Radboud University ¢

Sound Hashing Modes of Arbitrary Functions,
Permutations, and Block Ciphers (SoK)

Joan Daemen' Bart Mennink'  Gilles Van Assche?
Fast Software Encryption
Paris, March 2019

"Radboud University
2STMicroelectronics



Hash function example 1: SHA-256




Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgard:

LM ] [ M ] [ My | [My]pad]

mFﬁF#ﬁ&w




Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgard:

LM ] [ M ] [ My | [My]pad]

mFﬁF#ﬁ&w

Compression function F from block cipher B with Davies-Meyer:

L

mess. expans.

CV; data path jl CVigq




Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgard:

LM ] [ M ] [ My | [My]pad]

mFﬁF#ﬁ&w

Compression function F from block cipher B with Davies-Meyer:

L

mess. expans.

CV; data path jl CVigq

Underlying primitive: block cipher with 256-bit block and 512-bit key
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Example 2: MD6 [Rrivest et al. 2008]

Hash function h from CF F with dedicated tree hash mode:

o Location (level,index) input to each node

TR0 @1 2.2) (2.3)

3

CF F from permutation P with dedicated construction:

const  key+UV data

15 8+2 64
[T T 89 words

Underlying primitive: 5696-bit permutation
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Example 3: KangarooTwelve [keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

OO® @O

XOF from permutation with sponge [KT 2008]:

absorbing | squeezing

Underlying primitive: 1600-bit permutation KECCAK-p[12] 4
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Basis for security of hash functions

» We cannot prove a hash function h is secure

» Trust in security based on public scrutiny and cryptanalysis

» But we can prove security of idealized version H of the function
e .. H is h with underlying primitive replaced by random one

» Ideal hash function: random oracle RO

» Upper bound on advantage of distinguishing # from RO

e this bound says something about the mode only
e better attacks must exploit specific properties of primitive

» In other words, they bound the success probability of generic
attacks
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» Length extension property

e MAC function h(K|M) not secure against forgery

e fixing requires adding expensive construction: HMAC
» Attacks with less complexity than expected

e 2nd pre-image for long messages
e multi-collisions
e herding attack, ...

» Affect all old-style hash standards: MD5, SHA-1 and all SHA-2
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template generation template execution H < F(Ssa)
Z < T(|M|, params) with S « Y[F](Z, M)

» Modes T for any tree topology, including sequential hashing
» Three types of underlying function F:

e arbitrary function: XOF, hash, or compression function

e truncated permutation

e (truncated) block cipher
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Conditions for sound hashing

We prove it is hard to distinguish H from RO if T satisfies certain
conditions:

» For all cases:
e message-decodability
e subtree-freeness
e radical-decodability
» For permutations and block ciphers:
e leaf-anchoring



Trees and the set St

all possible trees

S7: the set of all possible trees that can be generated by mode T



Condition 1: message decodability
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Condition 1: message decodability
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Condition 2: subtree-freeness

Ssub: the set of all trees that are proper subtrees of a tree in Sy

Subtree-freeness: S7 NS> = ()
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Condition 3: radical-decodability

11010000 il
Tf

00001111 L: 0101...
11000110
[rooomo | =
01101000 J
]f

Radical: a CV that has no F-pre-image
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Condition 3: radical-decodability

Radical-decodability, simplified: for all final subtrees (SﬁT”a‘) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set 8724 that includes Sfna!
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Adversary model: differentiating from a random oracle

—| R RO |—
M/MZ/
D

» Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]

» For sponge: [KT2008] adv < (’;’)2*6: birthday bound in capacity
» This paper: adv < ()2~ birthday bound in CV length
» If mode satisfies our conditions

15
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Condition 4: leaf-anchoring

» Problem with truncated permutation: inverse queries
» Without additional condition this is easy to distinguish
» Leaf anchoring

e n first bits of permutation input are reserved
e constant IV in leaf nodes
e CVin non-leaf nodes

» For block ciphers: anchoring must be in data input
» Other countermeasures could be taken but this is the simplest
» Adding a feedforward a la Davies-Meyer does not help

16
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Minimum solutions for sequential hashing

With a compression function:

e mm

With a truncated permutation or block cipher:

- - -
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Interesting implications of this work

» Tree hashing mode on top of a secure XOF gives a secure XOF
e e.g, KangarooTwelve on top of sponge
e Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability
» Hashing based on permutations
e Sponge is not covered: different type of animal
e MD6: n-bit IV in leaves and 1 framebit would have sufficed
» Hashing based on block ciphers (e.g, MD5, SHA-1 and SHA-2)
e Davies-Meyer feedforward is useless

e Merkle-Damgard strengthening is useless
e CV can be shorter than block length of cipher
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Intuition: why this works
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e Message-decodability — S can reconstruct M and Z from S
e S then just queries RO with (M, Z) and forwards response

to A
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» (RO,S) must act mode-consistent and it can:

e Subtree-freeness — A can't learn CVs from (M, Z) queries
e Radical-decodability —+ S can reconstruct any full tree S
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Intuition: why this works

y

X

Mz

S

queried

e Message-decodability — S can reconstruct M and Z from S
e S then just queries RO with (M, Z) and forwards response

to A

» Things break down when CVs collide

—| R RO |——
NV
D
» (RO,S) must act mode-consistent and it can:

e Subtree-freeness — A can't learn CVs from (M, Z) queries
e Radical-decodability —+ S can reconstruct any full tree S
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An example that is not radical-decodable
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