Key Prediction Security of Keyed Sponges

Bart Mennink
Radboud University (The Netherlands)
Fast Software Encryption 2019
March 26, 2019

Sponges [BDPVo7]

- Cryptographic hash function
- SHA-3, XOFs, lightweight hashing, ...
- Behaves as RO up to query complexity $\approx 2^{c / 2}$ [BDPV08]

Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16]

Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16]
- Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]

Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16]
- Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]
- Full-Keyed Sponge [BDPV12,GPT15,MRV15]

Security of Keyed Sponge

- $F \in\{\mathrm{OKS}, \mathrm{FKS}\}$

Security of Keyed Sponge

- $F \in\{\mathrm{OKS}, \mathrm{FKS}\}$
- M : data (construction) complexity
- N : time (primitive) complexity

Simplified Security Bound

$$
\frac{M^{2}}{2^{c}}+\frac{M N}{2^{c}}+\operatorname{Adv}_{F}^{\text {key-pre }}(N)
$$

Security of Keyed Sponge

- $F \in\{\mathrm{OKS}, \mathrm{FKS}\}$
- M: data (construction) complexity
- N : time (primitive) complexity

Simplified Security Bound

$$
\frac{M^{2}}{2^{c}}+\frac{M N}{2^{c}}+\operatorname{Adv}_{F}^{\text {key-pre }}(N)
$$

probability that
adversary predicts key

Key Prediction Security

$\operatorname{Adv}_{F}^{\text {key-pre }}(N)$

- Adversary makes N queries to π
- Key K randomly drawn
- Adversary wins if query history "covers K "

Key Prediction Security: Existing Bounds

One Key Block

- Adversary makes N queries
- Query history covers at most N keys

$$
\operatorname{Adv}_{F}^{\text {key-pre }}(N) \leq \frac{N}{2^{k}}
$$

Key Prediction Security: Existing Bounds

One Key Block

- Adversary makes N queries
- Query history covers at most N keys

$$
\operatorname{Adv}_{F}^{\text {key-pre }}(N) \leq \frac{N}{2^{k}}
$$

More Than One Key Block

- By Gaži et al. [GPT15]
- Used in many sponge proofs
$\operatorname{Adv}_{F}^{\text {key-pre }}(N) \lesssim \frac{b^{\lambda} N}{2^{k / 2}}$

Key Prediction Security: Implication for OKS

Case of $(b, c, r, k)=(320,256,64,64)$

$$
\frac{M^{2}}{2^{c}}+\frac{M N}{2^{c}}+\frac{N}{2^{k}}=\frac{M^{2}}{2^{256}}+\frac{M N}{2^{256}}+\frac{N}{2^{64}}
$$

Case of $(b, c, r, k)=(320,256,64,128)$

$$
\frac{M^{2}}{2^{c}}+\frac{M N}{2^{c}}+\frac{N}{2^{k / 2}}=\frac{M^{2}}{2^{256}}+\frac{M N}{2^{256}}+\frac{N}{2^{64}}
$$

New Analysis

$$
\operatorname{Adv}_{F}^{\text {key-pre }}(N) \lesssim \frac{c^{\lambda-1} N}{2^{k}}
$$

- Loss c due to lucky multi-collisions (in old bound: b)
- 2^{k} in denominator (in old bound: $2^{k / 2}$)
- Best attack: around 2^{k} queries

Proof Idea

- Tree-based approach (as in [GPT15])

Proof Idea

- Tree-based approach (as in [GPT15])

Proof Idea

- Tree-based approach (as in [GPT15])

Proof Idea

- Tree-based approach (as in [GPT15])

Proof Idea

- Tree-based approach (as in [GPT15])

Proof Idea

- Tree-based approach (as in [GPT15])

Proof Idea

- Fix any query from V_{2} to $V_{3}: N$ options

Proof Idea

- Fix any query from V_{2} to $V_{3}: N$ options
- This query fixes inner part of second-last layer

Proof Idea

- Fix any query from V_{2} to $V_{3}: N$ options
- This query fixes inner part of second-last layer

- Consider configurations for these layers
- Arrows indicate query direction, circles indicate inner collisions

Proof Idea

- Fix any query from V_{2} to $V_{3}: N$ options
- This query fixes inner part of second-last layer

- Consider configurations for these layers
- Arrows indicate query direction, circles indicate inner collisions
- Inductive reasoning on non-occurrence of α^{i}-fold collisions

Further Application to Duplex

- Unkeyed Duplex [BDPV11]

Further Application to Duplex

- Unkeyed Duplex [BDPV11]
- Outer-Keyed Duplex [BDPV11]

Further Application to Duplex

- Unkeyed Duplex [BDPV11]
- Outer-Keyed Duplex [BDPV11]
- Full-Keyed Duplex [MRV15,DMV17]

Application to Duplex

Bounds Reduce Bi-Directionally [MRV15,DMV17]
OKS and OKD: $\quad \frac{M^{2}}{2^{c}}+\frac{M N}{2^{c}}+\operatorname{Adv}_{\text {OKS }}^{\text {key-pre }}(N)$
FKS and FKD: $\quad \frac{M^{2}}{2^{c}}+\frac{M N}{2^{c}}+\operatorname{Adv}_{\text {FKS }}^{\text {key-pre }}(N)$

Same for Nonce-Respecting Setting [JLM14,DMV17]
OKS and OKD: $\quad \frac{M^{2}}{2^{b}}+\frac{N}{2^{c}}+\operatorname{Adv}_{\text {OKS }}^{\text {key-pre }}(N)$
FKS and FKD: $\quad \frac{M^{2}}{2^{b}}+\frac{N}{2^{c}}+\operatorname{Adv}_{\text {FKS }}^{\text {key-pre }}(N)$

Application to CAESAR

CAESAR Competition

- Four third-round candidates based on duplex

scheme	b	c	r	k
Ascon [DEMS16]	320	256	64	128
	320	192	128	128
Ketje [BDP+16]	200	184	16	92
	400	368	32	128
Keyak [BDP+16]	800	256	544	$128 . .224$
	1600	256	1344	$128 . .224$
NORX [AJN16]	512	128	384	128
	1024	256	768	256

Application to CAESAR

CAESAR Competition

- Four third-round candidates based on duplex

scheme	b	c	r	k
Ascon [DEMS16]	320	256	64	128
	320	192	128	128
Ketje [BDP+16]	200	184	16	92
	400	368	32	128
Keyak [BDP+16]	800	256	544	$128 . .224$
	1600	256	1344	$128 . .224$
NORX [AJN16]	512	128	384	128
	1024	256	768	256

- Initialize entire state using key (FKS for key)

Application to CAESAR Portfolio: Ascon

Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2

1.4 Mode of Operation

The mode of operation of Ascon is based on duplex sponge modes like MonkeyDuplex [13], but uses a stronger keyed initialization and keyed finalization function. The core permutations p^{a} and p^{b} operate on a sponge state S of size 320 bits, with a rate of r bits and a capacity of $c=320-r$ bits. For a more convenient notation, the rate and capacity parts of the state S are denoted by S_{r} and S_{c}, respectively. The encryption and decryption operations are illustrated in Figure 1a and Figure 1b and specified in Algorithm 1.

(a) Encryption

Old Bound (Simplified)

$$
\frac{M^{2}}{2^{320}}+\frac{N}{2^{256}}+\frac{N}{2^{64}}
$$

- If $M \leq 2^{160}$, security as long as $N \leq 2^{64}$

New Bound (Simplified)

$$
\frac{M^{2}}{2^{320}}+\frac{N}{2^{256}}+\frac{N}{2^{128}}
$$

- If $M \leq 2^{160}$, security as long as $N \leq 2^{128}$

Application to STROBE

STROBE Protocol Framework [Ham17]

- Lightweight framework for network protocols
- Goal: simple framework with small code size

Application to STROBE

STROBE Protocol Framework [Ham17]

- Lightweight framework for network protocols
- Goal: simple framework with small code size
- Hashing, authentication, and encryption: all using sponge and outer-keyed sponge/duplex

Application to STROBE

STROBE Protocol Framework [Ham17]

- Lightweight framework for network protocols
- Goal: simple framework with small code size
- Hashing, authentication, and encryption: all using sponge and outer-keyed sponge/duplex

scheme	b	c	r	k
STROBE-128/1600	1600	256	1344	256
STROBE-256/1600	1600	512	1088	256
STROBE-128/800	800	256	544	256
STROBE-256/800	800	512	288	256
STROBE-128/400	400	256	144	256

Old Bound (Simplified)

$$
\frac{M^{2}}{2^{256}}+\frac{M N}{2^{256}}+\frac{N}{2^{128}}
$$

- If $M \leq 2^{100}=: 2^{a}$, security as long as $N \leq 2^{128}$

New Bound (Simplified)

$$
\frac{M^{2}}{2^{256}}+\frac{M N}{2^{256}}+\frac{N}{2^{256}}
$$

- If $M \leq 2^{100}=: 2^{a}$, security as long as $N \leq 2^{156}$

Conclusion

Tight Key Prediction Security

- Last "missing link" in keyed sponge proofs
- Close to optimal bound

Applications

- Every use of outer-keyed sponge/duplex with $k>r$
- HMAC-SHA-3 [NY16] and sandwich sponge [Nai16]
- STROBE protocol framework
- Lightweight permutations

Thank you for your attention!

