## Radboud University

## Sound Hashing Modes of Arbitrary Functions, Permutations, and Block Ciphers (SoK)

Joan Daemen ${ }^{1}$ Bart Mennink ${ }^{1}$ Gilles Van Assche ${ }^{2}$<br>Fast Software Encryption<br>Paris, March 2019<br>${ }^{1}$ Radboud University<br>${ }^{2}$ STMicroelectronics

## Hash function example 1: SHA-256

## Hash function example 1: SHA-256

Hash function $h$ from compression function $F$ with Merkle-Damgård:


## Hash function example 1: SHA-256

Hash function $h$ from compression function $F$ with Merkle-Damgård:


Compression function F from block cipher B with Davies-Meyer:


## Hash function example 1: SHA-256

Hash function $h$ from compression function $F$ with Merkle-Damgård:


Compression function F from block cipher B with Davies-Meyer:


Underlying primitive: block cipher with 256-bit block and 512-bit key

## Example 2: MD6 [Rivest et al. 2008]

## Example 2: MD6 [Rivest et al. 2008]

Hash function $h$ from CF F with dedicated tree hash mode:
-Location (level,index) input to each node


## Example 2: MD6 [Rivest et al. 2008]

Hash function $h$ from CF F with dedicated tree hash mode:

- Location (level,index) input to each node


CF F from permutation $P$ with dedicated construction:


## Example 2: MD6 [Rivest et al. 2008]

Hash function $h$ from CF F with dedicated tree hash mode:

- Location (level,index) input to each node


CF F from permutation $P$ with dedicated construction:


Underlying primitive: 5696-bit permutation

## Example 3: KangarooTwelve [keccak Team 2016]

## Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [kT 2014] tree hash mode:


## Example 3: KangarooTwelve [Keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [kT 2014] tree hash mode:


XOF from permutation with sponge [kT 2008]:


## Example 3: KangarooTwelve [keccak Team 2016]

Parallel XOF from XOF with Sakura-encoded [kT 2014] tree hash mode:


XOF from permutation with sponge [kT 2008]:


Underlying primitive: 1600-bit permutation КЕССАК-p[12]

## Basis for security of hash functions

- We cannot prove a hash function $h$ is secure


## Basis for security of hash functions

- We cannot prove a hash function $h$ is secure
- Trust in security based on public scrutiny and cryptanalysis
- We cannot prove a hash function $h$ is secure
- Trust in security based on public scrutiny and cryptanalysis
- But we can prove security of idealized version $\mathcal{H}$ of the function
- ... $\mathcal{H}$ is $h$ with underlying primitive replaced by random one


## Basis for security of hash functions

- We cannot prove a hash function $h$ is secure
- Trust in security based on public scrutiny and cryptanalysis
- But we can prove security of idealized version $\mathcal{H}$ of the function
- ... $\mathcal{H}$ is $h$ with underlying primitive replaced by random one
- Ideal hash function: random oracle $\mathcal{R O}$
- Upper bound on advantage of distinguishing $\mathcal{H}$ from $\mathcal{R O}$
- this bound says something about the mode only
- better attacks must exploit specific properties of primitive


## Basis for security of hash functions

- We cannot prove a hash function $h$ is secure
- Trust in security based on public scrutiny and cryptanalysis
- But we can prove security of idealized version $\mathcal{H}$ of the function
- ... $\mathcal{H}$ is $h$ with underlying primitive replaced by random one
- Ideal hash function: random oracle $\mathcal{R O}$
- Upper bound on advantage of distinguishing $\mathcal{H}$ from $\mathcal{R O}$
- this bound says something about the mode only
- better attacks must exploit specific properties of primitive
- In other words, they bound the success probability of generic attacks

What can happen if you don't have a good bound?

## What can happen if you don't have a good bound?



## What can happen if you don't have a good bound?



- Length extension property


## What can happen if you don't have a good bound?



- Length extension property
- MAC function $h(K \mid M)$ not secure against forgery


## What can happen if you don't have a good bound?



- Length extension property
- MAC function $h(K \mid M)$ not secure against forgery
- fixing requires adding expensive construction: HMAC


## What can happen if you don't have a good bound?



- Length extension property
- MAC function $h(K \mid M)$ not secure against forgery
- fixing requires adding expensive construction: HMAC
- Attacks with less complexity than expected
- 2nd pre-image for long messages
- multi-collisions
- herding attack, ...


## What can happen if you don't have a good bound?



- Length extension property
- MAC function $h(K \mid M)$ not secure against forgery
- fixing requires adding expensive construction: HMAC
- Attacks with less complexity than expected
- 2nd pre-image for long messages
- multi-collisions
- herding attack, ...
- Affect all old-style hash standards: MD5, SHA-1 and all SHA-2


## Hashing, scope of this SoK paper


template generation
$Z \leftarrow \mathcal{T}(|M|$, params)

template execution $H \leftarrow \mathcal{F}\left(S_{\text {final }}\right)$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

## Hashing, scope of this SoK paper


template generation
$Z \leftarrow \mathcal{T}(|M|$, params)

template execution $H \leftarrow \mathcal{F}\left(S_{\text {final }}\right)$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

- Modes $\mathcal{T}$ for any tree topology, including sequential hashing


## Hashing, scope of this SoK paper


template generation
$Z \leftarrow \mathcal{T}(|M|$, params)

template execution $H \leftarrow \mathcal{F}\left(S_{\text {final }}\right)$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

- Modes $\mathcal{T}$ for any tree topology, including sequential hashing
- Three types of underlying function $\mathcal{F}$ :


## Hashing, scope of this SoK paper


template generation
$Z \leftarrow \mathcal{T}(|M|$, params)

template execution $H \leftarrow \mathcal{F}\left(S_{\text {final }}\right)$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

- Modes $\mathcal{T}$ for any tree topology, including sequential hashing
- Three types of underlying function $\mathcal{F}$ :
- arbitrary function: XOF, hash, or compression function


## Hashing, scope of this SoK paper


template generation
$Z \leftarrow \mathcal{T}(|M|$, params)

template execution $H \leftarrow \mathcal{F}\left(S_{\text {final }}\right)$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

- Modes $\mathcal{T}$ for any tree topology, including sequential hashing
- Three types of underlying function $\mathcal{F}$ :
- arbitrary function: XOF, hash, or compression function
- truncated permutation


## Hashing, scope of this SoK paper


template generation
$Z \leftarrow \mathcal{T}(|M|$, params)

template execution $H \leftarrow \mathcal{F}\left(S_{\text {final }}\right)$ with $S \leftarrow \mathcal{Y}[\mathcal{F}](Z, M)$

- Modes $\mathcal{T}$ for any tree topology, including sequential hashing
- Three types of underlying function $\mathcal{F}$ :
- arbitrary function: XOF, hash, or compression function
- truncated permutation
- (truncated) block cipher


## Conditions for sound hashing

We prove it is hard to distinguish $\mathcal{H}$ from $\mathcal{R O}$ if $\mathcal{T}$ satisfies certain conditions:

## Conditions for sound hashing

We prove it is hard to distinguish $\mathcal{H}$ from $\mathcal{R O}$ if $\mathcal{T}$ satisfies certain conditions:

- For all cases:
- message-decodability
- subtree-freeness
- radical-decodability
- For permutations and block ciphers:
- leaf-anchoring


## Trees and the set $\mathcal{S}_{\mathcal{T}}$


$\mathcal{S}_{\mathcal{T}}$ : the set of all possible trees that can be generated by mode $\mathcal{T}$

## Condition 1: message decodability



## Condition 1: message decodability


$\forall S \in \mathcal{S}_{\mathcal{T}}$ there exists an algorithm for decoding $S$ to ( $M, Z$ )



## Condition 2: subtree-freeness



## Condition 2: subtree-freeness



Condition 2: subtree-freeness


$\mathcal{S}_{\mathcal{T}}^{\text {sub }}$ : the set of all trees that are proper subtrees of a tree in $\mathcal{S}_{\mathcal{T}}$

## Condition 2: subtree-freeness


$\mathcal{S}_{\mathcal{T}}^{\text {sub: }}$ : the set of all trees that are proper subtrees of a tree in $\mathcal{S}_{\mathcal{T}}$ Subtree-freeness: $\mathcal{S}_{\mathcal{T}} \cap \mathcal{S}_{\mathcal{T}}^{\text {sub }}=\emptyset$

## Condition 3: radical-decodability



## Condition 3: radical-decodability



Radical: a CV that has no $\mathcal{F}$-pre-image

## Condition 3: radical-decodability



## Condition 3: radical-decodability



Condition 3: radical-decodability


## Condition 3: radical-decodability



Radical-decodability, simplified: for all final subtrees $\left(\mathcal{S}_{\mathcal{T}}^{\text {inal }}\right.$ ) one can unambiguously identify a radical


Radical-decodability, simplified: for all final subtrees $\left(\mathcal{S}_{\mathcal{T}}^{\text {final }}\right.$ ) one can unambiguously identify a radical

Radical-decodability, actually: this is true for all subtrees in some set $\mathcal{S}_{\mathcal{T}}^{\text {rad }}$ that includes $\mathcal{S}_{\mathcal{T}}^{\text {inal }}$

## Adversary model: differentiating from a random oracle



- Indifferentiability [Maurer et al. 2004]


## Adversary model: differentiating from a random oracle



- Indifferentiability [Maurer et al. 2004] for hashing [Coron et al. 2005]


## Adversary model: differentiating from a random oracle



- Indifferentiability [Maurer et al. 2004] for hashing [coron et al. 2005]
- For sponge: [kT 2008] adv $\leq\binom{ N}{2} 2^{-c}$ : birthday bound in capacity


## Adversary model: differentiating from a random oracle



- Indifferentiability [Maurer et al. 2004] for hashing [coron et al. 2005]
- For sponge: [kT 2008] adv $\leq\binom{ N}{2} 2^{-c}$ : birthday bound in capacity
- This paper: $\operatorname{adv} \leq\binom{ N}{2} 2^{-n}$ : birthday bound in CV length


## Adversary model: differentiating from a random oracle



- Indifferentiability [Maurer et al. 2004] for hashing [coron et al. 2005]
- For sponge: [kT 2008] adv $\leq\binom{ N}{2} 2^{-c}$ : birthday bound in capacity
- This paper: $\operatorname{adv} \leq\binom{ N}{2} 2^{-n}$ : birthday bound in CV length
- If mode satisfies our conditions


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries
- Without additional condition this is easy to distinguish


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries
- Without additional condition this is easy to distinguish
- Leaf anchoring
- $n$ first bits of permutation input are reserved


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries
- Without additional condition this is easy to distinguish
- Leaf anchoring
- $n$ first bits of permutation input are reserved
- constant IV in leaf nodes
- CV in non-leaf nodes


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries
- Without additional condition this is easy to distinguish
- Leaf anchoring
- $n$ first bits of permutation input are reserved
- constant IV in leaf nodes
- CV in non-leaf nodes
- For block ciphers: anchoring must be in data input


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries
- Without additional condition this is easy to distinguish
- Leaf anchoring
- $n$ first bits of permutation input are reserved
- constant IV in leaf nodes
- CV in non-leaf nodes
- For block ciphers: anchoring must be in data input
- Other countermeasures could be taken but this is the simplest


## Condition 4: leaf-anchoring

- Problem with truncated permutation: inverse queries
- Without additional condition this is easy to distinguish
- Leaf anchoring
- $n$ first bits of permutation input are reserved
- constant IV in leaf nodes
- CV in non-leaf nodes
- For block ciphers: anchoring must be in data input
- Other countermeasures could be taken but this is the simplest
- Adding a feedforward à la Davies-Meyer does not help


## Minimum solutions for sequential hashing

With a compression function:


## Minimum solutions for sequential hashing

With a compression function:


With a truncated permutation or block cipher:


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kT 2014] ensures subtree-freeness and radical decodability


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kт 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
- Sponge is not covered: different type of animal


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
- Sponge is not covered: different type of animal
- MD6: n-bit IV in leaves and 1 framebit would have sufficed


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
- Sponge is not covered: different type of animal
- MD6: $n$-bit IV in leaves and 1 framebit would have sufficed
- Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
- Davies-Meyer feedforward is useless


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kT 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
- Sponge is not covered: different type of animal
- MD6: $n$-bit IV in leaves and 1 framebit would have sufficed
- Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
- Davies-Meyer feedforward is useless
- Merkle-Damgård strengthening is useless


## Interesting implications of this work

- Tree hashing mode on top of a secure XOF gives a secure XOF
- e.g., KangarooTwelve on top of sponge
- Sakura encoding [kт 2014] ensures subtree-freeness and radical decodability
- Hashing based on permutations
- Sponge is not covered: different type of animal
- MD6: $n$-bit IV in leaves and 1 framebit would have sufficed
- Hashing based on block ciphers (e.g., MD5, SHA-1 and SHA-2)
- Davies-Meyer feedforward is useless
- Merkle-Damgård strengthening is useless
- CV can be shorter than block length of cipher


## Thanks for your attention!



## Intuition: why this works



- $(\mathcal{R O}, \mathcal{S})$ must act mode-consistent and it can:
- Subtree-freeness $\rightarrow \mathcal{A}$ can't learn CVs from $(M, Z)$ queries
- Radical-decodability $\rightarrow \mathcal{S}$ can reconstruct any full tree $S$ queried
- Message-decodability $\rightarrow \mathcal{S}$ can reconstruct $M$ and $Z$ from $S$
- $\mathcal{S}$ then just queries $\mathcal{R O}$ with $(M, Z)$ and forwards response to $\mathcal{A}$


## Intuition: why this works



- $(\mathcal{R O}, \mathcal{S})$ must act mode-consistent and it can:
- Subtree-freeness $\rightarrow \mathcal{A}$ can't learn CVs from $(M, Z)$ queries
- Radical-decodability $\rightarrow \mathcal{S}$ can reconstruct any full tree $S$ queried
- Message-decodability $\rightarrow \mathcal{S}$ can reconstruct $M$ and $Z$ from $S$
- $\mathcal{S}$ then just queries $\mathcal{R O}$ with $(M, Z)$ and forwards response to $\mathcal{A}$
- Things break down when CVs collide


## An example that is not radical-decodable



