New Yoyo Tricks with AES-based Permutations

Dhiman Saha ${ }^{1}$, Mostafizar Rahman ${ }^{2}$, Goutam Paul ${ }^{2}$

${ }^{1}$ Indian Institute of Technology, Bhilai
${ }^{2}$ Indian Statistical Institute, Kolkata

FSE 2019
Paris, FRANCE

The Problem: Devising Distinguishers

Distinguish between what and why?

Exhibiting Non-random Behavior

The Distinguishing Setting

1. D tries to distinguish between C and R
2. Can make queries to O
3. O behaves as either C or R
4. At the end D has to guess who is O impersonating
5. D wins if its guess is right

Lets play a Game

Setting: Adaptive Chosen Plaintext/Ciphertext

Will look similar to Boomerang Attack

Select messages p_{1}, p_{2} with $p_{1} \oplus p_{2}=\alpha$

Is there a special way to choose α ?

Apply some rounds of some cipher

Get c_{1}, c_{2} with $c_{1} \oplus c_{2}=\beta$

Use MSwap to swap bytes/words of c_{1}, c_{2}

Generate new ciphertext pair $c_{1}^{\prime}, c_{2}^{\prime}$

What is the relation between $c_{1}^{\prime}, c_{2}^{\prime}$?

Invariant: $c_{1}^{\prime} \oplus c_{2}^{\prime}=\beta$

How does this part differ from the Boomerang Attack?

Invert same number of rounds

Get $p_{1}^{\prime}, p_{2}^{\prime}$ with $p_{1}^{\prime} \oplus p_{2}^{\prime}=\Delta$

Does Δ have a special property?

Hypothesis: Property ν induced in α is preserved by Δ

What is this property ν ?

Many Answers

- Is there a special way to choose α ?
- Zero Difference Pattern (ZDP).
- How many rounds? What type of cipher?
- 2-Rnd Generic SPN
- How does the swap work?
- Swap based on non-linear layer.
- Does Δ have a special property?
- Same as α
- What is this property ν ?
- Zero Difference Pattern (ZDP)

The Yoyo Trick

Rønjom et al. Asiacrypt 2017

$$
\begin{aligned}
& G_{2}^{\prime}=L \circ S \circ L \circ S \quad \text { Two full generic Rounds } \\
& G_{2}=S \circ L \circ S \quad \leftarrow \text { Dropping final linear layer (to simplify) }
\end{aligned}
$$

- ZDP of α is preserved by Δ

Applied to AES

- First Key-independent Yoyo Distinguishers of AES
- 5-round key recovery

Understanding MSwap

Recall AES SuperSBox

Understanding MSwap

ZDP

Zero Difference Pattern

$$
p_{1}=\begin{array}{cccccccc}
\mathrm{fa} & \mathrm{~b} 1 & 5 \mathrm{a} & 2 \mathrm{f} \\
\mathrm{~b} 7 & 64 & \mathrm{e} & \mathrm{f} 1 \\
\mathrm{f} 8 & 9 \mathrm{f} & 22 & 15 \\
28 & 87 & 32 & 25
\end{array} \quad p_{2}=\begin{array}{cccc}
2 \mathrm{e} & \mathrm{~b} 1 & 5 \mathrm{a} & 2 \mathrm{f} \\
\mathrm{~b} 7 & 70 & 0 \mathrm{e} & \mathrm{f} 1 \\
\mathrm{f} 8 & 9 \mathrm{f} & \mathrm{f} 2 & 15 \\
28 & 87 & 32 & 4 \mathrm{c}
\end{array}
$$

$\alpha=p_{1} \oplus p_{2}=$| d 4 | 00 | 00 | 00 |
| :--- | :--- | :--- | :--- |
| 00 | 14 | 00 | 00 |
| 00 | 00 | d 0 | 00 |
| 00 | 00 | 00 | 69 |

$$
Z D P(\alpha)=\{0,1,1,1\} \quad w t(Z D P(\alpha))=3
$$

The Yoyo Game

- New pairs of plaintexts and ciphertexts are made adaptively from the original pairs.
- While making new pairs a certain property is kept invariant.
- A common strategy is the use of zero difference in the pairs.
- An invariant property is verified at the end

Our Aim: How To Exploit Yoyo Further

Our Target: AES-based Public Permutations

AES-based Public Permutations

AESQ Permutation

- Internal permutation of AE scheme PAEQ
- PAEQ $\leftarrow 2$ nd Round CAESAR candidate
- By Birukov and Kovratovich

AES in Known-Key Setting

- Known-key paradigm
- By Knudsen and Rijmen
- Under Known-key AES behaves as a public permutation

Quadrupled AES

2-Round AESQ

SuperSBox of AESQ

MegaSBox of AESQ

128-bit MegaSBox

- 4 MegaSBox-es
- Cover 3.5 Rounds
- Must start from even round

$\mathrm{AESQ}_{2 \rightarrow 9}$

$S \circ L \circ S$ construction

Introducing Nested Zero Difference Pattern

$\alpha \leftarrow$ Sample State

$$
\nu(\alpha)=(0,0,1,0) \quad w t(\nu(\alpha))=1
$$

A sample state

$$
\begin{array}{ll}
\nu_{1}^{2}\left(\alpha_{0}\right)=(0,0,0,0), & \nu_{2}^{2}\left(\alpha_{1}\right)=(0,0,1,1), \\
\nu_{3}^{2}\left(\alpha_{2}\right)=(1,1,1,1), & \nu_{4}^{2}\left(\alpha_{3}\right)=(0,1,1,1)
\end{array}
$$

$$
w t\left(\nu^{2}(\alpha)\right)=9
$$

Strategy 1: Prepend-Append

Probabilistic Yoyo

Using Classical Differentials

Basic Yoyo

Prepend

Append

Some assumption on Nested ZDP of η

 Induces a property on Δ

Probabilistic Yoyo Distinguisher

Application: AESQ

First 9-round Distinguisher starting from Round-1

Practical Complexity

Starting from Round-1

9-Round AESQ

Basic Yoyo

8-Rounds

0.0.

1-Round Extension

An Example

For AESQ_{1-9}
$\operatorname{Pr}\left[\exists i: w t\left(\nu^{2}\left(\Delta_{i}\right)\right)=4\right] \approx 2^{-26}$

For \mathcal{R}
$\operatorname{Pr}\left[\exists i: w t\left(\nu^{2}\left(\Delta_{i}\right)\right)=4\right] \approx 2^{-28}$

Strategy 2: Composing Impossible Differentials

The Inside-Out Technique

Inverted Yoyo

Inverted Yoyo

- By virtue of Yoyo
- $\operatorname{Pr}[\nu(\alpha)=\nu(\delta)]=1$

Assumption

Something on $\nu^{2}(\delta)$

Append L

- Exploit Properties of L
- Effect of L on δ ?
- Use $\nu^{2}(\delta)$ Assumption

Append S^{\prime}

Impossible (Nested) ZDP on β

Impossibility

$$
\operatorname{Pr}\left[\nu^{2}(\delta) \rightarrow \nu^{2}(\beta)\right]=0
$$

Probability of $\nu^{2}(\delta)$ Assumption Holding

Application: AES, AESQ

6 Round AES (Practical) 9-10(Practical), 12 Round AESQ

Impossible Differential Yoyo Distinguisher on 6-Round AES

- One SuperSBox active in α
- One SuperSBox active in γ
- At least one byte active in γ
- At least one column active after MC
- All SuperSBoxes active after MC

Impossible
One inactive SuperSBox in Δ

Extending on AESQ

Exploiting Same Property of MixColumns

Impossibilities with different S^{\prime} Layers

Strategy 3: Bi-directional Yoyo

Composing Two Yoyo Games In Two-Directions

Inverted Yoyo

Adding Linear Layer

Composing 2nd Yoyo

Impossible Differential Bi-directional Yoyo

Application: AES, AESQ

8 Round AES (Practial) 16 Round AESQ

$\mathrm{AES}_{1 \rightarrow 8}$

$\mathrm{AESQ}_{2 \rightarrow 17}$

Distinguishing Complexities

Distinguishers on AESQ

Rounds	Complexity		Technique	Reference
	Time	Memory		
8	2^{32}		CICO	Designers
8^{\dagger}	1	Negligible	YoYo	This Work
9	$2^{26.08}$	Negligible		This Work
9^{\dagger}	5	Negligible	$\begin{gathered} \text { Improbable } \\ \text { Differential YoYo } \end{gathered}$	This Work
10^{\dagger}	2^{28}	Negligible		This Work
12^{\dagger}	2^{126}	Negligible	Impossible Differential YoYo	This Work
	2^{256}	2^{256}	Rebound Attack	Designers
	2^{128}	Negligible		Bagheri et al.
	$2^{102.4}$	$2^{102.4}$	Time-memory	
	$2^{128-x / 4}$	$2^{\text {x }}$	Trade-off	
16^{\dagger}	2^{192}	2^{128}	Rebound Attack	
	2^{188}	2^{128}	Multi Ltd.-Birthday Distinguisher	
	2^{192+x}	2^{128-x}	Time-memory Trade-off	
	2^{126}	Negligible	Impossible Differential Bidirectional YoYo	This Work

8-round Known-Key Distinguishers on AES

Time Complexity	Memory Complexity	Property	Reference
2^{64}	2^{64}	Uniform Distribution	Gilbert et al.
2^{48}	2^{32}	Differential Trail	Gilbert et al.
2^{44}	2^{32}	Multiple Differential Trail	Jean et al.
$\mathbf{2}^{30}$	negligible	Impossible Differential Bi-directional Yoyo	This Work
2^{23}	2^{16}	Extended 7-Round Multiple Differential Trail	Grassi et al.

Distinguishers reported in this work

	\#R	Start \rightarrow End	Complexity	Strategy	Remarks
$\begin{aligned} & 0 \\ & 0 \\ & \text { y } \\ & \text { w } \end{aligned}$	8	$2 \rightarrow 9$	1	Yoyo	Basic Yoyo
	9	$1 \rightarrow 9$	$2^{26.08}$	Yoyo + Nested ZDP	First 9 round Distinguisher starting from Round 1
	9	$2 \rightarrow 10$	5	Improbable	Uses the
	10	$2 \rightarrow 11$	2^{28}	Differential Yoyo	inside-out
	12	$2 \rightarrow 13$	2^{126}	Impossible Differential Yoyo	technique
	16	$2 \rightarrow 17$	2^{126}	Bi-directional Impossible Differential Yoyo	
$\begin{aligned} & \text { 岏 } \\ & \hline \end{aligned}$	6	$1 \rightarrow 6$	2^{30}	Impossible Differential Yoyo	Uses the inside-out technique
	8	$1 \rightarrow 8$	2^{30}	Bi-directional Impossible Differential Yoyo	Uses inside-out with bi-directional Yoyo

Summary

- New ways to extend basic Yoyo game
- Classical Differentials
- Impossible Differentials
- Bi-directional Yoyo
- Using public permutations
- Best results achieved for AESQ
- New known-key distinguishers for AES
- All practical distinguishers experimentally verified
- Yoyo seems to be an effective generic cryptanalysis tool

Image Source: Google

