
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 4, pp. 102–127. DOI:10.13154/tosc.v2018.i4.102-127

New Yoyo Tricks with AES-based Permutations
Dhiman Saha1, Mostafizar Rahman2 and Goutam Paul2

1 Department of Electrical Engineering & Computer Science,
Indian Institute of Technology, Bhilai 492015, India

dhiman@iitbhilai.ac.in
2 Cryptology and Security Research Unit (CSRU), R. C. Bose Centre for Cryptology and

Security, Indian Statistical Institute, Kolkata 700108, India
mrahman454@gmail.com,goutam.paul@isical.ac.in

Abstract. In Asiacrypt 2017, Rønjom et al. reported some interesting generic
properties of SPNs, leading to what they call the Yoyo trick, and applied it to find
the most efficient distinguishers on AES. In this work, we explore the Yoyo idea in
distinguishing public permutations for the first time. We introduce the notion of
nested zero difference pattern which extends the Yoyo idea and helps to compose it
using improbable and impossible differential strategies to penetrate higher number of
rounds. We devise a novel inside-out application of Yoyo which enables us to start
the Yoyo game from an internal round. As an application, we investigate the AES-
based public permutation AESQ used inside the authenticated cipher PAEQ. We achieve
the first deterministic distinguisher of AESQ up to 8 rounds and the first 9-round
distinguisher of AESQ that start from the first round with a practical complexity of
around 226. We manage to augment Yoyo with improbable and impossible differentials
leading to distinguishers on 9, 10, 12 rounds with complexities of about 22, 228, 2126

respectively. Further, with impossible differentials and a bi-directional Yoyo strategy,
we obtain a 16-round impossible differential distinguisher with a complexity of 2126.
Our results outperform all previous records on AESQ by a substantial margin. As
another application, we apply the proposed strategies on AES in the known-key setting
leading to one of the best 8-round known-key distinguisher with a complexity of 230.
Finally, this work amplifies the scope of the Yoyo technique as a generic cryptanalysis
tool.
Keywords: AES · AESQ · Distinguisher · PAEQ · Yoyo · Differential Cryptanalysis

1 Introduction
Non-random behavior of a cryptographic construction has been historically seen as a sign of
an inherent weakness waiting to be exploited. In this regard, devising distinguishers forms
one of the fundamental aims of a cryptanalyst since they help exhibit non-randomness.
A distinguisher generally constitutes a statistical or structural property of a crypto-
primitive that is not expected to occur for an equivalent random function. The scope of
distinguishers is further amplified by the probability of their possible conversion/extension
to more stronger forms of attacks like key-recovery for block ciphers or collisions for hash
functions. The SHA3 competition [oST] witnessed the Zero-Sum distinguisher (introduced
by Aumasson and Meier [AM09]) which was one of the most studied attacks against the
internal public permutation Keccak−f of SHA3 winner Keccak. On the other hand, a
multitude of distinguishing attacks have been reported on AES [DR02] both in the secret-key
as well as known-key setting (introduced by Knudsen and Rijmen [KR07]). The known-key
paradigm is of particular interest since it enables studying a cipher as a public permutation.
Moreover, as argued by Knudsen and Rijmen, non-existence of a known-key distinguisher

Licensed under Creative Commons License CC-BY 4.0.
Received: 2018-09-01, Accepted: 2018-11-01, Published: 2018-12-13

https://doi.org/10.13154/tosc.v2018.i4.102-127
mailto:dhiman@iitbhilai.ac.in
mailto:mrahman454@gmail.com,goutam.paul@isical.ac.in
http://creativecommons.org/licenses/by/4.0/

Dhiman Saha, Mostafizar Rahman and Goutam Paul 103

implies non-existence of a secret-key one, making it imperative to study the former. This
work aims to explore distinguishing attacks on public permutations based on AES with
the motivation that results reported here might lead to stronger attacks on constructions
where these permutations are deployed as an internal transformation.

We investigate an interesting cryptanalytic tool called the Yoyo game which was recently
shown to be very effective in devising distinguishers [RBH17] on the block cipher standard
AES. The Yoyo strategy was first reported in crypto literature by Biham et al. who used it
for the cryptanalysis of SKIPJACK [BBD+99]. In the Yoyo game, new pairs of plaintexts
and ciphertexts are made adaptively from the original pairs. While making new pairs a
certain property is kept invariant. A common strategy is the use of zero difference in the
pairs. Suppose a pair of plaintext/ciphertexts have certain zero difference after some rounds
of a cipher. In the Yoyo game, it is verified whether new pairs of plaintexts/ciphertexts
that are formed by swapping bytes/words of the original pairs still hold the same zero
difference after the same number of rounds of the cipher. Using the Yoyo game Biryukov
et al. have found a 7-round distinguisher for Feistel networks[BLP16]. In Asiacrypt 2017,
Rønjom et al. applied the Yoyo game to generic Substitution-Permutation (SP) networks
[RBH17] and proposed a generic 2-SP round deterministic distinguisher. As a case-study
they applied the strategy on variants of AES and found many practical distinguishers on
up to 5 rounds of AES. They also reported a distinguisher for 6-round AES with data
complexity 2122.83 and a key recovery attack on 5-round AES with complexity 231 that
requires 211.3 plaintexts/ciphertexts pairs.

The current work intends to look at the Yoyo technique as a general cryptanalysis
strategy specially in the light of public permutations. In particular, we look at AESQ, the
AES-based internal permutation of CAESAR [cae] round 2 candidate PAEQ [BA14]. PAEQ,
along with AESQ permutation was introduced by Biryukov and Khovratovich in ISC 2014
[BK14]. There are many variants of PAEQ but across all variants, the same permutation
AESQ of width 512 bits is used. The designers themselves have done a lot of cryptanalysis
on PAEQ and have shown a Constrained Input Constrained Output (CICO) attack with
complexity 232 on 8-round AESQ. They have also proposed a 12-round distinguisher with
complexity 2256. Bagheri et al. have reduced the complexity of the 12-round disgtinguisher
to 2128[BMS16]. They have extended their work for 16-round AESQ permutation and shown
a distinguisher with complexity 2192 using 2128 memory. A key recovery attack has also
been devised on PAEQ targeting the diffusion of the AESQ permutation by Saha et al.
[SKMC16]. They have proposed a 8-round key recovery with complexity of 248.

This work reports a family of distinguishers on AESQ which primarily capitalize on
the Yoyo game. This is the first time that Yoyo based distinguishers have been devised
for a public permutation. The basic Yoyo idea is augmented with other cryptanalytic
principles to penetrate a higher number of rounds. In doing so, the first practical 9-round
distinguisher that works from the first round is achieved. The inside-out technique is
leveraged up on to reach up to 10 rounds with practical complexities and extended to 12
rounds with 2126 queries. Further, we introduce the idea of bi-directional Yoyo game where
two Yoyo games are played in opposite directions and connected using the properties of
the linear layer of AESQ. This leads to the development of a 16-round distinguisher with
a complexity of 2126. We summarize our results in comparison to the previous works in
Table 1. As can be seen, the current work outperforms all previous results by a huge
margin while requiring negligible memory. Finally, to emphasize the scope of the devised
techniques we apply them to AES which under the known-key setting also behaves like
a public permutation. Applying bi-directional Yoyo on AES helps devise one of the best
8-round distinguishers with complexity of 230 and negligible memory requirement, as shown
in Table 3.

The rest of the work is organized as follows. In Section 2, a brief overview of AESQ
permutation is given. In Section 3, tools used throughout the paper are discussed. In

104 New Yoyo Tricks with AES-based Permutations

Section 4.1, a deterministic distinguisher for 8-round AESQ is presented. This deterministic
distinguisher is extended and a 9-round probabilistic distinguisher is illustrated in Section
4.2. In Section 5, a brief overview of improbable differential and inside-out technique and
their application to AESQ is given. In Section 6, impossible Yoyo distinguishers for 12 and
16-round AESQ are demonstrated. In Section 7, impossible differential Yoyo and impossible
differential bi-directional Yoyo techniques is applied to round-reduced AES in known-key
setting. Experimental setup and results are briefly mentioned in Section 8 and elaborated
in Appendix A. Arguments in favour of the validity of the work are discussed in Section 9.
The concluding remarks are furnished in Section 10.

Table 1: Distinguishers on Round-Reduced AESQ

Rnd
Complexity

Technique Reference
Time Memory Success Prob.

8 232 CICO Designers [BA14]
8† 1 Negligible

Yoyo
Section 4.1

9 226.08 Negligible 0.71 Section 4.2

9† 5 Negligible 0.82 Improbable
Differential Yoyo

Section 5.2

10† 228 Negligible 0.77 Section 5.2

12†

2126 Negligible 0.84
Impossible

Differential Yoyo
Section 6.1

2256 2256 0.61
Rebound Attack

Designers [BA14]
2128 Negligible 0.83

Bagheri et al. [BMS16]

2102.4 2102.4 0.83 Time-memory
Trade-off2128−x/4 2x

16†

2192 2128 0.83 Rebound Attack

2188 2128 0.83
Multi Ltd.-Birthday

Distinguisher

2192+x 2128−x
Time-memory

Trade-off

2126 Negligible 0.84
Impossible Differential
Bi-directional Yoyo

Section 6.2

† Starting from round 2

2 Description of AESQ

PAEQ is an authenticated encryption scheme. In its core, PAEQ uses the 512-bit AESQ
permutation. This can be viewed as four 128-bit registers with each register running two
rounds of AES where XOR-ing the subkey operation is replaced with XOR-ing a round
constant. In AESQ, a state is of 64 bytes. There are four groups of 16 bytes each. We call
each of them as register and named them as A,B,C and D from left to right. Each columns
of the registers is 32-bit words and is numbered from 0 to 3. Like, first and last column of
register A is A[0] and A[3] respectively. Two rounds AES is run for each of the registers.
Then a shuffling is done among all the registers. Shuffle mapping is shown in Table 2. In
original AESQ, this operation is repeated 10 times. So, AESQ permutation consists of 20
AES rounds. Fig. 1 shows a 2-Round AESQ Permutation.

Dhiman Saha, Mostafizar Rahman and Goutam Paul 105

Figure 1: 2-Round AESQ Permutation

From A[0] A[1] A[2] A[3]
To A[3] D[3] C[2] B[2]

From B[0] B[1] B[2] B[3]
To A[1] D[1] C[0] B[0]

From C[0] C[1] C[2] C[3]
To A[2] D[2] C[3] B[3]

From D[0] D[1] D[2] D[3]
To A[0] D[0] C[1] B[1]

Table 2: Shuffle Table

3 Tools for the Analysis
In this section, we describe the necessary notations, definitions, and concepts that will be
used in our subsequent analysis.

3.1 Notations
We enlist some notations frequently used in this work below.

x← y x gets the value of y
α→ β The transition from α to β
α9 β α does not transit to β
Pr[E] Probability of occurence of event E
wt(x) Weight of a vector x

xi ith component of vector x
AESQi→j AESQ permutation from round i to round j

We, additionally, try to reuse some of the notations used in [RBH17]. So a generic
permutation is assumed to be of the form of Fn

q → Fn
q where, q = 2k given by:

F (x) = S ◦ L ◦ S ◦ L ◦ S(x)

Here, S is considered as a large SBox to be visualized as a concatenation of smaller
component SBoxes operating on Fq. The linear layer over Fn

q is denoted by L. A
word represents an element of Fq while the internal state is a vector of words α =
(α0, α1, · · · , αn−1) ∈ Fn

q . Based on this the authors in [RBH17] define the Zero Difference
Pattern (ZDP) as below:

Definition 1. Zero Difference Pattern.[RBH17] Let, α ∈ Fn
q for q = 2k. The Zero

Difference Pattern for α is

ν(α) = (z0, z1, ..., zn−1),

where ν(α) takes values in Fn
2 and zi = 1 if αi = 0 or zi = 0 otherwise.

Interestingly, the zero-difference pattern does not consider the nature of separate words
when they are non-zero and just classifies them into one category. Our aim is to look
further into individual words i.e. we want to investigate the nature of αi when zi = 0. To

106 New Yoyo Tricks with AES-based Permutations

facilitate this, we define a unit as the element on which the smallest SBox of the cipher is
defined. For e.g. for AES a unit is a byte. It can be noted that considering the smallest
SBox a word is 8-bit, while considering the SuperSBox representation [DR06], a word is
32 bits. So, the AES state representation changes from F16

28 to (F4
28)4. When a word uses

multiple units, the zero difference pattern does not take into account the nature of these
units and marks a word active even if at least one unit in the word is active. We want
to study the activity of the units. So we introduce the notion of Nested Zero Difference
Pattern.

Definition 2. Nested Zero Difference Pattern Let, α ∈ (F
n
m
q)m for q = 2k and

αi ∈ F
n
m
q and αi = (βi0, βi1, · · · , βi(n

m−1)), where βij is the unit. The Nested Zero
Difference Pattern (ν2) defined for α is

ν2(α) = {ν2(α0), ν2(α1), · · · , ν2(αn−1)}, ν2(αi) = (y0, y1, ..., y n
m−1),

wt(ν2(α)) =
n−1∑
i=0

wt(ν2(αi)),

where ν2(αi) takes values in Fn
2 and yi = 1 if βij = 0 or yi = 0 otherwise1.

The following example will make things clearer.

Example 1. Here we show the different words of the AES state considering the inputs of
the SuperSBox. Note that the words will change based on whether we are observing the
SuperSBox input or output.

α0 α1 α2 α3

A sample state

Active Byte Inactive Byte

Figure 2: Different words and a sample state showing zero and non-zero bytes.

Let us consider the Zero Difference Pattern of the sample state (α) in Fig. 2:
ν(α) = (0, 0, 1, 0) and wt(ν(α)) = 1. Thus ZDP considers only one word to be inactive.

Let us now look at the Nested ZDP of the state α. It can be easily inferred that Nested
ZDP gives more information pertaining to the active words. The idea of Nested ZDP will
be useful when we will consider differentials over and above the Yoyo game.

ν2
1(α0) = (0, 0, 0, 0), ν2

2(α1) = (0, 0, 1, 1),
ν2

3(α2) = (1, 1, 1, 1), ν2
4(α3) = (0, 1, 1, 1), wt(ν2(α)) = 9.

3.2 Yoyo Analysis for Two Generic SP-Rounds
Rønjom et al. have carried out Yoyo analysis for two generic SP-rounds [RBH17]. Two
generic SP-round is G′2 = L · S · L · S, where L is the linear transform layer and S is the
permutation layer. For simplicity, the final L layer is omitted and the modified two generic

1It is understood that m|n

Dhiman Saha, Mostafizar Rahman and Goutam Paul 107

SP round is denoted as G2 = S · L · S. They have presented a deterministic distinguisher
for G2. For the explanation of the distinguisher and how it works, we have to go through
some definitions originally defined in their paper. The next definition signifies how to swap
between pairs of texts to form a new pair of texts.

Definition 3. [RBH17] Let, α, β ∈ Fn
q be two states and v ∈ Fn

2 be a vector, then ρv(α, β)
is a new state in Fn

q created from α, β by swapping components among them. The ith

component of ρv(α, β) is defined as

ρv(α, β)i =
{
αi, if vi = 1;
βi, if vi = 0.

(1)

The following theorem describes the deterministic distinguisher for 2 generic SP-rounds.

Theorem 1. [RBH17] Let, p0, p1 ∈ Fn
q , c0 = G2(p0) and c1 = G2(p1). For any vector

v ∈ Fn
2 , c

′0 = ρv(c0, c1) and c′1 = ρv(c1, c0). Then

ν(G−1
2 (c′0)⊕G−1

2 (c′1)) = ν(p′0 ⊕ p′1) = ν(p0 ⊕ p1).

The trick is to choose any random pair of plaintexts with certain zero difference pattern
and encrypt them using G2. Then swap words/bytes between the produced ciphertexts
and create a new pair of ciphertexts. Decrypt the new pair using G2 and obtain a new
pair of plaintexts. The zero difference pattern of these new pair of plaintexts will be same
as the zero difference pattern of the original pairs of plaintexts. This event occurs with
probability 1. This property of two generic SP-rounds can be exploited to distinguish it
from a random construction.

3.3 SuperSBox and MegaSBox of AESQ

Let us consider round 2 and round 3 (before MixColumns) of AESQ permutation. We can
consider the input to round 2 as 16 diagonals of 4 bytes each. In round 2, after SubBytes
and ShiftRows operation each of the 16 diagonals aligns in a single column. Effect of
MixColumns and shuffle operation is confined within the column. SubBytes and ShiftRows
operation of round 3 dealigns the column into a inverse diagonal. From the above analysis
we observe that a group of 4 bytes (a diagonal) in the input to round 2 affects only a
group of 4 bytes (inverse diagonal) in the output of round 3 (before MixColumns). These
operations can be grouped into a single 32-bit SBox called as SuperSBox. Therefore,
round 2 and round 3 of AESQ permutation can be viewed as a single round with 16 parallel
SuperSBoxes.

This concept can be further extended and four round AESQ permutation can be viewed
as a single round with 128-bit MegaSBoxes [DLP+09, BA14]. We are now analysing round
2 to round 5 of AESQ permutation. AESQ state consists of 4 registers of 128 bits each.
Consider four diagonals each from all the registers. After the SubBytes and ShiftRows
operation each of them transforms into a column. MixColumns and adding a constant
operation does not influence the other columns. Shuffling accumulates all the four columns
into a single register where each of the registers undergoes two rounds of AES-like operation
(round 3 and 4) which again does not influence the other registers. Shuffling disperse
the columns from a single register to four registers. Round 5 SubBytes and ShiftRows
operation dealigns the columns into inverse diagonals. These operations can be grouped
into a single 128-bit MegaSBox and round 2 to 5 (before MixColumns) can be viewed
as a single round with 4 parallel MegaSBoxes. The following MixColumns operation
can be considered as mega-linear transformation on AESQ state (512-bits) and called as
MegaMixColumns (MMC) operation. Fig. 4 shows how two rounds and four rounds of
AESQ permutation exhibits the properties of SuperSBox and MegaSBox.

108 New Yoyo Tricks with AES-based Permutations

MC

1

SB SRMC

5

MC

2

SB SRMC

6

MC

3

SB SRMC

7

MC

4

SB SRMC

8

SB SRMC

9

SB SRMC

13

SB SRMC

10

SB SRMC

14

SB SRMC

11

SB SRMC

15

SB SRMC

12

SB SRMC

16

SB SR SB SR SB SR SB SR

MC MC MC MC

SB SRMC

5

SB SRMC

9

SB SRMC

13
SB SR

∼

MegaMixColumns

MegaSubBytes

Round 2

Round 3

Round 4

Round 5

Figure 3.3: MegaSBox in AESQ.

3.2.2 Analysis of permutations in the attack context

Only a few permutations as a single and secure object have been designed for the use in practical con-
structions. The most well-known is the Keccak 1600-bit permutation, which is used in the Keccak/SHA-3
hashing algorithm; the others are used in the SHA-3 competitors: CubeHash [4], Grostl [11], JH [17].
It is worth noticing that a permutation per se can not be formally defined “secure”. The best we can
make is an informal statement like the 2l “flat sponge” claim [6], which basically states that no attack
with complexity below 2l and specific for the particular permutation exists. The parameter l is used in
defining the capacity parameters in sponge functions and in fact measures the designers’ confidence.

In our case we claim l = 256 or the 256-bit security of AESQ against all attacks. In order to support
our claim, we look at the existing attacks on permutation-based designs and check if they apply to AESQ.

Collision attacks. We first consider collision attacks on sponge-based hash functions. The collision
attacks on the reduced Keccak [10] strongly rely on high-probability differential trails [16], and only add
a couple of rounds over their length with the help of message-modification techniques. The so-called
internal-differential attack, while exploiting similarities within the internal state, is also limited by the
propagation of difference generated by the round constants. Hence to prevent these attacks we have to
demonstrate the absence of high-probability differential trails for a high number of rounds.

Let us now consider compression functions based on permutations. For example, Grostl uses functions

P (x⊕ y)⊕Q(y)⊕ x and x⊕ P (x),

where P and Q are AES-based permutations. The main strategy in collision attacks [14, 12] is the
construction of a truncated differential trail with low input and output Hamming weight. Then the
conforming inputs are found with the rebound attack and are tested for a collision.

Preimage attacks. The preimage attacks on sponge-based hash functions have been also based on
the differential properties of the permutation. As long as a differential generated by message difference
∆M has high probability in some output bits, it can be used to speed up the preimage search [15]. There
are also generic methods that can save a factor of several bits by exploiting incomplete diffusion in the
final rounds, but we note that their complexity can not be reduced much. The invariant attacks [2] do
not apply because of round constants.

14

Figure 4: SuperSBox and MegaSBox [BA14] of AESQ. There are 16 SuperSBoxes covering
1.5 rounds and 4 MegaSBoxes covering 3.5 rounds

3.4 Data Complexity and Success Probability
For a distinguishing event, the data complexity and the success probability depend on the
probabilities p and p0 = p(1 + q) of the same event respectively in the random case and
in the case of the algorithm under consideration. In [PR18], detailed analysis of various
relations between data complexity of the distinguisher and the corresponding success
probability is presented. We use the most general result from [PR18, Theorem 2], which
involves no crude approximation such as ignoring the constant terms or assuming p, q to
be small.

Surprisingly, in the existing works with which we compare our results, only the data
complexity is given and none of them explicitly mention the success probability. We have
computed their success probabilities and we find that at the same success probability,
we achieve much lower complexities. Moreover, for our new distinguishers, we explicitly
mention the success probabilities along with the reported complexities.

4 Distinguishers using Direct Yoyo on AESQ

In order to adapt the Yoyo trick on AESQ, we need to first identify the S ◦L◦S construction
embedded in the permutation. To do that one has to recall the notion of MegaSBox
whereby 3.5 rounds2 of AESQ starting from an even round can be depicted as independent
computations of four 128-bit words (Ref. Fig. 4). These four MegaSBoxes constitute
the first S layer of the generic SPN. The subsequent MegaMixColumns corresponds to
L layer while the next iteration of four MegaSBoxes represent the last S layer thereby
completing the S ◦ L ◦ S sequence. Fig. 4 shows this construction starting from Round-2.
So two generic SP-rounds map to 8 rounds of AESQ without the last MMC. So, the Yoyo
distinguisher pertaining to two generic SP-rounds as discussed above directly applies to
AESQ2→9. In the next subsection we work out the details of this distinguisher which is the
first deterministic 8-round distinguisher for the AESQ permutation.

2Without the MegaMixColumns of the last round

Dhiman Saha, Mostafizar Rahman and Goutam Paul 109

Figure 5: AESQ2→9 as an S ◦L ◦ S construc-
tion.

Figure 6: Word configuration for each
MegaSBox

4.1 Distinguisher for 8 Rounds
Let us first look at the Yoyo game for AESQ which we will call as a subroutine for the
distinguishing algorithm. The Yoyo game shown in Algorithm 1 is tailored w.r.t AESQi→j

but will be analogous for any corresponding random permutation. The procedure is
self-explanatory except for two things:

• The function MSwap is used to swap words between two states of AESQ. Apart from
the states it accepts an argument DIRECTION which decides whether input or output
words (Ref. Fig. 4) will be swapped. So, if DIRECTION = FORWARD, then output words
will be swapped while for DIRECTION = BACKWARD, it will be done in accordance
with input word pattern. This distinction takes into account the direction in which
the game is being played. As will be seen later, we will need to play the game in
the backward direction to penetrate a higher number of rounds. Moreover, MSwap
can, at random, swap any one, two or three words of the states. As shown by the
authors of [RBH17], all such word-swap configurations are equivalent and preserve
the properties of the Yoyo game.

• The argument Mode is used to play either half or full of the Yoyo game and respectively
receives values MID or FULL. Later, in this work we will show how output of half
of the game can be used to generate input states that help to distinguish up to 16
rounds of AESQ.

Algorithm 1 Yoyo Game for AESQ

1: procedure Yoyo(p1, p2, AESQi→j , Mode, DIRECTION)
2:

{
c1 ← AESQi→j(p1); c2 ← AESQi→j(p2)

3: (c′1, c′2)← MSwap(c1, c2, DIRECTION) . DIRECTION ∈ {FORWARD, BACKWARD}
4: if Mode = MID then
5: return (c′1, c′2)
6: else if Mode = FULL then
7:

{
p′1 ← AESQ−1

i→j(c′1); p′2 ← AESQ−1
i→j(c′2)

8: end if
9: return (p′1, p′2)
10: end procedure

With the Yoyo game in place, the 8-round distinguisher that uses it, is straightforward
as shown in Algorithm 2. The distinguisher accepts a permutation PERMUTE. It chooses
inputs p1 and p2 such that α = p1 ⊕ p2 has a particular ZDP (of weight at least one and
at most three), say ν(α) = (1, 0, 1, 0). Then it plays the Yoyo game generating two new

110 New Yoyo Tricks with AES-based Permutations

inputs p′1 and p′2 with ∆ = p′1 ⊕ p′2. If PERMUTE = AESQ2→9, it is ensured that ZDP of α is
same as that of ∆.

Algorithm 2 Distinguisher for AESQ2→9
Output: 1 for AESQ, -1 otherwise . 8-Round AESQ without last MMC
1: procedure DistYoyo(PERMUTE)
2: p1, p2 ←

{
(m1,m2) : 3 ≥ wt(ν(m1 ⊕m2)) > 0

}
. At least one word active

3: p′1, p
′
2 ← Yoyo(p1, p2, PERMUTE, FULL, FORWARD)

4: if ν(p′1 ⊕ p′2) = ν(p1 ⊕ p2) then . Holds for AESQ2→9 deterministically
5: return 1
6: else
7: return -1
8: end if
9: end procedure

The pictorial description is captured by Fig. 7. It is intentionally shown that the
Nested ZDP might differ which will definitely happen probabilistically. This is because
the Yoyo principle guarantees that the ZDP will be preserved but has no claim on the
activity pattern inside the active words. In the next subsection we will show how assuming
a particular Nested ZDP enables us to extend the distinguisher to include the first round
making it the first 9-round AESQ result that starts from round one.

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

p′1

p′2

c′1

c′2

c1

c2

MSwap
β β

α ∆
ν(α) = ν(∆)

α : ν(α) = (1, 0, 0, 1)

∆ : ν(∆) = (1, 0, 0, 1)

Figure 7: Deterministic 8-round Yoyo distinguisher. ZDP of input difference α is preserved
by output difference ∆ of the Yoyo game. A possible configuration of (α,∆) is shown.
Note that though ν(α) = ν(∆), wt(ν2(α)) 6= wt(ν2(∆)). We will use this kind of Nested
ZDP to extend the Yoyo beyond 8 rounds.

4.2 Extension to 9-round AESQ

The inclusion of the first round relies on the notion of Nested ZDP that we introduced
earlier. The basic idea is to:

• First leverage on the determinism of the 8-round Yoyo while imposing some restriction
on both the input and output Nested ZDP, thereby making it probabilistic. If the
input and output differences of the Yoyo are α and η respectively, then the restrictions
are of the form:

Dhiman Saha, Mostafizar Rahman and Goutam Paul 111

1. Input: Exactly one byte active in one word.

wt(ν(α)) = 3 and ∃i : wt(ν2(αi)) = 15.

2. Output: Exactly one byte inactive in one word.

wt(ν(η)) Yoyo= 3 and ∃i : wt(ν2(ηi)) = 1.

Now, the probability that α leads to η is
[
16× 2−8 × (255

256)15] ≈ 2−4.08.

• The second step is to find a one-round differential to connect with the input difference
α. This is standard3 and we can, with a probability 2−22, find an input difference
that conforms to the input restriction for the Yoyo game. This leads to the inclusion
of round one in the forward direction.

• The last step is to include the round in the backward direction. One can easily note
that if the output restriction is satisfied then, the extra round in the return path
will automatically lead to a state that has four inactive bytes. More precisely, if the
last difference is denoted by ∆ then we have ∃i : wt(ν2(∆i)) = 4. Also, the inactive
bytes will belong to same diagonal due to the last inverse ShiftRows operation of
Round 1.

Fig. 8 gives an overview of the entire extension strategy and also depicts a particular
configuration of states that conform to the above statements while Algorithm 3 illustrates
the distinguishing procedure.

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

i1

i2

A
E
S
Q
1

A
E
S
Q
1

p1

p2

i′1

i′2

A
E
S
Q
1

A
E
S
Q
1

p′1

p′2

c′1

c′2

c1

c2

MSwap

α ∆

β η

γ γ

2−22

∃i : wt(ν2(∆i)) = 4

Verify

Figure 8: Probabilistic 9-round Yoyo distinguisher. A configuration of (α,∆) is shown.

Now, the final probability Pr
[
∃i : wt(ν2(∆i)) = 4

]
for AESQ1→9 and a corresponding

random permutation R is given by p0 = 2−26.08 and p = 16 × 2−32 × (255
256)60 ≈ 2−28.34

respectively, giving us a success rate of 71% at the data complexity of 226.08.
In the next section, we introduce the notion of improbable differential Yoyo whereby we

try to compose the Yoyo game with improbable differentials capitalizing on the inside-out
strategy.

3Recall, the classical 4 → 1 transition though AES MixColumns.

112 New Yoyo Tricks with AES-based Permutations

Algorithm 3 Distinguisher for AESQ1→9
Output: 1 for AESQ, -1 otherwise . 9-Round AESQ without last MMC
1: procedure ImpDistYoyo(PERMUTE)
2: count← 0
3: while count ≤ 226.08 do
4: i1, i2 ←

{
(m1,m2) : α = m1 ⊕m2;wt(ν(α)) = 3 ∧ ∃i : wt(ν2(αi)) = 12

}
. All four active bytes should belong to the same diagonal

5: p′1, p
′
2 ← Yoyo

(
i1, i2, PERMUTE, FULL, FORWARD

)
6: if ∃i : wt(ν2(αi)) = 4 then return 1

. All four inactive bytes should belong to the same diagonal
7: end if
8: count← count + 1
9: end while
10: return -1
11: end procedure

5 Improbable Differential Yoyo
In Indocrypt 2010, Tezcan introduced the notion of improbable differential cryptanalysis
[Tez10]. The idea is to find a differential which is less probable for a given permutation
(say, P) in comparison to a random permutation (say, R). So if PrP(∆in → ∆out) = p0
while PrR(∆in → ∆out) = p, then for the improbability criteria we must have p0 < p,
where PrP and PrR, represent the probabilities of the input difference ∆in and output
difference ∆out to occur for P and R respectively. Tezcan argued that improbability led to
the well-known impossibility criteria where p0 = 0. He further proposed an idea known as
the expansion technique [Tez10] to devise improbable differential by connecting (multiple)
differentials with an impossible differential. The expansion technique is briefly stated
below:

PrP(∆mid → ∆out) = 0 Impossible Differential

PrP(∆in → ∆mid) = p′ Connecting Differential

Let PrR(∆in → ∆out) = p

Let PrP(∆in → ∆out) = p0 if ∆in 6→ ∆mid

Then probability of the improbable differential for a given permutation P is given by:

PrP(∆in → ∆out) = p0 = (1− p′)× p+ p′ × 0 = (1− p′)p (2)

Our idea is to:

• First, use our notion of Nested ZDP with properties of the MixColumns to devise an
impossible differential.

• Then, we find a differential that connects the starting ZDP of the Yoyo game with
input difference of the impossible differential.

Overall, by virtue of the expansion technique, we are able to devise an improbable
differential leading to higher number of rounds than that covered by the Yoyo game. In
order to do this, we will use the inside-out technique described next.

Dhiman Saha, Mostafizar Rahman and Goutam Paul 113

5.1 The Inside-Out Technique
The inside-out technique has been used extensively in distinguishing public permutations
like the Keccak-f permutation [AM09], whereby the idea is to start from an intermediate
state to generate a set of inverted initial states that preserve a certain property (e.g. the
zero-sum property in case of Keccak). Here we try to adapt the technique to incorporate
the Yoyo game. The idea is as follows:

• Play the Yoyo game from an intermediate round to generate pairs of input states.

• In the return path of the Yoyo game, we extend the number of rounds using an
improbable/impossible differential.

In the next subsection we will show different distinguishers based on the following claim
which leads to impossible differences at various rounds of AESQ.

Claim 5.1 (Impossible Difference). Let the input difference before the rth round (where r
denotes an odd round) MegaMixColumns be δ and let exactly one word of δ (say δi) be
active i.e. wt(ν(δ)) = 3, then the following will hold

1. If wt(ν2(δi)) = 0, then all 64 SBoxes of the state will be active before (r+ 1)th round
Mega-MixColumns.

2. If wt(ν2(δi)) = 0, then all 16 SuperSBoxes of the state will be active before (r + 2)th

round Mega-MixColumns.

3. Unconditionally, all 4 MegaSBoxes of the state will be active before (r + 4)th round
Mega-MixColumns.

Proof. The proof proceeds as below:

1. wt(ν(δ)) = 3 and wt(ν2(δi) = 0) implies that every byte in word δi is active. Since
only one word is active, we have a byte active in every column. The word-configuration
will be in accordance with MegaSBox output words (See Fig. 4). Now, the claim
follows directly from the property of AES MixColumns. It is well known that the
total number of active bytes before and after a MixColumns operation cannot be less
than 5. Since, the input to every MixColumns operation in the rth round has 1 byte
active, then the output has all 4 bytes of the column active with a probability 1.
So the entire state is active after rth round MMC. Thus in the (r + 1)th round, all
SBoxes of the state have non-zero input difference and hence cannot have a zero
output difference and hence will be all active deterministically up to the next MMC
operation. If the output difference is denoted by η, then

Pr
[
wt(ν2(η)) = 1

]
= 0 ← Impossible Difference

2. The argument remains the same with the only difference that after the rth round
MMC all 16 SuperSBoxes are activated that span 1.5 rounds ending just before
(r + 1)th round MMC. Since, all SuperSBoxes are active, it is impossible to have a
zero-difference at the output of any of them.

3. For MegaSBox, the restriction wt(ν2(δi)) = 0 is no longer required. So, we only need
wt(ν(δ)) = 3. Irrespective of the status of the bytes inside the word, after rth round
MMC, all 4 MegaSBoxes will be activated and will span 3.5 rounds. Thus, at the end
of (r + 4)th round MMC, we cannot have the case that any of the words signifying
the output of the MegaSBoxes is inactive. If the output difference is denoted by γ,
then

Pr
[
wt(ν(γ)) = 1

]
= 0 ← Impossible Difference

114 New Yoyo Tricks with AES-based Permutations

The implications of Claim 5.1 are captured by Fig. 9 which shows the particular case of
r = 9 relevant for this work. So, we have three impossible differentials covering 10, 10 to 11
and 10 to 13 rounds respectively. We next show how we convert the first two into improbable
differentials to get a 9-round and 10-round distinguisher with practical complexities. Later,
using the third one, we will devise an impossible differential distinguisher for 12 rounds.

Figure 9: Different State Configurations Conforming to Claim 5.1

5.2 Improbable Differential Yoyo Distinguisher for 9-round and 10-
round AESQ

As per the requirement of the expansion technique explained earlier, we need an impossible
differential and a connecting differential that conforms to its input. Now, Claim 5.1 (1,2)
already gives us the impossible differential. We are interested particularly for the case when
r = 9. So, for r = 9, we have 1 and 2 round impossible differential (without last MMC as
shown in Fig. 9). We now use the Yoyo game to generate the connecting differential. The
strategy is demonstrated in Fig. 10. The probabilities can be derived as below:

α : wt(ν(α)) = 3

Pr[wt(ν(δ)) = 3] = 1 [∵ ν(α) Yoyo= ν(δ)]

Pr[wt(ν(δ)) = 3 ∧ wt(ν2(δi)) = 0] =
(

255
256

)16
[δi ← Only active word]

So, the technique is to use the Yoyo game to generate an "arbitrary" number of inputs
pairs (p′1, p′2) such that the output difference of these pairs over AESQ2→10 or AESQ2→11 can
never have an inactive SBox or SuperSBox respectively. To ascertain the data complexity
one needs to find the probabilities of these events occurring for a random permutation. In
the next subsection we find the data-complexity.

We directly use Eq. (2) to derive the probability of the combined differential. For
the 9-round attack, the probability of observing at least one inactive SBox for a random
permutation is 1−

(
255
256

)64
≈ 0.22. Similarly, for 10 rounds the probability of observing

Dhiman Saha, Mostafizar Rahman and Goutam Paul 115

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

i1

i2

p′1

p′2

i′1

i′2
M
M
C

M
M
C

A
E
S
Q
1
0

A
E
S
Q
1
0

c′1

c′2

MSwap

α δ

γ γ

β
A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
M
C

M
M
C

A
E
S
Q
1
0
→

1
1 A
E
S
Q
1
0
→

1
1

c′1

c′2

MSwap

α δ

γ γ

β

Figure 10: Improbable Differential Yoyo distinguisher for 9/10-round AESQ

an inactive SuperSBox is p = 16× 1
232 ×

(
232−1

232

)15
≈ 2−28. As per notations of Eq. (2),

we have:
• For 9 rounds

p ≈ 0.22

p′ =
(255

256

)16
≈ 0.94

p0 = (1− p′)p ≈ 0.0132

• For 10 rounds

p ≈ 2−28;

p′ =
(

255
256

)16
≈ 0.94

p0 = (1− p′)p ≈ 0.06× 2−28

Thus the numbers of input pairs needed to distinguish AESQ2→10 and AESQ2→11 are
around 1

0.22 ≈ 5 and 228 respectively with a success probability of 82% and 77% respectively,
thereby leading to the first practical distinguishers for these rounds of AESQ. For merely 5
samples in case of 9 rounds, the Normal approximation used in [PR18, Theorem 2] does
not hold and so we perform direct calculation of false positive and false negative errors in
computing the theoretical estimate of the success probability. Algorithm 4 captures both
9/10 round distinguishers at the same time. In the next section, we introduce the notion
of impossible differential Yoyo in the inside-out setting. Based on that we develop two
distinguishers on 12 and 16 rounds of AESQ.

6 Impossible Differential Yoyo
Impossible differential has been shown to be a special case of improbable differential
[Tez14, TS16]. Now it is easy to note that if the connecting differential used in the
expansion technique occurs with a probability 1, then the combined differential becomes
impossible. The basic idea is to use the determinism of the Yoyo game along with the
inside-out technique to arrive at the input of an impossible differential. We do this in two
ways: The first way leverages upon the third part of Claim 5.1. The second way tries to
combine two Yoyo games in two directions.

116 New Yoyo Tricks with AES-based Permutations

Algorithm 4 Distinguisher for AESQ2→10/AESQ2→11

Output: 1 for AESQ, -1 otherwise . 9/10-Round AESQ without last MMC
1: procedure ImprDistYoyo(PERMUTE, RNDS)
2: if RNDS = 9 then
3: CMPLXTY← 5
4: COND← wt(ν2(c′1 ⊕ c′2)) > 0
5: else
6: CMPLXTY← 228

7: COND← wt(ν2(c′1 ⊕ c′2)) = 4 . Inactive bytes ∈ same SuperSBox
8: end if
9: count← 0
10: while count ≤ dCMPLXTYe do
11: i1, i2 ←

{
(m1,m2) : wt(ν(m1 ⊕m2)) = 3

}
. One active word in m1 ⊕m2

12: p′1, p
′
2 ← Yoyo

(
i1, i2, AESQ−1

2→9, MID
)

. 9-Round AESQ without last MMC

13:

{
c′1 ← PERMUTE(p′1);
c′2 ← PERMUTE(p′2)

14: if COND = TRUE then return -1
15: end if
16: count← count + 1
17: end while
18: return 1
19: end procedure

6.1 Impossible Differential Yoyo Distinguisher for 12-round AESQ

This attack is similar to the ones described in the previous section with only difference
that we no longer have restriction on the connecting differential due to Claim 5.1 (3). So
what we have is an impossible differential spanning 3.5 rounds due to the MegaSBox and
the connecting differential that hold with probability 1 due to the Yoyo game. Fig. 11a
illustrates the strategy while the procedural details are covered by Algorithm 5.

Algorithm 5 Distinguisher for AESQ2→13
Output: 1 for AESQ, -1 otherwise . 12-Round AESQ without last MMC
1: procedure ImpDistYoyo(PERMUTE)
2: count← 0
3: while count ≤ 2126 do
4: i1, i2 ←

{
(m1,m2) : wt(ν(m1 ⊕m2)) = 3

}
. One active word in m1 ⊕m2

5: p′1, p
′
2 ← Yoyo

(
i1, i2, AESQ−1

2→9, MID
)

. 9-Round AESQ without last MMC

6:

{
c′1 ← PERMUTE(p′1)
c′2 ← PERMUTE(p′2)

7: if wt(ν(c′1 ⊕ c′2)) = 1 then return -1 . Impossible difference for AESQ2→13
8: end if
9: count← count + 1
10: end while
11: return 1
12: end procedure

The probability that any one of the words corresponding to the MegaSBoxes is active

Dhiman Saha, Mostafizar Rahman and Goutam Paul 117

for a random permutation is p = 4
2128 . Further, we have p′ = 1 and therefore p0 = 0,

resulting in a data complexity of 2126 with a success probability of 84%. Next we show
an interesting way to combine two Yoyo games to come up with a 16-round distinguisher
starting from round 2.

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
M
C

M
M
C

A
E
S
Q
1
0
→

1
3

A
E
S
Q
1
0
→

1
3

c′1

c′2

MSwap

α γ

β β

∆

wt(ν(α)) = 3

wt(ν(γ))
Yoyo
= wt(ν(α))

Let, ∆ =
{
s : ∃i wt(ν2(si)) = 16

}

Pr
[{

AESQ2→13(p′1)⊕ AESQ2→13(p′2)
}
∈ ∆

]
= 0

Pr
[{
R(p′1)⊕R(p′2)

}
∈ ∆

]
= 2−126

(a) Impossible Differential Yoyo

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

A
E
S
Q
2
→

9

M
M
C

M
M
C

A
E
S
Q
1
0
→

1
7 A
E
S
Q
1
0
→

1
7

A
E
S
Q
1
0
→

1
7 A
E
S
Q
1
0
→

1
7

p1

p2

p′1

p′2

i′1

i′2

i′3

i′4

c′1

c′2

m1

m2

v1

v2

r1

r2

MSwap

MSwap

α

β β

γγ

∆

η

δ

Impossible Difference

Induced Difference

(b) Impossible Differential Bi-directional Yoyo

Figure 11: Impossible Differential Yoyo Distinguishers on AESQ2→13 and AESQ2→17

6.2 Impossible Differential Bi-directional Yoyo Distinguisher for 16-
round AESQ

As the name suggests, bi-directional Yoyo combines two Yoyo games. These games are
played in opposite directions and employ the inside-out strategy. The ZDP requirements
of the two games are different as stated below:

• Game 1 is played with AESQ−1
2→9 without last MMC. Only one word should be active

in the input differential. So the weight of ZDP needs to be 3.

i′1, i
′
2 ← Yoyo

(
m1,m2, AESQ−1

2→9, FULL, BACKWARD
)

: wt(ν(m1 ⊕m2)) = 3

• Game 2 is played with AESQ10→17 without last MMC. All words should be active in
the input differential. So the weight of ZDP needs to be 0.

r1, r2 ← Yoyo
(
i′3, i
′
4, AESQ10→17, FULL, FORWARD

)
: wt(ν(i′3 ⊕ i′4)) = 0

• In order to connect Game 1 and Game 2, we will use an MMC operation. One can
visualize this as the MMC of Round 9 which is excluded while playing Game 1. So
the claim is as follows:

Claim 6.1. If i′3 = MMC(i′1) and i′4 = MMC(i′2), then

1. wt(ν(i′3 ⊕ i′4)) = 0 and
2. Pr

[
wt(ν(r1 ⊕ r2)) = 1

]
= 0

118 New Yoyo Tricks with AES-based Permutations

Proof. The first claim follows from the fact that due to Game 1, wt(ν(i′1 ⊕ i′2)) = 3.
So, we have exactly one word active in (i′1 ⊕ i′2). This also implies that due to
the word configuration (Recall Fig. 4) we can have exactly one byte active in each
column of (i′1 ⊕ i′2). Due to the property of MixColumns, every single active byte
in (i′1 ⊕ i′2) will lead to a fully (all four bytes) active column in (i′3 ⊕ i′4). Since, the
minimum number of active bytes in (i′1 ⊕ i′2) is one, so after after MMC on i′1 and i′2,
we will have at least one column active in (i′3 ⊕ i′4). Now, as each byte in the active
column belongs to a different word, so an active column implies four active words i.e.
wt(ν(i′3 ⊕ i′4)) = 0.

The second claim can be easily inferred from Game 2. Since, the input difference of
Game 2 has four active words, so we cannot have an inactive word in the output
difference r1 ⊕ r2.

The entire bi-directional game is captured by Fig. 11b. Once Game 1 and Game 2
are connected, we can appreciate the fact that the combination of the second half of
Game 1, the connecting MMC layer and the first half of Game 2 actually behaves like
AESQ2→17 without the last MMC. This leads us in the direction of the distinguishing
strategy described in Algorithm 6. So one can arbitrarily generate pairs of inputs for
16 round AESQ starting from round 2 excluding last MMC. The corresponding outputs
under MSwap when subjected to AESQ−1

10→17 without Round 10 MMC can never lead to
output difference having one inactive word. For a random permutation this happens with
a probability of 2−126. So, the data complexity and the success probability remain the
same as the 12-round distinguisher.

Algorithm 6 Distinguisher for AESQ2→17
Output: 1 for AESQ, -1 otherwise . 16-Round AESQ without last MMC
1: procedure ImpDistBiYoyo(PERMUTE)
2: count← 0
3: while count ≤ 2126 do
4: i1, i2 ←

{
(m1,m2) : wt(ν(m1 ⊕m2)) = 3

}
. One active word in m1 ⊕m2

5: p′1, p
′
2 ← Yoyo

(
i1, i2, AESQ−1

2→9, MID, BACKWARD
)

. 9-Round AESQ without last
MMC

6:

{
c′1 ← PERMUTE(p′1)
c′2 ← PERMUTE(p′2)

7: (v1, v2)← MSwap(c′1, c′2, FORWARD) . Excludes possibility of trivial extension

8:

{
r1 ← AESQ−1

10→17(v1)
r2 ← AESQ−1

10→17(v2)
. 9-Round AESQ without last MMC

9: if wt(ν(r1 ⊕ r2)) = 1 then . Impossible difference for AESQ2→17
10: return -1
11: end if
12: count← count + 1
13: end while
14: return 1
15: end procedure

In the next section, we investigate the Known-Key security of AES in the light of the
impossible differential Yoyo strategies developed above.

Dhiman Saha, Mostafizar Rahman and Goutam Paul 119

7 Applications to AES in the Known-Key Setting
Rønjom et al. have already shown application of Yoyo on AES in the secret key paradigm
and argued that the maximum penetration was up to 6 rounds. In contrast, here we are
more interested in public permutations which is motivated by our need to engage strategies
like inside-out and start-in-the-middle which are implicitly inhibited in the secret-key
setting. So an obvious direction would be to look at the known-key notion under which
AES behaves as a public permutation and which opens up the avenue to expose AES to our
extension strategies. As suggested, known-key refers to the scenario where the attacker has
access to the key. Introduced by Knudsen and Rijmen [KR07] in Asiacrypt 2007, the idea
was mainly motivated by the fact that non-existence of known-key distinguishers would
imply non-existence of secret-key ones. Additionally, since block-ciphers are often used as
primitives in hash functions where key-input could be totally or partially controllable, such
kind of known-key analysis is imperative. The known-key security of block ciphers has
received a lot of attention with Andreeva et al. attempting to formalize it first [ABM13]
and later being systematically treated by Mennink and Preneel [MP15] in the context of
hash functions. Below, we explore how some of the techniques introduced so far adapt
to AES in this setting. In the process, we are able to device the one of the most efficient
8-round known-key distinguisher in terms of overall cost. It is assumed that the reader is
familiar with AES and the notations used here are analogous to AESQ. The basic approach,
as also taken in [RBH17] and earlier in this work for AESQ, is to capitalize on the well-known
AES SuperSBox.

Impossible Differential Yoyo for 6-round AES The first idea is to apply the basic im-
possible differential Yoyo technique described in Section 6.1. So we use the inside-out
philosophy to devise a connecting differential as per the last part of Claim 5.1 which is
easily adapted to be applicable on AES. So we initiate the Yoyo game such that weight
of ZDP is three. By virtue of the game, we get back the same ZDP at the end of 3.5
rounds. Now due to MixColumns (MC) of fourth round, all SuperSBoxes get activated.
Thus, propagating forward for two rounds, due to the SuperSBox property, we cannot
have the case, that the output difference has at least one inactive SuperSBox. The same
for a random permutation would occur with a probability of 2−30.

A
E
S
Q
1
→

4 A
E
S
Q
1
→

4

A
E
S
Q
1
→

4 A
E
S
Q
1
→

4

p1

p2

i1

i2

p′1

p′2

i′1

i′2

M
C

M
C

A
E
S
5
→

6

A
E
S
5
→

6

c′1

c′2

MSwap

α γ

β β

∆

Induced Difference

Impossible Difference

A
E
S
1
→

4

A
E
S
1
→

4

A
E
S
1
→

4

A
E
S
1
→

4

M
C

M
C

A
E
S
5
→

8

A
E
S
5
→

8

A
E
S
5
→

8

A
E
S
5
→

8

p1

p2

p′1

p′2

i′1

i′2

i′3

i′4

c′1

c′2

m1

m2

v1

v2

r1

r2

MSwap

MSwap

α

β β

γγ

∆

η

δ

Impossible Difference

Induced Difference

Figure 12: Impossible Differential Yoyo based Known-Key distinguisher for 6/8-round AES

120 New Yoyo Tricks with AES-based Permutations

Impossible Differential Bi-directional Yoyo for 8-round AES The bi-directional Yoyo
trick introduced in the last section extends easily to the known-key model of AES. Since
a single S ◦ L ◦ S instance covers 4 rounds barring the last MixColumns (MC), two
back-to-back Yoyo games with MC in between extends the attack to 8 rounds. As argued
earlier, since the same impossible differential is used here, we are able to devise an 8-round
known-key distinguisher with a complexity of 230 with negligible memory. Fig. 12 depicts
both the 6 and 8 round distinguishers.

Since, the introduction of known-key model, AES, in particular, has been analyzed
extensively. Below we look at the state-of-the-art in devising 8-round known-key dis-
tinguishers on AES. Our inclination to 8 rounds stems from the urge to make a direct
comparison with the maximum rounds we are able to penetrate here. This is captured in
Table 3, where all the complexities (including ours) correspond to a success probability
of 84%. Grassi and Rechberger [GR17] provide a near exhaustive analysis of known-key
distinguishers while improving most of the available ones and also reporting new ones.
Their main contribution was to show that the idea proposed by Gilbert [Gil14] is not
limited to 10 rounds and can be further extended to 12 rounds. Going back to results on 8
rounds, we can see from Table 3 that the result reported here is only superseded by the
extended multiple differential trail attack by Grassi and Rechberger while incurring some
extra memory complexity.

Table 3: 8-round Known-Key Distinguishers on AES
Time

Complexity
Memory

Complexity
Property Reference

264 264 Uniform Distribution [Gil14]
248 232 Differential Trail [GP10]
244 232 Multiple Differential Trail [JNP13]

230 negligible Impossible Differential
Bi-directional Yoyo

Section 7

223 216 Extended 7-Round Multiple
Differential Trail

[GR17]

8 Practical Verification
All distinguishers having practical complexities, i.e., AESQ2→9, AESQ1→9, AESQ2→10, AESQ2→11,
AES1−6 and AES1−8 were implemented on a Java based hyper-threaded environment and
verified to be conforming to the expected results. The details are furnished in Appendix A.
The experimental details of the success probabilities computed for the distinguishers are
provided in Appendix A.1. We now provide a discussion on all the distinguishing strategies
introduced in this work.

9 Discussion
Distinguishing public permutations has always been seen as tricky due to the unkeyed
nature of these crypto primitives. Two important things that are needed to be ensured to
make a distinguisher in this setting meaningful are non-triviality and randomness.

A distinguisher should not be trivial in the sense that it should not be trivially extendible
meaning that it is not supposed to work for any arbitrary number of rounds. Let us now
discuss all distinguishers presented here in the light of this intended property. It is easily
noticeable that the limitation of the Yoyo principle to hold only for (S ◦ L ◦ S) is the first

Dhiman Saha, Mostafizar Rahman and Goutam Paul 121

line of defence against non-triviality. Thus rounds covered based on only a single Yoyo
game cannot be extended beyond any 8 rounds of AESQ excluding last MMC while starting
from an even round. The same is true for 4 rounds of AES without the last MC. As regards
the strategies that were composed with Yoyo, they mostly rely on differentials that work
over certain specified rounds and hence are not arbitrarily extendible. The only exception
comes with the bi-directional Yoyo distinguisher where the last verification might seem
non-standard. However, the non-triviality is ensured by the last MSwap operation (for
example, Step 7 of Algorithm 6 for AESQ). Without that operation the distinguisher would
be trivial because one could append any number of rounds as a part of first half of the
second Yoyo game and invert the same number of rounds in the verification step.

The requirement of randomness is fundamental to devising distinguishers in general
and for public permutations in particular. This is primarily because due to the unkeyed
nature one could easily enumerate the permutation and employ the inverse to have a trivial
verification. The distinguishing strategy should allow in principle sufficient randomness in
choosing the inputs. In this respect, all distinguishers developed in the current work allow
for that. Most of the distinguishers use first half of the Yoyo game as a subroutine and
can generate almost arbitrary number of inputs which conform to certain input differences.
These inputs lead to certain required differences in the middle either deterministically
by virtue of the Yoyo technique or probabilistically augmenting Yoyo with probable,
improbable or impossible differentials.

Table 4: Distinguishers reported in this work
#R Start → End Complexity Strategy Remarks

AE
SQ

8 2→ 9 1 Yoyo Basic Yoyo

9 1→ 9 226.08 Yoyo +
Nested ZDP

First 9 round
Distinguisher
starting from

Round 1
9 2→ 10 5 Improbable

Differential Yoyo
Uses the
inside-out
technique

10 2→ 11 228

12 2→ 13 2126 Impossible
Differential Yoyo

16 2→ 17 2126 Bi-directional Impossible
Differential Yoyo

Uses
inside-out with

bi-directional Yoyo

AE
S 6 1→ 6 230 Impossible

Differential Yoyo

Uses the
inside-out
technique

8 1→ 8 230 Bi-directional Impossible
Differential Yoyo

Uses
inside-out with

bi-directional Yoyo

This work explores many ways to extend the Yoyo game. The authors in [RBH17], have
shown attacks on 3/5 rounds AES, where they extend the basic Yoyo game. However, with
the exception of the AESQ2→9 and AESQ1→9 distinguishers, the strategies reported here
differ from the ones shown in [RBH17]. This is mostly because of the inside-out philosophy
used here which becomes inapplicable in the secret-key setting. The main contribution
of this work comes in the form of the idea of using the inside-out technique to partially
deploying the Yoyo game as an input generator. The notion of Nested ZDP introduced

122 New Yoyo Tricks with AES-based Permutations

here seems to work nicely as a combiner of Yoyo and classical differential cryptanalysis.
Along with MixColumns, the techniques used here exploit the properties of SuperSBoxes
and MegaSBoxes. The bi-directional Yoyo game is the most effective strategy leading
to doubling of the number of rounds penetrated. One might look critically at the last
verification which uses AESQ−1

10→17. However, usage of such kind of verification is available
in literature of distinguishers on Feistel schemes [LWZ15]. Moreover, as argued earlier, the
strategy ensures non-triviality. Except the 12 and 16 round distinguishers of AESQ, all
other distinguishers of AESQ and AES rely on practical data complexities and negligible
memory. The closest comparable results for AESQ are due to Bagheri et al. [BMS16] who
report rebound and time-memory trade-off attacks. Though the maximum number of
rounds is same, the current work exponentially outperforms the former both in terms of
data and memory requirements.

In case of 8-round AES, in the known-key setting, with the exception of [GR17], our
result beats all other works, while being the only one that requires negligible memory.
Table 4 summarizes the attacks presented here. It should be noted however that comparing
attacks in the known-key model only by their complexity is not completely fair, as one has
to take into consideration also the rate of simplicity of the found non-random property,
which may affect the chances to extend the distinguisher to more rounds or to more
powerful attacks. In this respect, our attack is not directly comparable to several of the
previous results, as the non-random property we find is somewhat complex.

10 Conclusion

In this work we explored the impact of the Yoyo cryptanalytic strategy on public permuta-
tion AESQ as well as AES in the known-key model. We deployed the basic Yoyo technique
to get a deterministic 8-round distinguisher for AESQ and extended it using our notion of
Nested ZDP to include the first round using around 226 queries. In addition to this we
used the inside-out strategy to augment Yoyo using classical, improbable and impossible
differentials to reach 9, 10, 12 rounds starting from round 2 with data complexities of about
22, 228 and 2126 respectively. The final strategy devised here allows us to combine two Yoyo
games giving a 16-round distinguisher using 2126 queries. The impossible difference based
Yoyo strategies when applied to AES lead to known-key distinguishers for 6 and 8 rounds
with a complexity of 230. One may note that all improbable distinguishers reported can
be converted to impossible ones while paying some extra cost in terms of data complexity.
The success probabilities of the attacks have been computed to be high enough and all
distinguishers with practical complexities were verified using computer simulations.

It can be noted that attacks on AESQ presented here exclude the last MMC and except
the attack on AESQ1→9 all of them start from round 2 due to the reliance on the MegaSBox.
It would be interesting to overcome these limitations by looking further into the design
of AESQ or possibly the Yoyo game itself. The bi-directional Yoyo game warrants further
attention and might become a valuable generic cryptanalytic tool for analyzing other
public crypto primitives.

References

[ABM13] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards Understanding
the Known-Key Security of Block Ciphers. In Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, pages 348–366, 2013.

Dhiman Saha, Mostafizar Rahman and Goutam Paul 123

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. NIST mailing list,
2009. http://www.131002.net/data/papers/AM09.pdf.

[BA14] Khovratovich D Biryukov A. PAEQ v1. http://competitions.cr.yp.to/
round1/paeqv1.pdf, 2014.

[BBD+99] Eli Biham, Alex Biryukov, Orr Dunkelman, Eran Richardson, and Adi Shamir.
Initial Observations on Skipjack: Cryptanalysis of Skipjack-3XOR. In Stafford
Tavares and Henk Meijer, editors, Selected Areas in Cryptography, pages 362–
375, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[BK14] Alex Biryukov and Dmitry Khovratovich. PAEQ: Parallelizable Permutation-
Based Authenticated Encryption. In Sherman S. M. Chow, Jan Camenisch,
Lucas C. K. Hui, and Siu Ming Yiu, editors, Information Security, pages 72–89,
Cham, 2014. Springer International Publishing.

[BLP16] Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of Feistel
Networks with Secret Round Functions. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography – SAC 2015, pages 102–121, Cham,
2016. Springer International Publishing.

[BMS16] Nasour Bagheri, Florian Mendel, and Yu Sasaki. Improved Rebound Attacks on
AESQ: Core Permutation of CAESAR Candidate PAEQ. In Proceedings, Part
II, of the 21st Australasian Conference on Information Security and Privacy -
Volume 9723, pages 301–316, New York, NY, USA, 2016. Springer-Verlag New
York, Inc.

[cae] CAESAR Competition. https://competitions.cr.yp.to/caesar.html.

[Dew] Rishi Dewan. Advanced-Encryption-Standard-Algorithm. https://github.
com/rishidewan33/Advanced-Encryption-Standard-Algorithm.

[DLP+09] Joan Daemen, Mario Lamberger, Norbert Pramstaller, Vincent Rijmen, Fred-
erik Vercauteren, Esat Cosic, K U Leuven, Louvain , and Belgium . Compu-
tational aspects of the expected differential probability of 4-round AES and
AES-like ciphers. 85:85–104, 06 2009.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag,
Berlin, Heidelberg, 2002.

[DR06] Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in
AES. In Security and Cryptography for Networks, 5th International Conference,
SCN 2006, Maiori, Italy, September 6-8, 2006, Proceedings, pages 78–94, 2006.

[Gil14] Henri Gilbert. A Simplified Representation of AES. In Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, pages 200–222, 2014.

[GP10] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved
Attacks for AES-Like Permutations. In Fast Software Encryption, 17th In-
ternational Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised
Selected Papers, pages 365–383, 2010.

[GR17] Lorenzo Grassi and Christian Rechberger. New and Old Limits for AES
Known-Key Distinguishers. Cryptology ePrint Archive, Report 2017/255, 2017.
https://eprint.iacr.org/2017/255.

http://www.131002.net/data/papers/AM09.pdf
http:// competitions.cr.yp.to/round1/paeqv1.pdf
http:// competitions.cr.yp.to/round1/paeqv1.pdf
https://competitions.cr.yp.to/caesar.html
https://github.com/rishidewan33/Advanced-Encryption-Standard-Algorithm
https://github.com/rishidewan33/Advanced-Encryption-Standard-Algorithm
https://eprint.iacr.org/2017/255

124 New Yoyo Tricks with AES-based Permutations

[JNP13] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Multiple Limited-
Birthday Distinguishers and Applications. In Selected Areas in Cryptography
- SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August
14-16, 2013, Revised Selected Papers, pages 533–550, 2013.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, pages 315–324,
2007.

[LWZ15] Li Lin, Wenling Wu, and Yafei Zheng. Improved Meet-in-the-Middle Distin-
guisher on Feistel Schemes. In Selected Areas in Cryptography - SAC 2015 -
22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, pages 122–142, 2015.

[MP15] Bart Mennink and Bart Preneel. On the Impact of Known-Key Attacks
on Hash Functions. In Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II, pages 59–84, 2015.

[oST] National Institute of Standards and Technology. SHA-3 : Cryptographic hash
algorithm competition. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html.

[PR18] Goutam Paul and Souvik Ray. On data complexity of distinguishing attacks
versus message recovery attacks on stream ciphers. Des. Codes Cryptography,
86(6):1211–1247, 2018.

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo Tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptol-
ogy – ASIACRYPT 2017, pages 217–243, Cham, 2017. Springer International
Publishing.

[SKMC16] Dhiman Saha, Sourya Kakarla, Srinath Mandava, and Dipanwita Roy Chowd-
hury. Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ. In
Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Pri-
vacy, and Applied Cryptography Engineering, pages 194–210, Cham, 2016.
Springer International Publishing.

[Tez10] Cihangir Tezcan. The Improbable Differential Attack: Cryptanalysis of Reduced
Round CLEFIA. In Guang Gong and Kishan Chand Gupta, editors, Progress
in Cryptology - INDOCRYPT 2010, pages 197–209, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[Tez14] Cihangir Tezcan. Improbable differential attacks on Present using undisturbed
bits. J. Computational Applied Mathematics, 259:503–511, 2014.

[TS16] Cihangir Tezcan and Ali Aydin Selçuk. Improved improbable differential attacks
on ISO standard CLEFIA: Expansion technique revisited. Inf. Process. Lett.,
116:136–143, 2016.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

Dhiman Saha, Mostafizar Rahman and Goutam Paul 125

A Experimental Verification
Most of the distinguishers presented in this paper have practical complexities. These
have been performed experimentally and their complexities have been verified. All the
experiments have been performed on a system with Intel core i7-6700 CPU@3.40 × 8 and
memory 16GB. For programming, we have used Java openjdk version 1.8.0_181. For
implementing AES functionalities, we have used publicly available code [Dew].

The distinguisher for AESQ2→9 is deterministic in nature and this attack is performed
in negligible time using Algorithm 2. The complexity of the distinguisher for AESQ1→9 is
226.05. For the attack, pairs of plaintexts having only one word difference have been chosen
at random. Plaintexts pairs whose differences have not mitigated into a byte after the
first round of AESQ are filtered out. Among the remaining pairs, all possible swapping are
done between the corresponding ciphertexts. Algorithm 3 describes the distinguisher. This
attack has been performed using a single thread and it took 17435867(≈ 224.05) iterations
in 557 seconds for successfully finding a pair of plaintexts and a swap vector which conforms
to our claim. The following pair of texts conform to our claim when swapped after forward
permutation using the given vector.

fa b1 5a 2f 00 68 a1 e5 b3 55 81 01 c3 3d 4c 8a
b7 64 0e f1 92 d5 10 b0 89 cb 6f 51 b1 63 6c 00
f8 9f 22 15 97 1a 44 7b 2d c3 64 c6 67 64 b2 43
28 87 32 25 18 df 4f 98 c6 b0 c7 a4 28 2a 59 9d




2e b1 5a 2f 00 68 a1 e5 b3 55 81 01 c3 3d 4c 8a
b7 70 0e f1 92 d5 10 b0 89 cb 6f 51 b1 63 6c 00
f8 9f f2 15 97 1a 44 7b 2d c3 64 c6 67 64 b2 43
28 87 32 4c 18 df 4f 98 c6 b0 c7 a4 28 2a 59 9d


vector =

[
01 01 01 00 01 01 00 01 01 01 00 01 01 01 01 00

]
• Initial difference of two input states:

d4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 d0 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 00 00 00 00 00 00 00 00 00


• Difference of two states after one round

02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00


• Two states before swapping (before last MixColumns and ShiftRows)

4e 12 6c 05 2c ab 29 96 c7 76 26 7c 68 a6 b2 e1
b2 38 9b 7a f3 68 e0 02 10 f1 40 f6 dc 42 0c 59
67 97 9b 0a 6c 61 25 0e 0f f4 92 cd 59 33 18 d3
53 d2 4c 06 2e da e9 29 88 fa 5f 2d b1 ae b7 be




24 2c e7 0d 40 4d a4 20 92 30 a8 fa b6 0e 8a 2d
8b 89 a0 1a 14 c5 e7 e9 c6 84 2e 86 49 32 13 a5
c1 31 6b 2f a1 87 1c cf ea ca ce cd e0 46 c3 1f
03 c4 c4 e5 6f e5 f3 ad cf 8d be 5a 8c ad 7a bd



126 New Yoyo Tricks with AES-based Permutations

• Difference of two permuted states before swapping
6a 3e 8b 08 6c e6 8d b6 55 46 8e 86 de a8 38 cc
39 b1 3b 60 e7 ad 07 eb d6 75 6e 70 95 70 1f fc
a6 a6 f0 25 cd e6 39 c1 e5 3e 5c 00 b9 75 db cc
50 16 88 e3 41 3f 1a 84 47 77 e1 77 3d 03 cd 03


• Two states after swapping (before last MixColumns and ShiftRows)

4e 12 6c 0d 2c ab a4 96 c7 76 a8 7c 68 a6 b2 2d
b2 38 9b 1a f3 68 e7 02 10 f1 2e f6 dc 42 0c a5
67 97 9b 2f 6c 61 1c 0e 0f f4 ce cd 59 33 18 1f
53 d2 4c e5 2e da f3 29 88 fa be 2d b1 ae b7 bd




24 2c e7 05 40 4d 29 20 92 30 26 fa b6 0e 8a e1
8b 89 a0 7a 14 c5 e0 e9 c6 84 40 86 49 32 13 59
c1 31 6b 0a a1 87 25 cf ea ca 92 cd e0 46 c3 d3
03 c4 c4 06 6f e5 e9 ad cf 8d 5f 5a 8c ad 7a be


• Difference of two permuted states after swapping

6a 3e 8b 08 6c e6 8d b6 55 46 8e 86 de a8 38 cc
39 b1 3b 60 e7 ad 07 eb d6 75 6e 70 95 70 1f fc
a6 a6 f0 25 cd e6 39 c1 e5 3e 5c 00 b9 75 db cc
50 16 88 e3 41 3f 1a 84 47 77 e1 77 3d 03 cd 03


• Difference of states after 1st round (during inverse permutation)

d7 00 00 00 d9 00 00 00 46 00 00 00 75 00 00 00
00 c3 00 00 00 06 00 00 00 15 00 00 00 c8 00 00
00 00 ec 00 00 00 e6 00 00 00 65 00 00 00 16 00
00 00 00 ec 00 00 00 00 00 00 00 8f 00 00 00 02


• Difference of two states after inverse permutation

b5 d0 e8 68 6c b4 07 00 90 19 58 4e 4c b1 ff b1
06 1a 63 cb 00 48 08 cf 9a 77 37 1b bf 0d 35 c5
e4 f5 61 de d1 00 de fb a7 65 6c fa 34 2d 4a ed
1c c0 83 d6 bf 9f 00 d4 25 a3 c1 67 18 2e f0 0f


For performing distinguishing attack on AESQ2→11, 228 pairs of plaintexts have been

used. To reduce the running time, 16 threads have been used. It is an improbable
differential distinguisher. For AESQ2→11, the distinguisher took 5047.616 seconds to run
for all 228 iterations and have not found the improbable differential property; while for
the random permutation it took 225885057 (≈ 227.75) iterations to find the improbable
differential property; and thus it conforms to our claim. The distinguisher for AESQ2→10
is also improbable differential in nature with a complexity of 5. In negligible time, its
property has been verified. Algorithm 4 describes both of these distinguishers. We did not
implement distinguishers for AESQ2→13 and AESQ2→17 as their complexities are impractical.

The distinguishing attacks on AES1→8 introduced in this paper have practical complex-
ity. This distinguishing attack is similar to Algorithm 6 with reduced complexity. The
distinguishing algorithm ran for 230 iterations in 2977.575 seconds in the above machine
and have not found the impossible differential with an inactive SuperSBox. For random
permutation, we have found this differential in 187840320 (≈ 227.48) iterations.

Dhiman Saha, Mostafizar Rahman and Goutam Paul 127

A.1 Success Probability
For experimental verification of success probabilities, a blackbox is considered which can
act as a cipher C (we consider C =AESQ/AES) or as a random permutation R. To calculate
the success probability, consider the following confusion matrix in Table 5.

Table 5: Confusion Matrix of C and R

Actual
Observed C R

C oc − nF P nF N

R nF P or − nF N

The experiment is performed considering C in the blackbox ac times and R in the
blackbox ar times. Based on the output, C is decided oc times and R is decided or times.
The numbers of false positives and false negatives are denoted by nF P and nF N respectively.
Then the success probability is given by

Pr[Success] = (oc − nF P) + (or − nF N)
oc + or

= (oc − nF P) + (or − nF N)
ac + ar

.

Table 6 shows the experimental results of various distinguishers and their corresponding
success probabilities. The success probabilities calculated by experimentation is close
enough to their respective theoretically estimated values.

Table 6: Experimental Verification of Success Probability

Distinguisher #n Blackbox Detected as
AESQ/AES

Detected as
R

Experimental
Success

Probability

Estimated
Success

Probability

AESQ1→9 1000 AESQ1→9 826 174 0.75 0.70
R 324 676

AESQ2→10 1000 AESQ2→10 645 355 0.70 0.82
R 258 742

AESQ2→11 100 AESQ2→11 100 0 0.86 0.77
R 29 71

AES1→6 100 AES1→6 100 0 0.81 0.83
R 39 61

AES1→8 100 AES1→8 100 0 0.82 0.83
R 37 63

	Introduction
	Description of AESQ
	Tools for the Analysis
	Notations
	Yoyo Analysis for Two Generic SP-Rounds
	SuperSBox and MegaSBox of AESQ
	Data Complexity and Success Probability

	Distinguishers using Direct Yoyo on AESQ
	Distinguisher for 8 Rounds
	Extension to 9-round AESQ

	Improbable Differential Yoyo
	The Inside-Out Technique
	Improbable Differential Yoyo Distinguisher for 9-round and 10-round AESQ

	Impossible Differential Yoyo
	Impossible Differential Yoyo Distinguisher for 12-round AESQ
	Impossible Differential Bi-directional Yoyo Distinguisher for 16-round AESQ

	Applications to AES in the Known-Key Setting
	Practical Verification
	Discussion
	Conclusion
	Experimental Verification
	Success Probability

