CRAFT: Lightweight Tweakable Block Cipher
with Efficient Protection Against DFA Attacks

Christof Beierle Gregor Leander Amir Moradi
Shahram Rasoolzadeh

SnT, University of Luxembourg

Horst Gértz Institute for IT Security, Ruhr University Bochum

FSE 2019
March 25, 2019

Introduction
[]

Physical Attacks

@ Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.

Introduction
[]

Physical Attacks

@ Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.

@ Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

Introduction
[]

Physical Attacks

@ Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.

@ Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

Introduction
[]

Physical Attacks

@ Secrets stored in/processed by an implementation of a
primitive can be recovered by Physical Attacks.

@ Differential Fault Analysis (DFA) attacks are one of the
most powerful class of them.

P @ C

Introduction
[Je]

Impeccable Circuits *

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M;:
The adversary is able to make at most ¢ cells of the entire
circuit faulty at only one (/every) clock cycle.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

Introduction
[Je]

Impeccable Circuits *

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M;:
The adversary is able to make at most ¢ cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.)

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

Introduction

@0

Impeccable Circuits *

Two general construction for Concurrent Error Detection

Adversary Model

Univariate(/Multivariate) Model, M;:
The adversary is able to make at most ¢ cells of the entire
circuit faulty at only one (/every) clock cycle.

Safe-Error and Stuck-at-0/1 models are not covered.)

Independence Property

To prevent fault propagation, the coordinate functions of each
operation have to be implemented independently.

1Aghaie et. al., Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203.

Introduction
oe

Independence Property

Example (Skinny’s MixColumn:)

T3 Y3

T2

Y2

[ah
N\

T

Y1

D
>

Ty

Yo

D
>

Introduction
oe

Independence Property

Example (Skinny’s MixColumn:)

Z3 Y3 L3 Y3
i) C) Y2 T2 C) Y2
o et " 71 —JL‘—I—u Y1
Zo C) Yo Zo C) Yo

Introduction
oe

Independence Property

Example (Skinny’s MixColumn:)

Z3 Y3 L3 Y3
i) C) Y2 T2 C) Y2
o et " 71 —JL‘—I—u Y1
Zo C) Yo Zo C) Yo

X3 Y3

T2 C) Y2

Ty () Y1

2 —D——D— w

Introduction
Motivation

Results of Impeccable Circuits

@ Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

Introduction
[]

Motivation

Results of Impeccable Circuits

@ Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

@ There is a big gap between the implementation size of
unprotected and protected circuits.

Introduction
[]

Motivation

Results of Impeccable Circuits

@ Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

@ There is a big gap between the implementation size of
unprotected and protected circuits.

Goals

@ Protection against DFA Attacks with efficient hardware
implementation

@ Tweakable and providing decryption with little
implementation area overhead

@ Using known design methods for easier security analysis

Introduction
[]

Motivation

Results of Impeccable Circuits

@ Different Lightweight Block Ciphers:
Skinny, LED, Midori, Present, Gift, Simon.

@ There is a big gap between the implementation size of
unprotected and protected circuits.

Goals

@ Protection against DFA Attacks with efficient hardware
implementation

@ Tweakable and providing decryption with little
implementation area overhead

@ Using known design methods for easier security analysis

@ Skinny-like structure with 128-bit key, 64-bit block & tweak)

CRAFT Specification
[]

Structure

TKo TK; TK; mod 4 TK> TK;
1] ' ' ' 3

/

f 1 t 1)

@ 32 rounds: 31 identical rounds and last linear round
@ Internal state: viewed as 4 x 4 matrix of nibbles J

CRAFT Specification
[]

Structure
TKo TK; TK; mod 4 TK> TK;
! ¥ ' ¢ '
Ry [Ry Ri = —Rao|—~ Ry |~
1 1 1 1 1
@ 32 rounds: 31 identical rounds and last linear round
@ Internal state: viewed as 4 x 4 matrix of nibbles

MC JRC; fﬁ mods
D 0|11]2]|3 1512 | 13| 14
1567 10918 |11
8191011 65|47 (5B}
1213|1415 1230 (8B

CRAFT Specification
L]

Round Functions

MC \RC) BT mos
D 0] 1]2]¢3 501213 | 14
4156 9] 8|11
81910 50 4|7 (8B
12 13| 14 20310

CRAFT Specification
L]

Round Functions

MC JRC; fTum
D 0] 1]2]¢3 501213 | 14
4156 9] 8|11
81910 54| 7 (8B}
12 13| 14 20310

@ MixColumn (MC):
Involutory binary matrix M is multiplied to each column.

CRAFT Specification
L]

Round Functions

MC JRC; fTum
& IEE 5] 12 13] 14 |-EE
4156 9 | 8|11 (8B}
81910 54| 7 (8B}
1213|1415 20310

@ MixColumn (MC):
Involutory binary matrix M is multiplied to each column.
@ AddConstants; (ARC):
4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.

CRAFT Specification
L]

Round Functions

MC JRC; fTum
& IEE 5] 12 13] 14 |-EE
4156 9 | 8|11 (8B}
81910 54| 7 (8B}
1213|1415 20310

@ MixColumn (MC):

Involutory binary matrix M is multiplied to each column.
@ AddConstants; (ARC):

4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.
@ AddTweakey; (ATK;) :

Tweakey TK; mod 4 iS xored to the state.

CRAFT Specification
L]

Round Functions

MC JRC; fTum
& IEE 5] 12 13] 14 |-EE
4156 9 | 8|11 (8B}
81910 54| 7 (8B}
1213|1415 21310

@ MixColumn (MC):
Involutory binary matrix M is multiplied to each column.
@ AddConstants; (ARC):
4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.
@ AddTweakey; (ATK;) :
Tweakey TK; mod 4 iS xored to the state.
@ PermuteNibbles (PN):
Involutory permutation P is applied on the nibble positions.

CRAFT Specification
L]

Round Functions

MC JRC: fTum
& IEE 5] 12 13] 14 |-EE
4156 9 | 8|11 (8B}
81910 5 | 4 | 7 (8B}

5
1213|1415 2| 3]0 —(sB}

@ MixColumn (MC):

Involutory binary matrix M is multiplied to each column.
@ AddConstants; (ARC):

4-bit value a; and 3-bit b; are xored to the 4th & 5th nibbles.
@ AddTweakey; (ATK;) :

Tweakey TK; mod 4 iS xored to the state.
@ PermuteNibbles (PN):

Involutory permutation P is applied on the nibble positions.
@ SubBox (SB):

4-bit involutory Sbox S is applied to each nibble.

CRAFT Specification
[]

Tweakey Schedule

If (Ko, K1) are two 64-bit halves of the key and T is the tweak,

then
TKO = Ko oT
TKi= KioT

CRAFT Specification
[]

Tweakey Schedule

If (Ko, K1) are two 64-bit halves of the key and T is the tweak,

then
TKO = KO e T

TK1 = K1 eT
TKo = Ko® Q(T)
TKs = Ki o Q(T)

where Q is a circular permutation on the position of tweak
nibbles:

[12,10,15,5, 14,8,9,2, 11,3,7,4, 6,0,1,13]

Design Rationale
@000

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

Design Rationale
@000

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

SBoPN =PNo SB

MC o ARC 0 ATK = ATK' 0 ARC o MC
TK' = MC(TK)

Design Rationale
0e00

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

RCO7"'7R031 _
Dec TKo, -, TKs

— (ATK3 0 ARC3q 0 MC 0 SB 0 PN 0 ATKp 0 ARC3g OMC 0 -+ 0
0SB 0 PN o ATKq 0 ARCq o MC) ™"

Design Rationale
0e00

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

RCO7"'7R031 .
DEC 1) Ty =
— (ATK3 0 ARC3¢ 0 MC 0 SB 0 PN 0 ATKp 0 ARC3g 0 MC 0 - - - 0
0SB 0 PN o ATKq 0 ARCq o MC) ™"
=MCoARCgoATKgoPNo SBo:---0

oMC 0 ARC3g © ATKp 0 PN o SB o MC o ARC3y 0 ATK3

Design Rationale
[e]e] le)

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

RCO7"'7R031 .
DEC 1) Ty =
— (ATK3 0 ARC3¢ 0 MC 0 SB 0 PN 0 ATKp 0 ARC3g 0 MC 0 - - - 0
0SB 0 PN o ATKq 0 ARCq o MC) ™"
= MCoARCgoATKgoPNo SBo:---0

oMC o ARC3g © ATK» 0 PN o SB o MC o ARC3y 0 ATKg

Design Rationale
[e]e]e])

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

RCO7"'7R031 _
Dec TKo, -, TKs

= (ATK3 0 ARC31 0 MC 0 SB o PN o ATKp 0 ARC3goMC o0 -+ 0
0SB 0 PN o ATKq 0 ARCq o MC) ™"
=MCoARCygoATKgoPNoSBo---0
oMC o ARC3g 0 ATKp o PN o SB o MC o0 ARC3¢ 0 ATK3
= ATKp 0 ARCooMC o SBoPNo---0
oATKj5 0 ARC3g 0 MC 0 SB 0 PN 0 ATKj 0 ARCgy 0 MC

Design Rationale
[e]e]e])

One structure for both encryption & decryption

CRAFT decryption is the same as its encryption with modified
tweakeys and reverse order of round constants.

RCO7"'7R031 _
Dec TKo, -, TKs

= (ATK3 0 ARC31 0 MC 0 SB o PN o ATKp 0 ARC3goMC o0 -+ 0
0SB 0 PN o ATKq 0 ARCq o MC) ™"
=MCoARCygoATKgoPNoSBo---0
oMC o ARC3g 0 ATKp o PN o SB o MC o0 ARC3¢ 0 ATK3
= ATKp 0 ARCooMC o SBoPNo---0
oATKj5 0 ARC3g 0 MC 0 SB 0 PN 0 ATKj 0 ARCgy 0 MC

— RC319'"7HCO
=ENC 73

Design Rationale

[1o

Design Rationale
[1o

Sbox & Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox.

Design Rationale
[1o

Sbox & Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

84 = F4 (e} S o F4_\1
where F4 is a multiplication with

0111
1011
1101
1110

Design Rationale

[1o

Sbox & Redundant Sbox

For each Sbox, we need to implement a Redundant Sbox.
For example, in case of 4-bit redundancy:

84 = F4 (e} s o F4_\1
where F4 is a multiplication with

0111
1011
1101
1110

Problem

There are 46 206 736 involutory 4-bit Sboxes which
implementing and synthesizing all of them is impossible.

Design Rationale
(o] J

@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

Design Rationale
(o] J

@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

@ Implementation cost of each operation is sum of area size
for its coordinate functions.

Design Rationale
(o] J

@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

@ Implementation cost of each operation is sum of area size
for its coordinate functions.

@ For each Sbox, size of 13 Boolean functions are important.

Design Rationale
(o] J

@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

@ Implementation cost of each operation is sum of area size
for its coordinate functions.

@ For each Sbox, size of 13 Boolean functions are important.
@ There are 12 870 four-bit balanced Boolean functions.

Design Rationale
(o] J

@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

@ Implementation cost of each operation is sum of area size
for its coordinate functions.

@ For each Sbox, size of 13 Boolean functions are important.
@ There are 12 870 four-bit balanced Boolean functions.
@ Up to bit permutation-equivalence, there are only 730.

Design Rationale
(o] J

@ Because of Independence Property, each coordinate
function of Sbox must be implemented separately.

@ Implementation cost of each operation is sum of area size
for its coordinate functions.

@ For each Sbox, size of 13 Boolean functions are important.
@ There are 12 870 four-bit balanced Boolean functions.
@ Up to bit permutation-equivalence, there are only 730.

v

Results for Sbox
Among all the smallest found Soxes, we use the Midori’s one.

Design Rationale
o

Tweakey Schedule

Key Schedule
@ Round key updating method needs at least 128 registers.
@ Round key alternating method needs 64 multiplexers.

Design Rationale
o

Tweakey Schedule

Key Schedule

@ Round key updating method needs at least 128 registers.

@ Round key alternating method needs 64 multiplexers.

y

Tweak Schedule

@ Xoring the tweak with key.

Design Rationale
o

Tweakey Schedule

Key Schedule

@ Round key updating method needs at least 128 registers.
@ Round key alternating method needs 64 multiplexers.

Tweak Schedule

@ Xoring the tweak with key.

@ To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.

Design Rationale
o

Tweakey Schedule

Key Schedule

@ Round key updating method needs at least 128 registers.
@ Round key alternating method needs 64 multiplexers.

Tweak Schedule

@ Xoring the tweak with key.

@ To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.

@ Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).

Design Rationale
o

Tweakey Schedule

Key Schedule

@ Round key updating method needs at least 128 registers.
@ Round key alternating method needs 64 multiplexers.

Tweak Schedule

@ Xoring the tweak with key.

@ To prevent Time-Data-Memory Trade-off attacks, tweak
cannot be always the same when round keys are equal.

@ Solution: using 64 multiplexers to choose T or a
nibble-wise permutation of it, Q(T).

@ To provide maximum possible security against TDM-TO
attack, Q must be circular (there are 15! ~ 249).

@ Trying 1000 of them, Q is the one with most active Sboxes
in related-tweak differential attack.

Security Analysis
°

Security

Security Analysis

@ Time-Data-Memory Trade-off
@ (Truncated / Impossible) (ST/RT) Differential
@ (Linear Hulls / Zero-Correlation) Linear

@ Integral
@ Meet in the Middle
@ (Linear Subspace/Nonlinear) Invariant Attacks

Security Analysis
°

Security

Security Analysis

@ Time-Data-Memory Trade-off
@ (Truncated / Impossible) (ST/RT) Differential
@ (Linear Hulls / Zero-Correlation) Linear

@ Integral
@ Meet in the Middle
@ (Linear Subspace/Nonlinear) Invariant Attacks

Security Claim

@ 124 bit security in the related-tweak model
@ No claim in chosen-key, known-key or related-key models

v

Security Analysis
[]

Accelerated Exhaustive Search

Related-key Property:

If A =(x,x,...,x),since Q(A) = A, both (Ky, Ky, T) and
(Ko + A, Ky + A, T+ A) cause the same tweakeys:

TK = TK! (0<i<3)

Security Analysis
[]

Accelerated Exhaustive Search

Related-key Property:

If A =(x,x,...,x),since Q(A) = A, both (Ky, Ky, T) and
(Ko + A, Ky + A, T+ A) cause the same tweakeys:

TK = TK! (0<i<3)

Attack Procedure:

@ Attacker asks for encryption of the same plaintext P under
16 different tweaks of T, T + A4, ..., T + Aqs:

Co, Cy, ..., Cys.

@ By setting one of the key nibbles to zero, for each of 2124
possible key candidate (K, K), he computes C*, the
encryption of P using Kj, K{ and T.

o If C*is equal to Cy, then (Kj + Ay, K{ + Ayx) is a
candidate for the master key.

Hardware Implementations
.

Hardware Implementations

Area (GE) Comparison of Round-based Implementation using IBM 130nm ASIC Library
9000 8553
8000 B Unprotected M 1-bit Red. M 2-bit Red. 3-bit Red. M 4-bit Red.

7119

6804

7000 6657

6000 5636 5656

5014

5000 4494 4518 4540

4000 3698
3640 3420

3000 2857 2801
2342 2206
2000 1738
1193
949
N |]]
0

CRAFT SKINNY 128 CRAFT (+Tweak) SKINNY 192

Hardware Implementations
.

Summary

CRAFT:

@ A lightweight tweakable block cipher with
effiCient pRotection Against DFA aTtacks

@ The smallest block cipher with 128-bit key in the
round-based implementation (950 GE)

@ Lower area overhead to support a 64-bit tweak (245 GE)
@ Lower area overhead to support decryption (140 GE)

Hardware Implementations
.

Summary

CRAFT:

@ A lightweight tweakable block cipher with
effiCient pRotection Against DFA aTtacks

@ The smallest block cipher with 128-bit key in the
round-based implementation (950 GE)

@ Lower area overhead to support a 64-bit tweak (245 GE)
@ Lower area overhead to support decryption (140 GE)

Providing 124-bit security in the related-tweak model

The End

Thank you for your attention.

Looking forward for further analysis by you

TN
)
/

¥

/

{

Time-Data-Memory Trade-off Attack

@ Attacker fixes the tweakeysto TKp =0, TK; = X, TKo = T’
and TKz = X + T'.

@ For plaintext P and all possible X and T’, he computes the
ciphertext C7 x and saves X in the index (7', C) of table 7.

@ For all possible tweaks T, attacker requests for encryption
of P; Cr.

@ For each of T, he gets a candidate for Ky + K; by looking
up to the index (T + Q(T), Cr) of T.

o 264+dim{T+Q(T)} pre-computations, 264+dm{T+Q(T)}
memory, 2%° online computions and 254 data.

@ All online attack: 264+dim{T+Q(7)} computations, 264 data
and memory.

13-Round Impossible Truncated Differentials

Ro MC -
ARCq] p
ATK) H
[
Rs MC -
Ra MC - e P
Ry MC PN [] aec, n s]
peos 58 ATK,
HATK\ H" TRy - =
L] [
o MC o
3 o PN ARCgq sB
R MC o e SB .
o 5B ATK; .
ATKo . TR
contradiction
o MC o
- fod PN ARCy e L]
" i ® P 58 ATK;
il 58 ATKo o
ATK3 o ATKy
Riz MC o B
Rt MC - e p
Rio e aren[| 5B || ATKy [
s ATK3 M
| ATKy [| ATKy - |

15-Round

Meet-in-the-Middle Attacks

MC PN
ARCy SB
ATK -
Rz MC PN
Rs MC PN [T] are: I SB
MC PN ARCq SB ATK3 _
ARC; SB ATKy .
ATK, . — | ‘
1 L]
matching
Rio Me PN
Ry MC PN ARCo SB
Rs MC PN ARCy SB ATKy
ARCy SB ATK; -
ATK, — ‘*
Rus MC PN
Riz MC PN ARCy3 SB
R MC PN ARCy SB ATK;
ARC)y SB ATK —
ATK; — ‘*

13-Round Integral Distinguisher

Ro MC -
AJATATA]Arco [ATATATA] o [ATATATA
A[A[X[A]ATKo [ATA[C[A AlA[A]A
AlA[AlA Alala]a AlafA
AJAJA[A AAJA]A AJAJA[A
Ry uc Ra MC Rs MC
AJAJATA] arC, [A]ATA gg AJATAJA]4Rc [[A ’;g AJATA] |4rcy A ‘;ﬁ A
A[A[A]A]ATK A AlA] [A[ATK2{ATA A ATKs AlA
Aala]T [[alala]” N AT [[ala AlA
AJAJAA AJAJA]A AlA] A AJA] [a A A A
Ry Rs Re
A T e P TR s o vl o
AlA ATKo [A ATK; A ATKz [A
‘7 '7 N NE A
A A
R7 MC Rs MC Ro MC
CJCCARCrC(“AC;gFCC)ARChCACC};g (JCAJARCuAAB(“gg ‘[a]c]c
clcfc]c|i®s [clclcl[c]|__ [Alc|c[c|AT™olaJa[c]c| [cl[c[c[c]AT alc]c[C Alalc]c
clclalc c|c]a]c clclclc clclc]c clalafc clalalc clclafc
c|c]c]c clc]c[c clA]c[c cla]c[c Alc]c[c Alc]c]c Alulcla
Rio MC o Rt MC o Riz MC o
clafcfc]arci[ATUTATA] o [A[ATUTC[ARCU[UTUU[B] o [A]UTAJA]ARC[UTUTUTU] o [U]UJU[U
AlAlc[c]AT: [B]Ulc|A Alc][cc|ATKs [uaAa]A Ulu[c[a]AT& [uulu]u U[AJA]A
clclalc] [clclalc]l [culula]l” [clulula]l” T[a]a]u]a Ala[u[a u[ulu[u
Alu[c]a Alulcla UJA[A]A UJA[A]A ulu[ulu ulululu ulu|ulu

Enc. & Dec. Algorithms

Input :X: plaintext

Ko||K1: cipher key

T: tweak
Output:Y: ciphertext

TKy<+ Ko T
TKi <+ Ki19T
Y+ X
for i + 0 to 31 do
Y < MC(Y)
Yi5 4 Yys® RC;
YFY@TKZ mod 4
if ¢ # 31 then

Y + PN(Y)

Y + SB(Y)
end

end

Input :X: ciphertext
Ko||K1: cipher key
T: tweak

Output: Y: plaintext

TKo«+ MC(Ko®T)
TKl — MC(Kl D T)
TK, + MC(Ko @ Q(T))
TK; + MC(K; @ Q(T))
Y+ X
for i < 31 to 0 do
Y +MC(Y)
Yis5 <+ Ys5® RC;
YFY@TK@' mod 4
if ¢ # 0 then

Y + PN(Y)

Y « 8B(Y)
end

end

Implementation Results

mUnprotected M 1-bit Red. 2-bit Red 3-bitRed. W 4-bit Red

8217

3824
4

— 1733
— 166
——

Round-based Implementation with Fault Detection

INPUT KoK, T
xm >k

xk 0o xm >k

xk ’—‘F xm >k
xm >k

L RC:(a.h)~d

i [OutpPUT

0
PN

Round-based Implementation with Fault Detection

INPUT Ko K, T
xk 71 xm < k

xk 0 xm < k
xk 0 xm<k

Fofy(a, h)§

	Introduction
	Physical Attacks
	Impeccable Circuits
	Motivation

	CRAFT Specification
	Structure
	Round Functions
	Tweakey Schedule

	Design Rationale
	Decryption
	Sbox
	Tweakey Schedule

	Security Analysis
	Security
	AES

	Hardware Implementations
	Hardware Implementations
	Summary

