
Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

CRAFT: Lightweight Tweakable Block Cipher
with Efficient Protection Against DFA Attacks

Christof Beierle Gregor Leander Amir Moradi
Shahram Rasoolzadeh

SnT, University of Luxembourg

Horst Görtz Institute for IT Security, Ruhr University Bochum

FSE 2019
March 25, 2019

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.

Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1

𝐹𝐾

P C

𝐹𝐾

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.
Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1

𝐹𝐾

P C

𝐹𝐾

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.
Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1

𝐹𝐾

P C

𝐹𝐾

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Physical Attacks

Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.
Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

𝐹𝐾P C0

𝐹𝐾P C1

ΔC = C0 + C1

𝐹𝐾

P C

𝐹𝐾

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Impeccable Circuits 1

Two general construction for Concurrent Error Detection

Adversary Model
Univariate(/Multivariate) Model,Mt :
The adversary is able to make at most t cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

Independence Property
To prevent fault propagation, the coordinate functions of each
operation have to be implemented independently.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Impeccable Circuits 1

Two general construction for Concurrent Error Detection

Adversary Model
Univariate(/Multivariate) Model,Mt :
The adversary is able to make at most t cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

Independence Property
To prevent fault propagation, the coordinate functions of each
operation have to be implemented independently.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Impeccable Circuits 1

Two general construction for Concurrent Error Detection

Adversary Model
Univariate(/Multivariate) Model,Mt :
The adversary is able to make at most t cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

Independence Property
To prevent fault propagation, the coordinate functions of each
operation have to be implemented independently.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Independence Property

Example (Skinny’s MixColumn:)

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Independence Property

Example (Skinny’s MixColumn:)

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Independence Property

Example (Skinny’s MixColumn:)

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Motivation

Results of Impeccable Circuits
Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

There is a big gap between the implementation size of
unprotected and protected circuits.

Goals
Protection against DFA Attacks with efficient hardware
implementation
Tweakable and providing decryption with little
implementation area overhead
Using known design methods for easier security analysis

Skinny-like structure with 128-bit key, 64-bit block & tweak

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Motivation

Results of Impeccable Circuits
Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.
There is a big gap between the implementation size of
unprotected and protected circuits.

Goals
Protection against DFA Attacks with efficient hardware
implementation
Tweakable and providing decryption with little
implementation area overhead
Using known design methods for easier security analysis

Skinny-like structure with 128-bit key, 64-bit block & tweak

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Motivation

Results of Impeccable Circuits
Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.
There is a big gap between the implementation size of
unprotected and protected circuits.

Goals
Protection against DFA Attacks with efficient hardware
implementation
Tweakable and providing decryption with little
implementation area overhead
Using known design methods for easier security analysis

Skinny-like structure with 128-bit key, 64-bit block & tweak

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Motivation

Results of Impeccable Circuits
Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.
There is a big gap between the implementation size of
unprotected and protected circuits.

Goals
Protection against DFA Attacks with efficient hardware
implementation
Tweakable and providing decryption with little
implementation area overhead
Using known design methods for easier security analysis

Skinny-like structure with 128-bit key, 64-bit block & tweak

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Structure

R0 R1 Ri R30 R′31· · · · · ·

TK0 TK1 TKi mod 4 TK2 TK3

RC0 RC1 RCi RC30 RC31

32 rounds: 31 identical rounds and last linear round
Internal state: viewed as 4× 4 matrix of nibbles

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Structure

R0 R1 Ri R30 R′31· · · · · ·

TK0 TK1 TKi mod 4 TK2 TK3

RC0 RC1 RCi RC30 RC31

32 rounds: 31 identical rounds and last linear round
Internal state: viewed as 4× 4 matrix of nibbles

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round Functions

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

MixColumn(MC):
Involutory binary matrix M is multiplied to each column.
AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.
AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.
PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.
SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round Functions

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

MixColumn(MC):
Involutory binary matrix M is multiplied to each column.

AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.
AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.
PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.
SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round Functions

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

MixColumn(MC):
Involutory binary matrix M is multiplied to each column.
AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.

AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.
PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.
SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round Functions

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

MixColumn(MC):
Involutory binary matrix M is multiplied to each column.
AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.
AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.

PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.
SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round Functions

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

MixColumn(MC):
Involutory binary matrix M is multiplied to each column.
AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.
AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.
PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.

SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round Functions

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

MixColumn(MC):
Involutory binary matrix M is multiplied to each column.
AddConstantsi(ARCi):
4-bit value ai and 3-bit bi are xored to the 4th & 5th nibbles.
AddTweakeyi(ATKi):
Tweakey TKi mod 4 is xored to the state.
PermuteNibbles(PN):
Involutory permutation P is applied on the nibble positions.
SubBox(SB):
4-bit involutory Sbox S is applied to each nibble.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

If (K0,K1) are two 64-bit halves of the key and T is the tweak,
then

TK0 = K0 ⊕ T
TK1 = K1 ⊕ T

TK2 = K0 ⊕Q(T)
TK3 = K1 ⊕Q(T)

where Q is a circular permutation on the position of tweak
nibbles:

[12,10,15,5, 14,8,9,2, 11,3,7,4, 6,0,1,13]

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

If (K0,K1) are two 64-bit halves of the key and T is the tweak,
then

TK0 = K0 ⊕ T
TK1 = K1 ⊕ T
TK2 = K0 ⊕Q(T)
TK3 = K1 ⊕Q(T)

where Q is a circular permutation on the position of tweak
nibbles:

[12,10,15,5, 14,8,9,2, 11,3,7,4, 6,0,1,13]

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

SB ◦ PN = PN ◦ SB

MC ◦ ARC ◦ ATK = ATK′ ◦ ARC ◦ MC
TK′ = MC(TK)

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

SB ◦ PN = PN ◦ SB

MC ◦ ARC ◦ ATK = ATK′ ◦ ARC ◦ MC
TK′ = MC(TK)

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

DEC RC0,··· ,RC31
TK0,··· ,TK3

=

= (ATK3 ◦ ARC31 ◦ MC ◦ SB ◦ PN ◦ ATK2 ◦ ARC30 ◦ MC ◦ · · · ◦
◦SB ◦ PN ◦ ATK0 ◦ ARC0 ◦ MC)−1

= MC ◦ ARC0 ◦ ATK0 ◦ PN ◦ SB ◦ · · · ◦
◦MC ◦ ARC30 ◦ ATK2 ◦ PN ◦ SB ◦ MC ◦ ARC31 ◦ ATK3

= ATK′0 ◦ ARC0 ◦ MC ◦ SB ◦ PN ◦ · · · ◦
◦ATK′2 ◦ ARC30 ◦ MC ◦ SB ◦ PN ◦ ATK′3 ◦ ARC31 ◦ MC

= ENC RC31,··· ,RC0
TK ′

3,··· ,TK ′
0
.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

DEC RC0,··· ,RC31
TK0,··· ,TK3

=

= (ATK3 ◦ ARC31 ◦ MC ◦ SB ◦ PN ◦ ATK2 ◦ ARC30 ◦ MC ◦ · · · ◦
◦SB ◦ PN ◦ ATK0 ◦ ARC0 ◦ MC)−1

= MC ◦ ARC0 ◦ ATK0 ◦ PN ◦ SB ◦ · · · ◦
◦MC ◦ ARC30 ◦ ATK2 ◦ PN ◦ SB ◦ MC ◦ ARC31 ◦ ATK3

= ATK′0 ◦ ARC0 ◦ MC ◦ SB ◦ PN ◦ · · · ◦
◦ATK′2 ◦ ARC30 ◦ MC ◦ SB ◦ PN ◦ ATK′3 ◦ ARC31 ◦ MC

= ENC RC31,··· ,RC0
TK ′

3,··· ,TK ′
0
.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

DEC RC0,··· ,RC31
TK0,··· ,TK3

=

= (ATK3 ◦ ARC31 ◦ MC ◦ SB ◦ PN ◦ ATK2 ◦ ARC30 ◦ MC ◦ · · · ◦
◦SB ◦ PN ◦ ATK0 ◦ ARC0 ◦ MC)−1

= MC ◦ ARC0 ◦ ATK0 ◦ PN ◦ SB ◦ · · · ◦
◦MC ◦ ARC30 ◦ ATK2 ◦ PN ◦ SB ◦ MC ◦ ARC31 ◦ ATK3

= ATK′0 ◦ ARC0 ◦ MC ◦ SB ◦ PN ◦ · · · ◦
◦ATK′2 ◦ ARC30 ◦ MC ◦ SB ◦ PN ◦ ATK′3 ◦ ARC31 ◦ MC

= ENC RC31,··· ,RC0
TK ′

3,··· ,TK ′
0
.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

DEC RC0,··· ,RC31
TK0,··· ,TK3

=

= (ATK3 ◦ ARC31 ◦ MC ◦ SB ◦ PN ◦ ATK2 ◦ ARC30 ◦ MC ◦ · · · ◦
◦SB ◦ PN ◦ ATK0 ◦ ARC0 ◦ MC)−1

= MC ◦ ARC0 ◦ ATK0 ◦ PN ◦ SB ◦ · · · ◦
◦MC ◦ ARC30 ◦ ATK2 ◦ PN ◦ SB ◦ MC ◦ ARC31 ◦ ATK3

= ATK′0 ◦ ARC0 ◦ MC ◦ SB ◦ PN ◦ · · · ◦
◦ATK′2 ◦ ARC30 ◦ MC ◦ SB ◦ PN ◦ ATK′3 ◦ ARC31 ◦ MC

= ENC RC31,··· ,RC0
TK ′

3,··· ,TK ′
0
.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

One structure for both encryption & decryption

Lemma 1:
CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

DEC RC0,··· ,RC31
TK0,··· ,TK3

=

= (ATK3 ◦ ARC31 ◦ MC ◦ SB ◦ PN ◦ ATK2 ◦ ARC30 ◦ MC ◦ · · · ◦
◦SB ◦ PN ◦ ATK0 ◦ ARC0 ◦ MC)−1

= MC ◦ ARC0 ◦ ATK0 ◦ PN ◦ SB ◦ · · · ◦
◦MC ◦ ARC30 ◦ ATK2 ◦ PN ◦ SB ◦ MC ◦ ARC31 ◦ ATK3

= ATK′0 ◦ ARC0 ◦ MC ◦ SB ◦ PN ◦ · · · ◦
◦ATK′2 ◦ ARC30 ◦ MC ◦ SB ◦ PN ◦ ATK′3 ◦ ARC31 ◦ MC

= ENC RC31,··· ,RC0
TK ′

3,··· ,TK ′
0
.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Sbox & Redundant Sbox
For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

S4 = F4 ◦ S ◦ F−1
4

where F4 is a multiplication with
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Problem
There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Sbox & Redundant Sbox
For each Sbox, we need to implement a Redundant Sbox.

For example, in case of 4-bit redundancy:

S4 = F4 ◦ S ◦ F−1
4

where F4 is a multiplication with
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Problem
There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Sbox & Redundant Sbox
For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

S4 = F4 ◦ S ◦ F−1
4

where F4 is a multiplication with
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



Problem
There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Sbox & Redundant Sbox
For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

S4 = F4 ◦ S ◦ F−1
4

where F4 is a multiplication with
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Problem
There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

Implementation cost of each operation is sum of area size
for its coordinate functions.
For each Sbox, size of 13 Boolean functions are important.
There are 12 870 four-bit balanced Boolean functions.
Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.
Implementation cost of each operation is sum of area size
for its coordinate functions.

For each Sbox, size of 13 Boolean functions are important.
There are 12 870 four-bit balanced Boolean functions.
Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.
Implementation cost of each operation is sum of area size
for its coordinate functions.
For each Sbox, size of 13 Boolean functions are important.

There are 12 870 four-bit balanced Boolean functions.
Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.
Implementation cost of each operation is sum of area size
for its coordinate functions.
For each Sbox, size of 13 Boolean functions are important.
There are 12 870 four-bit balanced Boolean functions.

Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.
Implementation cost of each operation is sum of area size
for its coordinate functions.
For each Sbox, size of 13 Boolean functions are important.
There are 12 870 four-bit balanced Boolean functions.
Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Sbox

Solution
Because of Independence Property, each coordinate
function of Sbox must be implemented separately.
Implementation cost of each operation is sum of area size
for its coordinate functions.
For each Sbox, size of 13 Boolean functions are important.
There are 12 870 four-bit balanced Boolean functions.
Up to bit permutation-equivalence, there are only 730.

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

Key Schedule
Round key updating method needs at least 128 registers.
Round key alternating method needs 64 multiplexers.

Tweak Schedule
Xoring the tweak with key.
To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.
Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).
To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

Key Schedule
Round key updating method needs at least 128 registers.
Round key alternating method needs 64 multiplexers.

Tweak Schedule
Xoring the tweak with key.

To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.
Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).
To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

Key Schedule
Round key updating method needs at least 128 registers.
Round key alternating method needs 64 multiplexers.

Tweak Schedule
Xoring the tweak with key.
To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.

Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).
To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

Key Schedule
Round key updating method needs at least 128 registers.
Round key alternating method needs 64 multiplexers.

Tweak Schedule
Xoring the tweak with key.
To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.
Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).

To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Tweakey Schedule

Key Schedule
Round key updating method needs at least 128 registers.
Round key alternating method needs 64 multiplexers.

Tweak Schedule
Xoring the tweak with key.
To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.
Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).
To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ≈ 240).
Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Security

Security Analysis
Time-Data-Memory Trade-off
(Truncated / Impossible) (ST/RT) Differential
(Linear Hulls / Zero-Correlation) Linear
Integral
Meet in the Middle
(Linear Subspace/Nonlinear) Invariant Attacks

Security Claim
124 bit security in the related-tweak model
No claim in chosen-key, known-key or related-key models

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Security

Security Analysis
Time-Data-Memory Trade-off
(Truncated / Impossible) (ST/RT) Differential
(Linear Hulls / Zero-Correlation) Linear
Integral
Meet in the Middle
(Linear Subspace/Nonlinear) Invariant Attacks

Security Claim
124 bit security in the related-tweak model
No claim in chosen-key, known-key or related-key models

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Accelerated Exhaustive Search

Related-key Property:

If ∆ = (x , x , . . . , x), since Q(∆) = ∆, both (K0,K1,T) and
(K0 + ∆,K1 + ∆, T + ∆) cause the same tweakeys:

TKi = TK ′i (0 ≤ i ≤ 3)

Attack Procedure:
Attacker asks for encryption of the same plaintext P under
16 different tweaks of T ,T + ∆1, . . . ,T + ∆15:
C0,C1, . . . ,C15.
By setting one of the key nibbles to zero, for each of 2124

possible key candidate (K ∗0 ,K
∗
1), he computes C∗, the

encryption of P using K ∗0 ,K
∗
1 and T .

If C∗ is equal to Cx , then (K ∗0 + ∆x , K ∗1 + ∆x) is a
candidate for the master key.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Accelerated Exhaustive Search

Related-key Property:

If ∆ = (x , x , . . . , x), since Q(∆) = ∆, both (K0,K1,T) and
(K0 + ∆,K1 + ∆, T + ∆) cause the same tweakeys:

TKi = TK ′i (0 ≤ i ≤ 3)

Attack Procedure:
Attacker asks for encryption of the same plaintext P under
16 different tweaks of T ,T + ∆1, . . . ,T + ∆15:
C0,C1, . . . ,C15.
By setting one of the key nibbles to zero, for each of 2124

possible key candidate (K ∗0 ,K
∗
1), he computes C∗, the

encryption of P using K ∗0 ,K
∗
1 and T .

If C∗ is equal to Cx , then (K ∗0 + ∆x , K ∗1 + ∆x) is a
candidate for the master key.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Hardware Implementations

949

1738

1193

22062342

3640

2801

4540

2857

4494

3420

5656

3698

5636

4518

7119

5014

6804 6657

8553

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CRAFT SKINNY 128 CRAFT (+Tweak) SKINNY 192

Area (GE) Comparison of Round-based Implementation using IBM 130nm ASIC Library

Unprotected 1-bit Red. 2-bit Red. 3-bit Red. 4-bit Red.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Summary

CRAFT:
Implementation

A lightweight tweakable block cipher with
effiCient pRotection Against DFA aTtacks
The smallest block cipher with 128-bit key in the
round-based implementation (950 GE)
Lower area overhead to support a 64-bit tweak (245 GE)
Lower area overhead to support decryption (140 GE)

Security
Providing 124-bit security in the related-tweak model

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Summary

CRAFT:
Implementation

A lightweight tweakable block cipher with
effiCient pRotection Against DFA aTtacks
The smallest block cipher with 128-bit key in the
round-based implementation (950 GE)
Lower area overhead to support a 64-bit tweak (245 GE)
Lower area overhead to support decryption (140 GE)

Security
Providing 124-bit security in the related-tweak model

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

The End

Thank you for your attention.

Looking forward for further analysis by you

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Time-Data-Memory Trade-off Attack

Attacker fixes the tweakeys to TK0 = 0,TK1 = X ,TK2 = T ′

and TK3 = X + T ′.
For plaintext P and all possible X and T ′, he computes the
ciphertext CT ′,X and saves X in the index (T ′,C) of table T .

For all possible tweaks T , attacker requests for encryption
of P; CT .
For each of T , he gets a candidate for K0 + K1 by looking
up to the index (T + Q(T),CT) of T .

264+dim{T+Q(T)} pre-computations, 264+dim{T+Q(T)}

memory, 265 online computions and 264 data.
All online attack: 264+dim{T+Q(T)} computations, 264 data
and memory.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

13-Round Impossible Truncated Differentials

MC

ARC1
ATK1

PN

SB

MC

ARC2
ATK2

PN

SB

MC

ARC3
ATK3

PN

SB

MC

ARC0
ATK0

PN

SB

MC

ARC4
ATK0

PN

SB

MC

ARC5
ATK1

PN

SB

MC

ARC6
ATK2

PN

SB

MC

ARC7
ATK3

PN

SB

MC

ARC8
ATK0

PN

SB

MC

ARC9
ATK1

PN

SB

MC

ARC10
ATK2

PN

SB

MC

ARC11
ATK3

PN

SB

MC

ARC12
ATK0

PN

SB

contradiction

R0

R1 R2 R3

R4 R5 R6

R7 R8 R9

R10 R11 R12

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

15-Round Meet-in-the-Middle Attacks

MC

ARC5
ATK1

PN

SB

MC

ARC6
ATK2

PN

SB

MC

ARC7
ATK3

PN

SB

MC

ARC2
ATK2

PN

SB

MC

ARC3
ATK3

PN

SB

MC

ARC4
ATK0

PN

SB

MC

ARC0
ATK0

PN

SB

MC

ARC1
ATK1

PN

SB

MC

ARC8
ATK0

PN

SB

MC

ARC9
ATK1

PN

SB

MC

ARC10
ATK2

PN

SB

MC

ARC11
ATK3

PN

SB

MC

ARC12
ATK0

PN

SB

MC

ARC13
ATK1

PN

SB

MC

ARC14
ATK2

matching

K0 K1 R0 R1

R2 R3 R4

R5 R6 R7

R8 R9 R10

R11 R12 R13

R14 K ′
0 K ′

1

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

13-Round Integral Distinguisher

A A A A

A A X A

A A A A

A A A A

A A A A

A A C A

A A A A

A A A A

A A A A

A A A A

A A A

A A A A

MC

ARC0
ATK0

PN

SB

A A A A

A A A A

A A A

A A A A

A A A

A

A A A

A A A A

A A A A

A A A

A

A A A

A

A A

A

A A A

A A A

A

A A

A

A

A A

A

A

A A

A

MC

ARC1
ATK1

PN

SB

MC

ARC2
ATK2

PN

SB

MC

ARC3
ATK3

PN

SB

A

A A

A

A

A

A

A A

A A

A

MC

ARC4
ATK0

PN

SB

MC

ARC5
ATK1

PN

SB

MC

ARC6
ATK2

PN

SB

C C C C

C C C C

C C A C

C C C C

C C A C

C C C C

C C A C

C C C C

C C C C

A C C C

C C C C

C A C C

C A C C

A A C C

C C C C

C A C C

C C A C

C C C C

C A A C

A C C C

A A B C

A C C C

C A A C

A C C C

C A C C

A A C C

C C A C

A U C A

MC

ARC7
ATK3

PN

SB

MC

ARC8
ATK0

PN

SB

MC

ARC9
ATK1

PN

SB

C A C C

A A C C

C C A C

A U C A

A U A A

B U C A

C C A C

A U C A

A A U C

A C C C

C U U A

U A A A

U U U B

U A A A

C U U A

U A A A

A U A A

U U C A

A A U A

U U U U

U U U U

U U U U

A A U A

U U U U

U U U U

U A A A

U U U U

U U U U

MC

ARC10
ATK2

PN

SB

MC

ARC11
ATK3

PN

SB

MC

ARC12
ATK0

PN

SB

R0

R1 R2 R3

R4 R5 R6

R7 R8 R9

R10 R11 R12

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Enc. & Dec. Algorithms

Beierle, Leander, Moradi and Rasoolzadeh 11

the second nibble of each column while

MC







0
x
0
0





 =




0
x
0
0


 .

Algorithm 4.1 and 4.2 show pseudo-code for the encryption and decryption functions
respectively. Lemma 1 shows that the two algorithms can be efficiently merged. We further
discuss about this feature of CRAFT in Section 6 with respect to hardware implementations.

Algorithm 4.1: Encryption
Input :X: plaintext

K0||K1: cipher key
T : tweak

Output :Y : ciphertext
TK0 ← K0 ⊕ T
TK1 ← K1 ⊕ T
TK2 ← K0 ⊕Q(T)
TK3 ← K1 ⊕Q(T)
Y ← X
for i← 0 to 31 do

Y ← MC(Y)
Y4,5 ← Y4,5 ⊕RCi
Y ← Y ⊕ TKi mod 4
if i 6= 31 then

Y ← PN(Y)
Y ← SB(Y)

end
end

Algorithm 4.2: Decryption
Input :X: ciphertext

K0||K1: cipher key
T : tweak

Output :Y : plaintext
TK0 ← MC(K0 ⊕ T)
TK1 ← MC(K1 ⊕ T)
TK2 ← MC(K0 ⊕Q(T))
TK3 ← MC(K1 ⊕Q(T))
Y ← X
for i← 31 to 0 do

Y ← MC(Y)
Y4,5 ← Y4,5 ⊕RCi
Y ← Y ⊕ TKi mod 4
if i 6= 0 then

Y ← PN(Y)
Y ← SB(Y)

end
end

4.2 Sbox
To choose the Sbox which best suits our structure while at the same time having good
cryptographic properties, we do the following. For all 46 206 736 involutory 4-bit Sboxes,
we first evaluate their uniformity u and linearity l, i.e.,

u = max
α 6=0,β

|{x | S(x) + S(x+ α) = β}|,

l = 2 · max
α,β 6=0

|{x | 〈β, S(x)〉 = 〈α, x〉}| − 2n, n = 4

and discard all Sboxes with trivial differential or linear characteristics. Second, since a bit-
permutation at the input or at the output of an Sbox does not change its implementation
area, we omit those Sboxes from the candidate list which are bit-permutation equivalent
of each other. In other meaning, if two Sboxes are different only with respect to a bit-
permutation at the input/output, we keep only one of them. Then, we evaluate the
implementation area cost concerning the independence property introduced in [1] for the
remaining Sbox candidates.

Independence Property [1] Assume a function T : Fk2 7→ Fq2 which maps the input x to
a q-bit output y : 〈y1, . . . , yq〉. The function T (x) = y is physically realized by q
component circuits each of which realizing a coordinate function T i : Fk2 7→ F2 in such

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Implementation Results
1

7
3

8

1
6

6
4

1
3

7
2 1
7

6
7

1
5

8
7

1
6

2
9

1
4

6
2

1
0

8
0

6
0

1 9
4

9

1
0

8
9

1
1

9
3

1
3

3
9

2
2

0
6

3
6

4
0

4
4

9
9

3
2

8
2

4
2

1
1

3
8

2
4

3
6

1
4

3
8

7
0

2
9

4
6

2
0

3
9

2
3

4
2

2
6

0
9

2
8

0
1

3
0

6
6

4
5

4
0

4
4

9
4

5
2

6
4

3
9

4
2

5
1

7
7

4
7

2
2

4
4

8
7

4
7

6
3

3
6

1
0

2
4

5
7 2
8

5
7

3
1

6
9

3
4

2
0

3
7

3
1

5
6

5
6

5
6

3
6

6
6

9
9

5
2

6
2

6
6

3
9

6
0

8
2

5
6

2
1 6

2
4

1

4
7

4
6

3
0

6
9 3

6
9

8 4
0

6
9 4
5

1
8 4
8

9
1

7
1

1
9

6
8

0
4

8
7

1
8

6
8

4
0

8
2

1
9

7
7

6
7

7
6

0
3 8

2
1

7

6
6

8
4

4
2

0
7

5
0

1
4 5
4

5
9

6
6

5
7 7
1

1
0

8
5

5
3

Unprotected 1-bit Red. 2-bit Red. 3-bit Red. 4-bit Red.

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round-based Implementation with Fault Detection

rst

E/D

MC

F ◦ SB ◦ F−1

PN

Q

MC

RC ′:(a′, b′)

F

F

F

F
×k
×k

×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

×m ≥ k

rst

E/D

MC

PN

Input TK0K1

Output

SB

Q

MC

RC:(a, b)

f1(a, b) f2(a, b)

C1
C ′

1

f ′
1(a

′, b′) f ′
2(a

′, b′)

A A′

Introduction CRAFT Specification Design Rationale Security Analysis Hardware Implementations

Round-based Implementation with Fault Detection

rst

E/D

MC

F ◦ SB

Q

MC

RC ′:(a′, b′)

F

F

F

F
×k
×k

×k
×k

×m < k

×m < k

×m < k

×m < k

rst

E/D

MC

PN

Input TK0K1

Output

SB

Q

MC

RC:(a, b)

f1(a, b) f2(a, b)

C1
C ′

1

F◦f1(a, b) F◦f2(a, b)

A A′

	Introduction
	Physical Attacks
	Impeccable Circuits
	Motivation

	CRAFT Specification
	Structure
	Round Functions
	Tweakey Schedule

	Design Rationale
	Decryption
	Sbox
	Tweakey Schedule

	Security Analysis
	Security
	AES

	Hardware Implementations
	Hardware Implementations
	Summary

