATK′3 ◦ ARC31 ◦ MC

= ENC RC31,··· ,RC0
TK ′

3,··· ,TK ′
0
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Sbox

Sbox & Redundant Sbox
For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

S4 = F4 ◦ S ◦ F−1
4

where F4 is a multiplication with
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Problem
There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.
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Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

Implementation cost of each operation is sum of area size
for its coordinate functions.
For each Sbox, size of 13 Boolean functions are important.
There are 12 870 four-bit balanced Boolean functions.
Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.
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Tweakey Schedule

Key Schedule
Round key updating method needs at least 128 registers.
Round key alternating method needs 64 multiplexers.

Tweak Schedule
Xoring the tweak with key.
To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.
Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T ).
To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.
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attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.
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Security

Security Analysis
Time-Data-Memory Trade-off
(Truncated / Impossible) (ST/RT) Differential
(Linear Hulls / Zero-Correlation) Linear
Integral
Meet in the Middle
(Linear Subspace/Nonlinear) Invariant Attacks

Security Claim
124 bit security in the related-tweak model
No claim in chosen-key, known-key or related-key models
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Accelerated Exhaustive Search

Related-key Property:

If ∆ = (x , x , . . . , x), since Q(∆) = ∆, both (K0,K1,T ) and
(K0 + ∆,K1 + ∆, T + ∆) cause the same tweakeys:

TKi = TK ′i (0 ≤ i ≤ 3)

Attack Procedure:
Attacker asks for encryption of the same plaintext P under
16 different tweaks of T ,T + ∆1, . . . ,T + ∆15:
C0,C1, . . . ,C15.
By setting one of the key nibbles to zero, for each of 2124

possible key candidate (K ∗0 ,K
∗
1 ), he computes C∗, the

encryption of P using K ∗0 ,K
∗
1 and T .

If C∗ is equal to Cx , then (K ∗0 + ∆x , K ∗1 + ∆x ) is a
candidate for the master key.
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Hardware Implementations
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Summary

CRAFT:
Implementation

A lightweight tweakable block cipher with
effiCient pRotection Against DFA aTtacks
The smallest block cipher with 128-bit key in the
round-based implementation (950 GE)
Lower area overhead to support a 64-bit tweak (245 GE)
Lower area overhead to support decryption (140 GE)

Security
Providing 124-bit security in the related-tweak model
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The End

Thank you for your attention.

Looking forward for further analysis by you
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Time-Data-Memory Trade-off Attack

Attacker fixes the tweakeys to TK0 = 0,TK1 = X ,TK2 = T ′

and TK3 = X + T ′.
For plaintext P and all possible X and T ′, he computes the
ciphertext CT ′,X and saves X in the index (T ′,C) of table T .

For all possible tweaks T , attacker requests for encryption
of P; CT .
For each of T , he gets a candidate for K0 + K1 by looking
up to the index (T + Q(T ),CT ) of T .

264+dim{T+Q(T )} pre-computations, 264+dim{T+Q(T )}

memory, 265 online computions and 264 data.
All online attack: 264+dim{T+Q(T )} computations, 264 data
and memory.
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13-Round Impossible Truncated Differentials
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15-Round Meet-in-the-Middle Attacks
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13-Round Integral Distinguisher
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Enc. & Dec. Algorithms

Beierle, Leander, Moradi and Rasoolzadeh 11

the second nibble of each column while
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Algorithm 4.1 and 4.2 show pseudo-code for the encryption and decryption functions
respectively. Lemma 1 shows that the two algorithms can be efficiently merged. We further
discuss about this feature of CRAFT in Section 6 with respect to hardware implementations.

Algorithm 4.1: Encryption
Input :X: plaintext

K0||K1: cipher key
T : tweak

Output :Y : ciphertext
TK0 ← K0 ⊕ T
TK1 ← K1 ⊕ T
TK2 ← K0 ⊕Q(T )
TK3 ← K1 ⊕Q(T )
Y ← X
for i← 0 to 31 do

Y ← MC(Y )
Y4,5 ← Y4,5 ⊕RCi
Y ← Y ⊕ TKi mod 4
if i 6= 31 then

Y ← PN(Y )
Y ← SB(Y )

end
end

Algorithm 4.2: Decryption
Input :X: ciphertext

K0||K1: cipher key
T : tweak

Output :Y : plaintext
TK0 ← MC(K0 ⊕ T )
TK1 ← MC(K1 ⊕ T )
TK2 ← MC(K0 ⊕Q(T ))
TK3 ← MC(K1 ⊕Q(T ))
Y ← X
for i← 31 to 0 do

Y ← MC(Y )
Y4,5 ← Y4,5 ⊕RCi
Y ← Y ⊕ TKi mod 4
if i 6= 0 then

Y ← PN(Y )
Y ← SB(Y )

end
end

4.2 Sbox
To choose the Sbox which best suits our structure while at the same time having good
cryptographic properties, we do the following. For all 46 206 736 involutory 4-bit Sboxes,
we first evaluate their uniformity u and linearity l, i.e.,

u = max
α 6=0,β

|{x | S(x) + S(x+ α) = β}|,

l = 2 · max
α,β 6=0

|{x | 〈β, S(x)〉 = 〈α, x〉}| − 2n, n = 4

and discard all Sboxes with trivial differential or linear characteristics. Second, since a bit-
permutation at the input or at the output of an Sbox does not change its implementation
area, we omit those Sboxes from the candidate list which are bit-permutation equivalent
of each other. In other meaning, if two Sboxes are different only with respect to a bit-
permutation at the input/output, we keep only one of them. Then, we evaluate the
implementation area cost concerning the independence property introduced in [1] for the
remaining Sbox candidates.

Independence Property [1] Assume a function T : Fk2 7→ Fq2 which maps the input x to
a q-bit output y : 〈y1, . . . , yq〉. The function T (x) = y is physically realized by q
component circuits each of which realizing a coordinate function T i : Fk2 7→ F2 in such
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Implementation Results
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Round-based Implementation with Fault Detection
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