
Sound Hashing Modes of Arbitrary Functions,
Permutations, and Block Ciphers (SoK)

Joan Daemen1 Bart Mennink1 Gilles Van Assche2

Fast Software Encryption
Paris, March 2019
1Radboud University
2STMicroelectronics

1

Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-
Underlying primitive: block cipher with 256-bit block and 512-bit key

2

Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-
Underlying primitive: block cipher with 256-bit block and 512-bit key

2

Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-

Underlying primitive: block cipher with 256-bit block and 512-bit key

2

Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-
Underlying primitive: block cipher with 256-bit block and 512-bit key

2

Example 2: MD6 [Rivest et al. 2008]

Hash function h from CF F with dedicated tree hash mode:

For “good hygiene” MD6 has:
�1024-bit intermediate (chaining) values;

root output chopped to desired length
�Location (level,index) input to each node

0

1

2

3

level
(2,2)(2,0) (2,1) (2,3)

CF F from permutation P with dedicated construction:Prepend Constant + Map + Chop

N

(N)

C

π

1-1 map π

const key+UV data

15 8+2 64
89 words

89 words

16 words

Prepend Map

Chop

Underlying primitive: 5696-bit permutation

3

Example 2: MD6 [Rivest et al. 2008]

Hash function h from CF F with dedicated tree hash mode:

For “good hygiene” MD6 has:
�1024-bit intermediate (chaining) values;

root output chopped to desired length
�Location (level,index) input to each node

0

1

2

3

level
(2,2)(2,0) (2,1) (2,3)

CF F from permutation P with dedicated construction:Prepend Constant + Map + Chop

N

(N)

C

π

1-1 map π

const key+UV data

15 8+2 64
89 words

89 words

16 words

Prepend Map

Chop

Underlying primitive: 5696-bit permutation

3

Example 2: MD6 [Rivest et al. 2008]

Hash function h from CF F with dedicated tree hash mode:

For “good hygiene” MD6 has:
�1024-bit intermediate (chaining) values;

root output chopped to desired length
�Location (level,index) input to each node

0

1

2

3

level
(2,2)(2,0) (2,1) (2,3)

CF F from permutation P with dedicated construction:Prepend Constant + Map + Chop

N

(N)

C

π

1-1 map π

const key+UV data

15 8+2 64
89 words

89 words

16 words

Prepend Map

Chop

Underlying primitive: 5696-bit permutation

3

Example 2: MD6 [Rivest et al. 2008]

Hash function h from CF F with dedicated tree hash mode:

For “good hygiene” MD6 has:
�1024-bit intermediate (chaining) values;

root output chopped to desired length
�Location (level,index) input to each node

0

1

2

3

level
(2,2)(2,0) (2,1) (2,3)

CF F from permutation P with dedicated construction:Prepend Constant + Map + Chop

N

(N)

C

π

1-1 map π

const key+UV data

15 8+2 64
89 words

89 words

16 words

Prepend Map

Chop

Underlying primitive: 5696-bit permutation 3

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

S0 110* CV CV CV … CV CV n-1 FFFF 01

S1

110

S2

110

S3

110

Sn-2

110

Sn-1

110

XOF from permutation with sponge [KT 2008]:

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Underlying primitive: 1600-bit permutation Keccak-p[12]

4

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

S0 110* CV CV CV … CV CV n-1 FFFF 01

S1

110

S2

110

S3

110

Sn-2

110

Sn-1

110

XOF from permutation with sponge [KT 2008]:

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Underlying primitive: 1600-bit permutation Keccak-p[12]

4

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

S0 110* CV CV CV … CV CV n-1 FFFF 01

S1

110

S2

110

S3

110

Sn-2

110

Sn-1

110

XOF from permutation with sponge [KT 2008]:

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Underlying primitive: 1600-bit permutation Keccak-p[12]

4

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

S0 110* CV CV CV … CV CV n-1 FFFF 01

S1

110

S2

110

S3

110

Sn-2

110

Sn-1

110

XOF from permutation with sponge [KT 2008]:

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Underlying primitive: 1600-bit permutation Keccak-p[12] 4

Basis for security of hash functions

▶ We cannot prove a hash function h is secure

▶ Trust in security based on public scrutiny and cryptanalysis
▶ But we can prove security of idealized version H of the function

• … H is h with underlying primitive replaced by random one
▶ Ideal hash function: random oracle RO
▶ Upper bound on advantage of distinguishing H from RO

• this bound says something about the mode only
• better attacks must exploit specific properties of primitive

▶ In other words, they bound the success probability of generic
attacks

5

Basis for security of hash functions

▶ We cannot prove a hash function h is secure
▶ Trust in security based on public scrutiny and cryptanalysis

▶ But we can prove security of idealized version H of the function
• … H is h with underlying primitive replaced by random one

▶ Ideal hash function: random oracle RO
▶ Upper bound on advantage of distinguishing H from RO

• this bound says something about the mode only
• better attacks must exploit specific properties of primitive

▶ In other words, they bound the success probability of generic
attacks

5

Basis for security of hash functions

▶ We cannot prove a hash function h is secure
▶ Trust in security based on public scrutiny and cryptanalysis
▶ But we can prove security of idealized version H of the function

• … H is h with underlying primitive replaced by random one

▶ Ideal hash function: random oracle RO
▶ Upper bound on advantage of distinguishing H from RO

• this bound says something about the mode only
• better attacks must exploit specific properties of primitive

▶ In other words, they bound the success probability of generic
attacks

5

Basis for security of hash functions

▶ We cannot prove a hash function h is secure
▶ Trust in security based on public scrutiny and cryptanalysis
▶ But we can prove security of idealized version H of the function

• … H is h with underlying primitive replaced by random one
▶ Ideal hash function: random oracle RO
▶ Upper bound on advantage of distinguishing H from RO

• this bound says something about the mode only
• better attacks must exploit specific properties of primitive

▶ In other words, they bound the success probability of generic
attacks

5

Basis for security of hash functions

▶ We cannot prove a hash function h is secure
▶ Trust in security based on public scrutiny and cryptanalysis
▶ But we can prove security of idealized version H of the function

• … H is h with underlying primitive replaced by random one
▶ Ideal hash function: random oracle RO
▶ Upper bound on advantage of distinguishing H from RO

• this bound says something about the mode only
• better attacks must exploit specific properties of primitive

▶ In other words, they bound the success probability of generic
attacks

5

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property
• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property
• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property

• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property
• MAC function h(K|M) not secure against forgery

• fixing requires adding expensive construction: HMAC
▶ Attacks with less complexity than expected

• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property
• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property
• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

What can happen if you don’t have a good bound?

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

▶ Length extension property
• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

6

Hashing, scope of this SoK paper
m
es
sa
ge
of
21
bi
ts

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

template generation
Z← T (|M|,params)

01
10
10
11
01
01
10
10
10
11
0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

template execution H← F(Sfinal)
with S← Y[F](Z,M)

▶ Modes T for any tree topology, including sequential hashing
▶ Three types of underlying function F :

• arbitrary function: XOF, hash, or compression function
• truncated permutation
• (truncated) block cipher

7

Hashing, scope of this SoK paper
m
es
sa
ge
of
21
bi
ts

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

template generation
Z← T (|M|,params)

01
10
10
11
01
01
10
10
10
11
0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

template execution H← F(Sfinal)
with S← Y[F](Z,M)

▶ Modes T for any tree topology, including sequential hashing

▶ Three types of underlying function F :
• arbitrary function: XOF, hash, or compression function
• truncated permutation
• (truncated) block cipher

7

Hashing, scope of this SoK paper
m
es
sa
ge
of
21
bi
ts

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

template generation
Z← T (|M|,params)

01
10
10
11
01
01
10
10
10
11
0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

template execution H← F(Sfinal)
with S← Y[F](Z,M)

▶ Modes T for any tree topology, including sequential hashing
▶ Three types of underlying function F :

• arbitrary function: XOF, hash, or compression function
• truncated permutation
• (truncated) block cipher

7

Hashing, scope of this SoK paper
m
es
sa
ge
of
21
bi
ts

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

template generation
Z← T (|M|,params)

01
10
10
11
01
01
10
10
10
11
0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

template execution H← F(Sfinal)
with S← Y[F](Z,M)

▶ Modes T for any tree topology, including sequential hashing
▶ Three types of underlying function F :

• arbitrary function: XOF, hash, or compression function

• truncated permutation
• (truncated) block cipher

7

Hashing, scope of this SoK paper
m
es
sa
ge
of
21
bi
ts

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

template generation
Z← T (|M|,params)

01
10
10
11
01
01
10
10
10
11
0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

template execution H← F(Sfinal)
with S← Y[F](Z,M)

▶ Modes T for any tree topology, including sequential hashing
▶ Three types of underlying function F :

• arbitrary function: XOF, hash, or compression function
• truncated permutation

• (truncated) block cipher

7

Hashing, scope of this SoK paper
m
es
sa
ge
of
21
bi
ts

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

template generation
Z← T (|M|,params)

01
10
10
11
01
01
10
10
10
11
0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

template execution H← F(Sfinal)
with S← Y[F](Z,M)

▶ Modes T for any tree topology, including sequential hashing
▶ Three types of underlying function F :

• arbitrary function: XOF, hash, or compression function
• truncated permutation
• (truncated) block cipher 7

Conditions for sound hashing

We prove it is hard to distinguish H from RO if T satisfies certain
conditions:

▶ For all cases:
• message-decodability
• subtree-freeness
• radical-decodability

▶ For permutations and block ciphers:
• leaf-anchoring

8

Conditions for sound hashing

We prove it is hard to distinguish H from RO if T satisfies certain
conditions:

▶ For all cases:
• message-decodability
• subtree-freeness
• radical-decodability

▶ For permutations and block ciphers:
• leaf-anchoring

8

Conditions for sound hashing

We prove it is hard to distinguish H from RO if T satisfies certain
conditions:

▶ For all cases:
• message-decodability
• subtree-freeness
• radical-decodability

▶ For permutations and block ciphers:
• leaf-anchoring

8

Trees and the set ST

all possible trees

ST

ST : the set of all possible trees that can be generated by mode T

9

Condition 1: message decodability

01101000

11010100

10101000

11010000

11000110

01011110

00001111 0101 . . .

F

F

F

F

F

F

F =⇒

01
10
10
11
01
01
10
10
10
11
0

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

∀S ∈ ST there exists an algorithm for decoding S to (M, Z)

10

Condition 1: message decodability

01101000

11010100

10101000

11010000

11000110

01011110

00001111 0101 . . .

F

F

F

F

F

F

F =⇒

01
10
10
11
01
01
10
10
10
11
0

M0..5 00

M6..11 00

M12..17 00

M18..20 10∗ 00

10

10

11 h

∀S ∈ ST there exists an algorithm for decoding S to (M, Z)

10

Condition 2: subtree-freeness

final subtree

leaf subtree

just a
subtree

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11

Condition 2: subtree-freeness

final subtree

leaf subtree

just a
subtree

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11

Condition 2: subtree-freeness

final subtree

leaf subtree

just a
subtree

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11

Condition 2: subtree-freeness

final subtree

leaf subtree

just a
subtree

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11

Condition 2: subtree-freeness

ST

Ssub
T

Ssub
T : the set of all trees that are proper subtrees of a tree in ST
Subtree-freeness: ST ∩ Ssub

T = ∅

12

Condition 2: subtree-freeness

ST

Ssub
T

Ssub
T : the set of all trees that are proper subtrees of a tree in ST

Subtree-freeness: ST ∩ Ssub
T = ∅

12

Condition 2: subtree-freeness

STSsub
T

Ssub
T : the set of all trees that are proper subtrees of a tree in ST
Subtree-freeness: ST ∩ Ssub

T = ∅

12

Condition 3: radical-decodability

01101000

11010100

11010000

11000110

01011110

00001111 0101 . . .

F

F

F

F

F

F

Radical: a CV that has no F-pre-image

13

Condition 3: radical-decodability

01101000

11010100

11010000

11000110

01011110

00001111 0101 . . .

F

F

F

F

F

F

Radical: a CV that has no F-pre-image

13

Condition 3: radical-decodability

STSsub
T

S leaf
T

S final
T

Srad
T

Radical-decodability, simplified: for all final subtrees (SfinalT) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set SradT that includes SfinalT

14

Condition 3: radical-decodability

STSsub
T

S leaf
T

S final
T

Srad
T

Radical-decodability, simplified: for all final subtrees (SfinalT) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set SradT that includes SfinalT

14

Condition 3: radical-decodability

STSsub
T

S leaf
T

S final
T

Srad
T

Radical-decodability, simplified: for all final subtrees (SfinalT) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set SradT that includes SfinalT

14

Condition 3: radical-decodability

STSsub
T

S leaf
T

S final
T

Srad
T

Radical-decodability, simplified: for all final subtrees (SfinalT) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set SradT that includes SfinalT

14

Condition 3: radical-decodability

STSsub
T

S leaf
T

S final
T

Srad
T

Radical-decodability, simplified: for all final subtrees (SfinalT) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set SradT that includes SfinalT

14

Adversary model: differentiating from a random oracle

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ Indifferentiability [Maurer et al. 2004]

for hashing [Coron et al. 2005]
▶ For sponge: [KT 2008] adv ≤

(N
2
)
2−c: birthday bound in capacity

▶ This paper: adv ≤
(N
2
)
2−n: birthday bound in CV length

▶ If mode satisfies our conditions

15

Adversary model: differentiating from a random oracle

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]

▶ For sponge: [KT 2008] adv ≤
(N
2
)
2−c: birthday bound in capacity

▶ This paper: adv ≤
(N
2
)
2−n: birthday bound in CV length

▶ If mode satisfies our conditions

15

Adversary model: differentiating from a random oracle

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]
▶ For sponge: [KT 2008] adv ≤

(N
2
)
2−c: birthday bound in capacity

▶ This paper: adv ≤
(N
2
)
2−n: birthday bound in CV length

▶ If mode satisfies our conditions

15

Adversary model: differentiating from a random oracle

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]
▶ For sponge: [KT 2008] adv ≤

(N
2
)
2−c: birthday bound in capacity

▶ This paper: adv ≤
(N
2
)
2−n: birthday bound in CV length

▶ If mode satisfies our conditions

15

Adversary model: differentiating from a random oracle

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]
▶ For sponge: [KT 2008] adv ≤

(N
2
)
2−c: birthday bound in capacity

▶ This paper: adv ≤
(N
2
)
2−n: birthday bound in CV length

▶ If mode satisfies our conditions

15

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries

▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help

16

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries
▶ Without additional condition this is easy to distinguish

▶ Leaf anchoring
• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help

16

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries
▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved

• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help

16

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries
▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help

16

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries
▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input

▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help

16

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries
▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest

▶ Adding a feedforward à la Davies-Meyer does not help

16

Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries
▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help

16

Minimum solutions for sequential hashing

With a compression function:

00 10 10 10∗ 11 h

With a truncated permutation or block cipher:

IV 0 0 0 1 10∗ h

17

Minimum solutions for sequential hashing

With a compression function:

00 10 10 10∗ 11 h

With a truncated permutation or block cipher:

IV 0 0 0 1 10∗ h

17

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF

gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF

• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge

• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations

• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal

• MD6: n-bit IV in leaves and 1 framebit would have sufficed
▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)

• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless

• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless

• CV can be shorter than block length of cipher

18

Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher

18

Thanks for your attention!

19

Intuition: why this works

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ (RO,S) must act mode-consistent and it can:
• Subtree-freeness→ A can’t learn CVs from (M, Z) queries
• Radical-decodability→ S can reconstruct any full tree S
queried

• Message-decodability→ S can reconstruct M and Z from S
• S then just queries RO with (M, Z) and forwards response
to A

▶ Things break down when CVs collide

20

Intuition: why this works

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ (RO,S) must act mode-consistent and it can:
• Subtree-freeness→ A can’t learn CVs from (M, Z) queries
• Radical-decodability→ S can reconstruct any full tree S
queried

• Message-decodability→ S can reconstruct M and Z from S
• S then just queries RO with (M, Z) and forwards response
to A

▶ Things break down when CVs collide

20

An example that is not radical-decodable

•

•

•

•

•

•

•

•

•

•

21

