

Sound Hashing Modes of Arbitrary Functions, Permutations, and Block Ciphers (SoK)

Joan Daemen¹ Bart Mennink¹ Gilles Van Assche² Fast Software Encryption Paris, March 2019

¹Radboud University ²STMicroelectronics

Hash function *h* from compression function *F* with **Merkle-Damgård**:

Hash function *h* from compression function *F* with **Merkle-Damgård**:

Compression function *F* from block cipher *B* with **Davies-Meyer**:

Hash function *h* from compression function *F* with **Merkle-Damgård**:

Compression function *F* from block cipher *B* with **Davies-Meyer**:

Underlying primitive: block cipher with 256-bit block and 512-bit key

Example 2: MD6 [Rivest et al. 2008]

Hash function *h* from CF *F* with dedicated tree hash mode:

Example 2: MD6 [Rivest et al. 2008]

Hash function *h* from CF *F* with dedicated tree hash mode:

CF F from permutation P with dedicated construction:

Example 2: MD6 [Rivest et al. 2008]

Hash function *h* from CF *F* with dedicated tree hash mode:

CF F from permutation P with dedicated construction:

Underlying primitive: 5696-bit permutation

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

XOF from permutation with **sponge** [KT 2008]:

Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

XOF from permutation with **sponge** [KT 2008]:

Underlying primitive: 1600-bit permutation KECCAK-p[12]

▶ We cannot prove a hash function *h* is secure

- ▶ We cannot prove a hash function *h* is secure
- ▶ Trust in security based on public scrutiny and cryptanalysis

Basis for security of hash functions

- ▶ We cannot prove a hash function *h* is secure
- ▶ Trust in security based on public scrutiny and cryptanalysis
- \blacktriangleright But we can prove security of idealized version $\mathcal H$ of the function
 - $\bullet \ ... \ \mathcal{H}$ is h with underlying primitive replaced by random one

Basis for security of hash functions

- ▶ We cannot prove a hash function *h* is secure
- ▶ Trust in security based on public scrutiny and cryptanalysis
- \blacktriangleright But we can prove security of idealized version ${\cal H}$ of the function
 - $\bullet \ ... \ \mathcal{H}$ is h with underlying primitive replaced by random one
- ▶ Ideal hash function: random oracle \mathcal{RO}
- \blacktriangleright Upper bound on advantage of distinguishing ${\cal H}$ from ${\cal RO}$
 - this bound says something about the mode only
 - better attacks must exploit specific properties of primitive

Basis for security of hash functions

- ▶ We cannot prove a hash function *h* is secure
- ▶ Trust in security based on public scrutiny and cryptanalysis
- \blacktriangleright But we can prove security of idealized version ${\cal H}$ of the function
 - $\bullet \ ... \ \mathcal{H}$ is h with underlying primitive replaced by random one
- ▶ Ideal hash function: random oracle \mathcal{RO}
- \blacktriangleright Upper bound on advantage of distinguishing ${\cal H}$ from ${\cal RO}$
 - this bound says something about the mode only
 - better attacks must exploit specific properties of primitive
- In other words, they bound the success probability of generic attacks

► Length extension property

- ► Length extension property
 - MAC function *h(K|M)* not secure against forgery

- Length extension property
 - MAC function *h(K|M)* not secure against forgery
 - fixing requires adding expensive construction: HMAC

Length extension property

- MAC function *h(K|M)* not secure against forgery
- fixing requires adding expensive construction: HMAC
- ▶ Attacks with less complexity than expected
 - 2nd pre-image for long messages
 - multi-collisions
 - herding attack, ...

Length extension property

- MAC function *h(K|M)* not secure against forgery
- fixing requires adding expensive construction: HMAC
- ▶ Attacks with less complexity than expected
 - 2nd pre-image for long messages
 - multi-collisions
 - herding attack, ...

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2

template generation $Z \leftarrow \mathcal{T}(|M|, \text{params})$

template generation $Z \leftarrow \mathcal{T}(|M|, \text{params})$

template execution $H \leftarrow \mathcal{F}(S_{\text{final}})$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

 \blacktriangleright Modes ${\mathcal T}$ for any tree topology, including sequential hashing

template generation $Z \leftarrow \mathcal{T}(|M|, \text{params})$

- \blacktriangleright Modes $\mathcal T$ for any tree topology, including sequential hashing
- ► Three types of underlying function *F*:

template generation $Z \leftarrow \mathcal{T}(|M|, \text{params})$

- \blacktriangleright Modes $\mathcal T$ for any tree topology, including sequential hashing
- ▶ Three types of underlying function *F*:
 - arbitrary function: XOF, hash, or compression function

template generation $Z \leftarrow \mathcal{T}(|M|, \text{params})$

- \blacktriangleright Modes $\mathcal T$ for any tree topology, including sequential hashing
- ► Three types of underlying function *F*:
 - arbitrary function: XOF, hash, or compression function
 - truncated permutation

template generation $Z \leftarrow \mathcal{T}(|M|, \text{params})$

- \blacktriangleright Modes ${\mathcal T}$ for any tree topology, including sequential hashing
- Three types of underlying function \mathcal{F} :
 - arbitrary function: XOF, hash, or compression function
 - truncated permutation
 - (truncated) block cipher

Conditions for sound hashing

We prove it is hard to distinguish ${\cal H}$ from ${\cal RO}$ if ${\cal T}$ satisfies certain conditions:

We prove it is hard to distinguish ${\cal H}$ from ${\cal RO}$ if ${\cal T}$ satisfies certain conditions:

- ▶ For all cases:
 - message-decodability
 - subtree-freeness
 - radical-decodability
- ▶ For permutations and block ciphers:
 - leaf-anchoring

Trees and the set $\mathcal{S}_\mathcal{T}$

 $\mathcal{S}_{\mathcal{T}}$: the set of all possible trees that can be generated by mode \mathcal{T}

Condition 1: message decodability

Condition 1: message decodability

 $\forall S \in S_T$ there exists an algorithm for decoding S to (M, Z)

 $\mathcal{S}_{\mathcal{T}}^{\mathrm{sub}}$: the set of all trees that are proper subtrees of a tree in $\mathcal{S}_{\mathcal{T}}$

 $S_{\mathcal{T}}^{sub}$: the set of all trees that are proper subtrees of a tree in $S_{\mathcal{T}}$ Subtree-freeness: $S_{\mathcal{T}} \cap S_{\mathcal{T}}^{sub} = \emptyset$

Radical: a CV that has no \mathcal{F} -pre-image

Radical-decodability, simplified: for all final subtrees (S_T^{final}) one can **unambiguously identify** a *radical*

Radical-decodability, simplified: for all final subtrees (S_T^{final}) one can **unambiguously identify** a *radical*

Radical-decodability, actually: this is true for all subtrees in some set $\mathcal{S}_{\mathcal{T}}^{rad}$ that includes $\mathcal{S}_{\mathcal{T}}^{final}$

▶ Indifferentiability [Maurer et al. 2004]

▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]

- ▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]
- For sponge: [KT 2008] $adv \leq {\binom{N}{2}}2^{-c}$: birthday bound in capacity

- ▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]
- For sponge: [KT 2008] $adv \leq {\binom{N}{2}}2^{-c}$: birthday bound in capacity
- ▶ This paper: $adv \leq {\binom{N}{2}}2^{-n}$: birthday bound in CV length

- ▶ Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]
- For sponge: [KT 2008] $adv \leq {\binom{N}{2}}2^{-c}$: birthday bound in capacity
- ▶ This paper: $adv \leq {\binom{N}{2}}2^{-n}$: birthday bound in CV length
- ▶ If mode satisfies our conditions

▶ Problem with truncated permutation: inverse queries

- ▶ Problem with truncated permutation: inverse queries
- ▶ Without additional condition this is easy to distinguish

- ▶ Problem with truncated permutation: inverse queries
- ▶ Without additional condition this is easy to distinguish
- ▶ Leaf anchoring
 - *n* first bits of permutation input are *reserved*

- ▶ Problem with truncated permutation: inverse queries
- ▶ Without additional condition this is easy to distinguish
- ▶ Leaf anchoring
 - *n* first bits of permutation input are *reserved*
 - constant IV in leaf nodes
 - CV in non-leaf nodes

- ▶ Problem with truncated permutation: inverse queries
- ▶ Without additional condition this is easy to distinguish
- ▶ Leaf anchoring
 - *n* first bits of permutation input are *reserved*
 - constant IV in leaf nodes
 - CV in non-leaf nodes
- ▶ For block ciphers: anchoring must be in *data* input

- ▶ Problem with truncated permutation: inverse queries
- ▶ Without additional condition this is easy to distinguish
- ▶ Leaf anchoring
 - *n* first bits of permutation input are *reserved*
 - constant IV in leaf nodes
 - CV in non-leaf nodes
- ▶ For block ciphers: anchoring must be in *data* input
- Other countermeasures could be taken but this is the simplest

- ▶ Problem with truncated permutation: inverse queries
- ▶ Without additional condition this is easy to distinguish
- ▶ Leaf anchoring
 - *n* first bits of permutation input are *reserved*
 - constant IV in leaf nodes
 - CV in non-leaf nodes
- ▶ For block ciphers: anchoring must be in *data* input
- Other countermeasures could be taken but this is the simplest
- ▶ Adding a feedforward à la Davies-Meyer does **not** help

Minimum solutions for sequential hashing

With a compression function:

Minimum solutions for sequential hashing

With a compression function:

With a truncated permutation or block cipher:

▶ Tree hashing mode on top of a secure XOF

▶ Tree hashing mode on top of a secure XOF gives a secure XOF

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
 - Sponge is not covered: different type of animal

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
 - Sponge is not covered: different type of animal
 - MD6: *n*-bit IV in leaves and 1 framebit would have sufficed
Interesting implications of this work

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
 - Sponge is not covered: different type of animal
 - MD6: *n*-bit IV in leaves and 1 framebit would have sufficed
- ▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
 - Davies-Meyer feedforward is useless

Interesting implications of this work

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
 - Sponge is not covered: different type of animal
 - MD6: *n*-bit IV in leaves and 1 framebit would have sufficed
- ▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
 - Davies-Meyer feedforward is useless
 - Merkle-Damgård strengthening is useless

Interesting implications of this work

- ▶ Tree hashing mode on top of a secure XOF gives a secure XOF
 - e.g., KangarooTwelve on top of sponge
 - Sakura encoding [KT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
 - Sponge is not covered: different type of animal
 - MD6: *n*-bit IV in leaves and 1 framebit would have sufficed
- ▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
 - Davies-Meyer feedforward is useless
 - Merkle-Damgård strengthening is useless
 - CV can be shorter than block length of cipher

Thanks for your attention!

Intuition: why this works

 \triangleright ($\mathcal{RO}, \mathcal{S}$) must act mode-consistent and it can:

- Subtree-freeness $\rightarrow A$ can't learn CVs from (M, Z) queries
- Radical-decodability $\rightarrow \mathcal{S}$ can reconstruct any full tree S queried
- Message-decodability $\rightarrow S$ can reconstruct M and Z from S
- S then just queries RO with (M, Z) and forwards response to A

Intuition: why this works

 \triangleright ($\mathcal{RO}, \mathcal{S}$) must act mode-consistent and it can:

- Subtree-freeness $\rightarrow A$ can't learn CVs from (M, Z) queries
- Radical-decodability $\rightarrow \mathcal{S}$ can reconstruct any full tree S queried
- Message-decodability $\rightarrow S$ can reconstruct M and Z from S
- S then just queries RO with (M, Z) and forwards response to A
- ▶ Things break down when CVs collide

An example that is not radical-decodable

