CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks

Christof Beierle Gregor Leander Amir Moradi Shahram Rasoolzadeh

SnT, University of Luxembourg

Horst Görtz Institute for IT Security, Ruhr University Bochum
FSE 2019
March 25, 2019

Physical Attacks

- Secrets stored in/processed by an implementation of a primitive can be recovered by Physical Attacks.

Physical Attacks

- Secrets stored in/processed by an implementation of a primitive can be recovered by Physical Attacks.
- Differential Fault Analysis (DFA) attacks are one of the most powerful class of them.

Physical Attacks

- Secrets stored in/processed by an implementation of a primitive can be recovered by Physical Attacks.
- Differential Fault Analysis (DFA) attacks are one of the most powerful class of them.

Physical Attacks

- Secrets stored in/processed by an implementation of a primitive can be recovered by Physical Attacks.
- Differential Fault Analysis (DFA) attacks are one of the most powerful class of them.

Impeccable Circuits

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, \mathcal{M}_{t} :
The adversary is able to make at most t cells of the entire circuit faulty at only one (/every) clock cycle.

[^0]
Impeccable Circuits ${ }^{1}$

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, \mathcal{M}_{t} :
The adversary is able to make at most t cells of the entire circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

[^1]
Impeccable Circuits ${ }^{1}$

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, \mathcal{M}_{t} :
The adversary is able to make at most t cells of the entire circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.

Independence Property

To prevent fault propagation, the coordinate functions of each operation have to be implemented independently.

[^2]
Independence Property

Example (Skinny's MixColumn:)

Independence Property

Example (Skinny's MixColumn:)

Independence Property

Example (Skinny's MixColumn:)

Motivation

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.

Motivation

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.
- There is a big gap between the implementation size of unprotected and protected circuits.

Motivation

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.
- There is a big gap between the implementation size of unprotected and protected circuits.

Goals

- Protection against DFA Attacks with efficient hardware implementation
- Tweakable and providing decryption with little implementation area overhead
- Using known design methods for easier security analysis

Motivation

Results of Impeccable Circuits

- Different Lightweight Block Ciphers: Skinny, LED, Midori, Present, Gift, Simon.
- There is a big gap between the implementation size of unprotected and protected circuits.

Goals

- Protection against DFA Attacks with efficient hardware implementation
- Tweakable and providing decryption with little implementation area overhead
- Using known design methods for easier security analysis
- Skinny-like structure with 128-bit key, 64-bit block \& tweak

Structure

- 32 rounds: 31 identical rounds and last linear round
- Internal state: viewed as 4×4 matrix of nibbles

Structure

- 32 rounds: 31 identical rounds and last linear round
- Internal state: viewed as 4×4 matrix of nibbles

Round Functions

Round Functions

- MixColumn (MC): Involutory binary matrix M is multiplied to each column.

Round Functions

- MixColumn (MC): Involutory binary matrix M is multiplied to each column.
- AddConstantsi $\left(\mathrm{ARC}_{i}\right)$:

4-bit value a_{i} and 3-bit b_{i} are xored to the 4th \& 5th nibbles.

Round Functions

- MixColumn (MC): Involutory binary matrix M is multiplied to each column.
- AddConstantsi $\left(A_{i} C_{i}\right)$:

4-bit value a_{i} and 3-bit b_{i} are xored to the 4th \& 5th nibbles.

- AddTweakeyi $\left(\right.$ ATK $\left._{i}\right)$:

Tweakey $T K_{i} \bmod 4$ is xored to the state.

Round Functions

- MixColumn (MC): Involutory binary matrix M is multiplied to each column.
- AddConstantsi $\left(A R C i_{i}\right)$:

4-bit value a_{i} and 3-bit b_{i} are xored to the 4th \& 5th nibbles.

- AddTweakeyi $\left(\right.$ ATK $\left._{i}\right)$:

Tweakey $T K_{i} \bmod 4$ is xored to the state.

- PermuteNibbles (PN): Involutory permutation P is applied on the nibble positions.

Round Functions

- MixColumn (MC):

Involutory binary matrix M is multiplied to each column.

- AddConstantsi $\left(\mathrm{ARC}_{i}\right)$:

4-bit value a_{i} and 3-bit b_{i} are xored to the 4th \& 5th nibbles.

- AddTweakeyi $\left(\right.$ ATK $\left._{i}\right)$:

Tweakey $T K_{i} \bmod 4$ is xored to the state.

- PermuteNibbles (PN): Involutory permutation P is applied on the nibble positions.
- SubBox (SB):

4-bit involutory Sbox S is applied to each nibble.

Tweakey Schedule

If (K_{0}, K_{1}) are two 64-bit halves of the key and T is the tweak, then

$$
\begin{aligned}
& T K_{0}=K_{0} \oplus T \\
& T K_{1}=K_{1} \oplus T
\end{aligned}
$$

Tweakey Schedule

If (K_{0}, K_{1}) are two 64 -bit halves of the key and T is the tweak, then

$$
\begin{aligned}
& T K_{0}=K_{0} \oplus T \\
& T K_{1}=K_{1} \oplus T \\
& T K_{2}=K_{0} \oplus Q(T) \\
& T K_{3}=K_{1} \oplus Q(T)
\end{aligned}
$$

where Q is a circular permutation on the position of tweak nibbles:

$$
[12,10,15,5,14,8,9,2,11,3,7,4,6,0,1,13]
$$

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$
S B \circ P N=P N \circ S B
$$

$$
\begin{gathered}
M C \circ A R C \circ A T K=A T K^{\prime} \circ A R C \circ M C \\
T K^{\prime}=M C(T K)
\end{gathered}
$$

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$
\begin{gathered}
\mathcal{D E C}{ }_{T K_{0}, \cdots, \cdots K_{3},}= \\
=\left(\mathrm{ATK}_{3} \circ \mathrm{ARC}_{31} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{2} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \cdots \circ\right. \\
\left.\circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK} \mathrm{~K}_{0} \circ \mathrm{ARC}_{0} \circ \mathrm{MC}\right)^{-1}
\end{gathered}
$$

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$
\begin{gathered}
\mathcal{D E C} \begin{array}{c}
R C_{0}, \cdots, R C_{31} \\
T K_{0}, \cdots, T K_{3}
\end{array}= \\
=\left(\mathrm{ATK}_{3} \circ \mathrm{ARC}_{31} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{2} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \cdots \circ\right. \\
\circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK} \circ \mathrm{ARC} 0 \circ \mathrm{MC})^{-1} \\
=\mathrm{MC} \circ A R C_{0} \circ A T K_{0} \circ \mathrm{PN} \circ \mathrm{SB} \circ \cdots \circ \\
\circ \mathrm{MC} \circ \mathrm{ARC}_{30} \circ \mathrm{ATK}_{2} \circ \mathrm{PN} \circ \mathrm{SB} \circ \mathrm{MC} \circ A R C_{31} \circ \mathrm{ATK}_{3}
\end{gathered}
$$

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$
\begin{gathered}
\mathcal{D E C} \begin{array}{c}
R C_{0}, \cdots, R C_{31} \\
T K_{0}, \cdots, T K_{3}
\end{array}= \\
=\left(\mathrm{ATK}_{3} \circ \mathrm{ARC}_{31} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{2} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \cdots \circ\right. \\
\circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK} \circ \mathrm{ARC} 0 \circ \mathrm{MC})^{-1} \\
=\mathrm{MC} \circ A R C_{0} \circ A T K_{0} \circ \mathrm{PN} \circ \mathrm{SB} \circ \cdots \circ \\
\circ \mathrm{MC} \circ \mathrm{ARC}_{30} \circ \mathrm{ATK}_{2} \circ \mathrm{PN} \circ \mathrm{SB} \circ \mathrm{MC} \circ A R C_{31} \circ \mathrm{ATK} 3
\end{gathered}
$$

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$
\begin{gathered}
\mathcal{D E C} \begin{array}{c}
R C_{0}, \cdots, R C_{31} \\
T K_{0}, \cdots, T K_{3}
\end{array}= \\
=\left(\mathrm{ATK}_{3} \circ \mathrm{ARC}_{31} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{2} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \cdots \circ\right. \\
\circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK} 0 \mathrm{ARC} 0 \circ \mathrm{MC})^{-1} \\
=\mathrm{MC} \circ A R C_{0} \circ A T K_{0} \circ \mathrm{PN} \circ \mathrm{SB} \circ \cdots \circ \\
\circ \mathrm{MC} \circ \mathrm{ARC}_{30} \circ \mathrm{ATK}_{2} \circ \mathrm{PN} \circ \mathrm{SB} \circ \mathrm{MC} \circ A R C_{31} \circ \mathrm{ATK} 3 \\
=\mathrm{ATK}_{0}^{\prime} \circ \mathrm{ARC} 0 \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \cdots \circ \\
\circ A T K_{2}^{\prime} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ A T K_{3}^{\prime} \circ \mathrm{ARC}_{31} \circ \mathrm{MC}
\end{gathered}
$$

One structure for both encryption \& decryption

Lemma 1:

CRAFT decryption is the same as its encryption with modified tweakeys and reverse order of round constants.

$$
\begin{gathered}
\mathcal{D E C}{ }_{T K_{0}, \cdots, T K_{3}}^{R C_{0}, \cdots, R K_{1}}= \\
=\left(\mathrm{ATK}_{3} \circ \mathrm{ARC}_{31} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{2} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \cdots \circ\right. \\
\left.\circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{0} \circ \mathrm{ARC}_{0} \circ \mathrm{MC}\right)^{-1} \\
=\mathrm{MC} \circ \mathrm{ARC}_{0} \circ \mathrm{ATK}_{0} \circ \mathrm{PN} \circ \mathrm{SB} \circ \cdots \circ \\
\circ \mathrm{MC} \circ \mathrm{ARC}_{30} \circ \mathrm{ATK}_{2} \circ \mathrm{PN} \circ \mathrm{SB} \circ \mathrm{MC} \circ \mathrm{ARC}_{31} \circ \mathrm{ATK} 3 \\
=\mathrm{ATK}_{0}^{\prime} \circ \mathrm{ARC} 0 \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \cdots \circ \\
\circ \mathrm{ATK}_{2}^{\prime} \circ \mathrm{ARC}_{30} \circ \mathrm{MC} \circ \mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{3}^{\prime} \circ \mathrm{ARC}_{31} \circ \mathrm{MC} \\
=\mathcal{E N C} \begin{array}{l}
R C_{31}, \cdots, R C_{0} \\
T K_{3}^{\prime}, \cdots, T K_{0}^{\prime}
\end{array}
\end{gathered}
$$

Sbox

Sbox

Sbox \& Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox.

Sbox

Sbox \& Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox. For example, in case of 4-bit redundancy:

$$
S_{4}=F_{4} \circ S \circ F_{4}^{-1}
$$

where F_{4} is a multiplication with

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Sbox

Sbox \& Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox. For example, in case of 4-bit redundancy:

$$
S_{4}=F_{4} \circ S \circ F_{4}^{-1}
$$

where F_{4} is a multiplication with

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Problem

There are 46206736 involutory 4-bit Sboxes which implementing and synthesizing all of them is impossible.

Sbox

Solution

- Because of Independence Property, each coordinate function of Sbox must be implemented separately.

Sbox

Solution

- Because of Independence Property, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.

Sbox

Solution

- Because of Independence Property, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.

Sbox

Solution

- Because of Independence Property, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.
- There are 12870 four-bit balanced Boolean functions.

Sbox

Solution

- Because of Independence Property, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.
- There are 12870 four-bit balanced Boolean functions.
- Up to bit permutation-equivalence, there are only 730.

Sbox

Solution

- Because of Independence Property, each coordinate function of Sbox must be implemented separately.
- Implementation cost of each operation is sum of area size for its coordinate functions.
- For each Sbox, size of 13 Boolean functions are important.
- There are 12870 four-bit balanced Boolean functions.
- Up to bit permutation-equivalence, there are only 730.

Results for Sbox

Among all the smallest found Soxes, we use the Midori's one.

Tweakey Schedule

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweakey Schedule

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.

Tweakey Schedule

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.
- To prevent Time-Data-Memory Trade-off attacks, tweak cannot be always the same when round keys are equal.

Tweakey Schedule

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.
- To prevent Time-Data-Memory Trade-off attacks, tweak cannot be always the same when round keys are equal.
- Solution: using 64 multiplexers to choose T or a nibble-wise permutation of it, $Q(T)$.

Tweakey Schedule

Key Schedule

- Round key updating method needs at least 128 registers.
- Round key alternating method needs 64 multiplexers.

Tweak Schedule

- Xoring the tweak with key.
- To prevent Time-Data-Memory Trade-off attacks, tweak cannot be always the same when round keys are equal.
- Solution: using 64 multiplexers to choose T or a nibble-wise permutation of it, $Q(T)$.
- To provide maximum possible security against TDM-TO attack, Q must be circular (there are $15!\approx 2^{40}$).
- Trying 1000 of them, Q is the one with most active Sboxes in related-tweak differential attack.

Security

Security Analysis

- Time-Data-Memory Trade-off
- (Truncated / Impossible) (ST/RT) Differential
- (Linear Hulls / Zero-Correlation) Linear
- Integral
- Meet in the Middle
- (Linear Subspace/Nonlinear) Invariant Attacks

Security

Security Analysis

- Time-Data-Memory Trade-off
- (Truncated / Impossible) (ST/RT) Differential
- (Linear Hulls / Zero-Correlation) Linear
- Integral
- Meet in the Middle
- (Linear Subspace/Nonlinear) Invariant Attacks

Security Claim

- 124 bit security in the related-tweak model
- No claim in chosen-key, known-key or related-key models

Accelerated Exhaustive Search

Related-key Property:

If $\Delta=(x, x, \ldots, x)$, since $Q(\Delta)=\Delta$, both $\left(K_{0}, K_{1}, T\right)$ and ($K_{0}+\Delta, K_{1}+\Delta, T+\Delta$) cause the same tweakeys:

$$
T K_{i}=T K_{i}^{\prime} \quad(0 \leq i \leq 3)
$$

Accelerated Exhaustive Search

Related-key Property:

If $\Delta=(x, x, \ldots, x)$, since $Q(\Delta)=\Delta$, both $\left(K_{0}, K_{1}, T\right)$ and ($K_{0}+\Delta, K_{1}+\Delta, T+\Delta$) cause the same tweakeys:

$$
T K_{i}=T K_{i}^{\prime} \quad(0 \leq i \leq 3)
$$

Attack Procedure:

- Attacker asks for encryption of the same plaintext P under 16 different tweaks of $T, T+\Delta_{1}, \ldots, T+\Delta_{15}$: $C_{0}, C_{1}, \ldots, C_{15}$.
- By setting one of the key nibbles to zero, for each of 2^{124} possible key candidate (K_{0}^{*}, K_{1}^{*}), he computes C^{*}, the encryption of P using K_{0}^{*}, K_{1}^{*} and T.
- If C^{*} is equal to C_{x}, then $\left(K_{0}^{*}+\Delta_{x}, K_{1}^{*}+\Delta_{x}\right)$ is a candidate for the master key.

Hardware Implementations

Area (GE) Comparison of Round-based Implementation using IBM 130nm ASIC Library

Summary

CRAFT:

Implementation

- A lightweight tweakable block cipher with effiCient pRotection Against DFA aTtacks
- The smallest block cipher with 128-bit key in the round-based implementation (950 GE)
- Lower area overhead to support a 64-bit tweak (245 GE)
- Lower area overhead to support decryption (140 GE)

Summary

CRAFT:

Implementation

- A lightweight tweakable block cipher with effiCient pRotection Against DFA aTtacks
- The smallest block cipher with 128-bit key in the round-based implementation (950 GE)
- Lower area overhead to support a 64-bit tweak (245 GE)
- Lower area overhead to support decryption (140 GE)

Security

Providing 124-bit security in the related-tweak model

Thank you for your attention.

Looking forward for further analysis by you

Time-Data-Memory Trade-off Attack

- Attacker fixes the tweakeys to $T K_{0}=0, T K_{1}=X, T K_{2}=T^{\prime}$ and $T K_{3}=X+T^{\prime}$.
- For plaintext P and all possible X and T^{\prime}, he computes the ciphertext $C_{T^{\prime}, X}$ and saves X in the index (T^{\prime}, C) of table \mathcal{T}.
- For all possible tweaks T, attacker requests for encryption of $P ; C_{T}$.
- For each of T, he gets a candidate for $K_{0}+K_{1}$ by looking up to the index $\left(T+Q(T), C_{T}\right)$ of \mathcal{T}.
- $2^{64+\operatorname{dim}\{T+Q(T)\}}$ pre-computations, $2^{64+\operatorname{dim}\{T+Q(T)\}}$ memory, 2^{65} online computions and 2^{64} data.
- All online attack: $2^{64+\operatorname{dim}\{T+Q(T)\}}$ computations, 2^{64} data and memory.

13-Round Impossible Truncated Differentials

15-Round Meet-in-the-Middle Attacks

13-Round Integral Distinguisher

\mathcal{R}_{0}				MC					$\begin{aligned} & \text { PN } \\ & \text { SB } \end{aligned}$					
A	A	A	A	ARC_{0}	A	A	A	A A						
A	A	X	A	${ }^{\text {ATK }}$	A	A	C	C A		A	A	A	A	
A	A	A	A		A	A	A	A A			A	A	A	
A	A	A	A		A	A				A	A	A	A	

Enc. \& Dec. Algorithms

Input : X : plaintext $K_{0} \| K_{1}$: cipher key T: tweak

Output: Y : ciphertext
$T K_{0} \leftarrow K_{0} \oplus T$
$T K_{1} \leftarrow K_{1} \oplus T$
$T K_{2} \leftarrow K_{0} \oplus Q(T)$
$T K_{3} \leftarrow K_{1} \oplus Q(T)$
$Y \leftarrow X$
for $i \leftarrow 0$ to 31 do
$Y \leftarrow \mathrm{MC}(Y)$
$Y_{4,5} \leftarrow Y_{4,5} \oplus R C_{i}$ $Y \leftarrow Y \oplus T K_{i} \bmod 4$ if $i \neq 31$ then
$Y \leftarrow \mathrm{PN}(Y)$
$Y \leftarrow \mathrm{SB}(Y)$
end
end

Input : X : ciphertext
$K_{0} \| K_{1}$: cipher key
T: tweak
Output: Y : plaintext
$T K_{0} \leftarrow \mathrm{MC}\left(K_{0} \oplus T\right)$
$T K_{1} \leftarrow \mathrm{MC}\left(K_{1} \oplus T\right)$
$T K_{2} \leftarrow \mathrm{MC}\left(K_{0} \oplus Q(T)\right)$
$T K_{3} \leftarrow \mathrm{MC}\left(K_{1} \oplus Q(T)\right)$
$Y \leftarrow X$
for $i \leftarrow 31$ to 0 do
$Y \leftarrow \mathrm{MC}(Y)$
$Y_{4,5} \leftarrow Y_{4,5} \oplus R C_{i}$
$Y \leftarrow Y \oplus T K_{i} \bmod 4$
if $i \neq 0$ then
$Y \leftarrow \mathrm{PN}(Y)$
$Y \leftarrow \mathrm{SB}(Y)$
end
end

Implementation Results

■ Unprotected \quad 1-bit Red. \quad 2-bit Red. \quad 3-bit Red. \quad 4-bit Red.

Round-based Implementation with Fault Detection

Round-based Implementation with Fault Detection

[^0]: ${ }^{1}$ Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

[^1]: ${ }^{1}$ Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

[^2]: ${ }^{1}$ Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

