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Impeccable Circuits *

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M;:
The adversary is able to make at most ¢ cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered. )

Independence Property

To prevent fault propagation, the coordinate functions of each
operation have to be implemented independently.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.
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Motivation

Results of Impeccable Circuits

@ Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

@ There is a big gap between the implementation size of
unprotected and protected circuits.

Goals

@ Protection against DFA Attacks with efficient hardware
implementation

@ Tweakable and providing decryption with little
implementation area overhead

@ Using known design methods for easier security analysis

@ Skinny-like structure with 128-bit key, 64-bit block & tweak )
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Round Functions

MC JRC: fTum
& IEE 5] 12 13] 14 |-EE
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@ MixColumn (MC):

Involutory binary matrix M is multiplied to each column.
@ AddConstants; (ARC):

4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.
@ AddTweakey; (ATK;) :

Tweakey TK; mod 4 iS xored to the state.
@ PermuteNibbles (PN):

Involutory permutation P is applied on the nibble positions.
@ SubBox (SB):

4-bit involutory Sbox S is applied to each nibble.
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Tweakey Schedule

If (Ko, K1) are two 64-bit halves of the key and T is the tweak,

then
TKO = KO e T

TK1 = K1 eT
TKo = Ko® Q(T)
TKs = Ki o Q(T)

where Q is a circular permutation on the position of tweak
nibbles:

[12,10,15,5, 14,8,9,2, 11,3,7,4, 6,0,1,13]
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One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.
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For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

84 = F4 (e} s o F4_\1
where F4 is a multiplication with

0111
1011
1101
1110

Problem

There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.
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@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

@ Implementation cost of each operation is sum of area size
for its coordinate functions.

@ For each Sbox, size of 13 Boolean functions are important.
@ There are 12 870 four-bit balanced Boolean functions.
@ Up to bit permutation-equivalence, there are only 730.

v

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.
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Tweakey Schedule

Key Schedule

@ Round key updating method needs at least 128 registers.
@ Round key alternating method needs 64 multiplexers.

Tweak Schedule

@ Xoring the tweak with key.

@ To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.

@ Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).

@ To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ~ 249).

@ Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.
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Security Analysis

@ Time-Data-Memory Trade-off
@ (Truncated / Impossible) (ST/RT) Differential
@ (Linear Hulls / Zero-Correlation) Linear

@ Integral
@ Meet in the Middle
@ (Linear Subspace/Nonlinear) Invariant Attacks

Security Claim

@ 124 bit security in the related-tweak model
@ No claim in chosen-key, known-key or related-key models

v
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Accelerated Exhaustive Search

Related-key Property:

If A =(x,x,...,x),since Q(A) = A, both (Ky, Ky, T) and
(Ko + A, Ky + A, T+ A) cause the same tweakeys:

TK = TK! (0<i<3)

Attack Procedure:

@ Attacker asks for encryption of the same plaintext P under
16 different tweaks of T, T + A4, ..., T + Aqs:

Co, Cy, ..., Cys.

@ By setting one of the key nibbles to zero, for each of 2124
possible key candidate (K, K), he computes C*, the
encryption of P using Kj, K{ and T.

o If C*is equal to Cy, then (Kj + Ay, K{ + Ayx) is a
candidate for the master key.
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Hardware Implementations

Area (GE) Comparison of Round-based Implementation using IBM 130nm ASIC Library
9000 8553
8000 B Unprotected M 1-bit Red. M 2-bit Red. 3-bit Red. M 4-bit Red.

7119

6804

7000 6657

6000 5636 5656

5014

5000 4494 4518 4540

4000 3698
3640 3420

3000 2857 2801
2342 2206
2000 1738
1193
949
N | ] ]
0

CRAFT SKINNY 128 CRAFT (+Tweak) SKINNY 192
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Summary

CRAFT:

@ A lightweight tweakable block cipher with
effiCient pRotection Against DFA aTtacks

@ The smallest block cipher with 128-bit key in the
round-based implementation (950 GE)

@ Lower area overhead to support a 64-bit tweak (245 GE)
@ Lower area overhead to support decryption (140 GE)

Providing 124-bit security in the related-tweak model




The End

Thank you for your attention.

Looking forward for further analysis by you
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Time-Data-Memory Trade-off Attack

@ Attacker fixes the tweakeysto TKp =0, TK; = X, TKo = T’
and TKz = X + T'.

@ For plaintext P and all possible X and T’, he computes the
ciphertext C7 x and saves X in the index (7', C) of table 7.

@ For all possible tweaks T, attacker requests for encryption
of P; Cr.

@ For each of T, he gets a candidate for Ky + K; by looking
up to the index (T + Q(T), Cr) of T.

o 264+dim{T+Q(T)} pre-computations, 264+dm{T+Q(T)}
memory, 2%° online computions and 254 data.

@ All online attack: 264+dim{T+Q(7)} computations, 264 data
and memory.




13-Round Impossible Truncated Differentials
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15-Round

Meet-in-the-Middle Attacks
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13-Round Integral Distinguisher

Ro MC -
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AlAlc[c]AT: [B]Ulc|A Alc][cc|ATKs [uaAa]A Ulu[c[a]AT& [uulu]u U[AJA]A
clclalc] [clclalc]l [culula]l” [clulula]l” T[a]a]u]a Ala[u[a u[ulu[u
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Enc. & Dec. Algorithms

Input :X: plaintext

Ko||K1: cipher key

T: tweak
Output:Y: ciphertext

TKy<+ Ko T
TKi <+ Ki19T
Y+ X
for i + 0 to 31 do
Y < MC(Y)
Yi5 4 Yys® RC;
YFY@TKZ mod 4
if ¢ # 31 then

Y + PN(Y)

Y + SB(Y)
end

end

Input :X: ciphertext
Ko||K1: cipher key
T: tweak

Output: Y: plaintext

TKo«+ MC(Ko®T)
TKl — MC(Kl D T)
TK, + MC(Ko @ Q(T))
TK; + MC(K; @ Q(T))
Y+ X
for i < 31 to 0 do
Y +MC(Y)
Yis5 <+ Ys5® RC;
YFY@TK@' mod 4
if ¢ # 0 then

Y + PN(Y)

Y « 8B(Y)
end

end



Implementation Results

mUnprotected M 1-bit Red. 2-bit Red 3-bitRed. W 4-bit Red
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Round-based Implementation with Fault Detection

INPUT KoK, T
xm >k

xk 0o xm >k

xk ’—‘F xm >k
xm >k

L RC:(a.h)~d

i [OutpPUT

0
PN




Round-based Implementation with Fault Detection

INPUT Ko K, T
xk 71 xm < k

xk 0 xm < k
xk 0 xm<k

Fofy(a, h)§
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