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Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-
Underlying primitive: block cipher with 256-bit block and 512-bit key

2



Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-
Underlying primitive: block cipher with 256-bit block and 512-bit key

2



Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-

Underlying primitive: block cipher with 256-bit block and 512-bit key

2



Hash function example 1: SHA-256

Hash function h from compression function F with Merkle-Damgård:

IV

M1

-

-

HHHH
F

M2

-

CV-

HHHH
F

M3

-

CV-

HHHH
F

M4 pad

-

CV-

HHHH
F - digest

Compression function F from block cipher B with Davies-Meyer:

CVi -

Mi

-

HHHHHHHH
mess. expans.

data path - CVi+1
6

⊕-
Underlying primitive: block cipher with 256-bit block and 512-bit key

2



Example 2: MD6 [Rivest et al. 2008]

Hash function h from CF F with dedicated tree hash mode:

For “good hygiene” MD6 has:
�1024-bit intermediate (chaining) values; 

root output chopped to desired length 
�Location (level,index) input to each node

0
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level
(2,2)(2,0) (2,1) (2,3)

CF F from permutation P with dedicated construction:Prepend Constant + Map + Chop

N
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1-1 map π

const key+UV data

15 8+2 64
89 words

89 words

16 words

Prepend Map

Chop

Underlying primitive: 5696-bit permutation
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Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [KT 2014] tree hash mode:

S0 110* CV CV CV … CV CV n-1 FFFF 01
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XOF from permutation with sponge [KT 2008]:

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Underlying primitive: 1600-bit permutation Keccak-p[12]
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Basis for security of hash functions

▶ We cannot prove a hash function h is secure

▶ Trust in security based on public scrutiny and cryptanalysis
▶ But we can prove security of idealized version H of the function

• … H is h with underlying primitive replaced by random one
▶ Ideal hash function: random oracle RO
▶ Upper bound on advantage of distinguishing H from RO

• this bound says something about the mode only
• better attacks must exploit specific properties of primitive

▶ In other words, they bound the success probability of generic
attacks

5
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What can happen if you don’t have a good bound?
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▶ Length extension property
• MAC function h(K|M) not secure against forgery
• fixing requires adding expensive construction: HMAC

▶ Attacks with less complexity than expected
• 2nd pre-image for long messages
• multi-collisions
• herding attack, …

▶ Affect all old-style hash standards: MD5, SHA-1 and all SHA-2
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Hashing, scope of this SoK paper
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▶ Modes T for any tree topology, including sequential hashing
▶ Three types of underlying function F :

• arbitrary function: XOF, hash, or compression function
• truncated permutation
• (truncated) block cipher
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Conditions for sound hashing

We prove it is hard to distinguish H from RO if T satisfies certain
conditions:

▶ For all cases:
• message-decodability
• subtree-freeness
• radical-decodability

▶ For permutations and block ciphers:
• leaf-anchoring
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Trees and the set ST

all possible trees

ST

ST : the set of all possible trees that can be generated by mode T
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Condition 1: message decodability
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∀S ∈ ST there exists an algorithm for decoding S to (M, Z)
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Condition 2: subtree-freeness
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Condition 2: subtree-freeness
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Ssub
T : the set of all trees that are proper subtrees of a tree in ST
Subtree-freeness: ST ∩ Ssub

T = ∅
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Condition 3: radical-decodability
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Condition 3: radical-decodability

STSsub
T

S leaf
T

S final
T

Srad
T

Radical-decodability, simplified: for all final subtrees (SfinalT ) one can
unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some
set SradT that includes SfinalT
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Adversary model: differentiating from a random oracle

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ Indifferentiability [Maurer et al. 2004]

for hashing [Coron et al. 2005]
▶ For sponge: [KT 2008] adv ≤

(N
2
)
2−c: birthday bound in capacity

▶ This paper: adv ≤
(N
2
)
2−n: birthday bound in CV length

▶ If mode satisfies our conditions
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Condition 4: leaf-anchoring

▶ Problem with truncated permutation: inverse queries

▶ Without additional condition this is easy to distinguish
▶ Leaf anchoring

• n first bits of permutation input are reserved
• constant IV in leaf nodes
• CV in non-leaf nodes

▶ For block ciphers: anchoring must be in data input
▶ Other countermeasures could be taken but this is the simplest
▶ Adding a feedforward à la Davies-Meyer does not help
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Minimum solutions for sequential hashing

With a compression function:

00 10 10 10∗ 11 h

With a truncated permutation or block cipher:

IV 0 0 0 1 10∗ h
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Interesting implications of this work

▶ Tree hashing mode on top of a secure XOF

gives a secure XOF
• e.g., KangarooTwelve on top of sponge
• Sakura encoding [KT 2014] ensures subtree-freeness and
radical decodability

▶ Hashing based on permutations
• Sponge is not covered: different type of animal
• MD6: n-bit IV in leaves and 1 framebit would have sufficed

▶ Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
• Davies-Meyer feedforward is useless
• Merkle-Damgård strengthening is useless
• CV can be shorter than block length of cipher
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Thanks for your attention!
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Intuition: why this works

Y R SRO

D

M,Z x M,Z x

x M,Z

▶ (RO,S) must act mode-consistent and it can:
• Subtree-freeness→ A can’t learn CVs from (M, Z) queries
• Radical-decodability→ S can reconstruct any full tree S
queried

• Message-decodability→ S can reconstruct M and Z from S
• S then just queries RO with (M, Z) and forwards response
to A

▶ Things break down when CVs collide
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An example that is not radical-decodable

•

•

•

•

•

•

•

•

•

•
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