Nonlinear Approximations in Cryptanalysis Revisited

Christof Beierle, Anne Canteaut and Gregor Leander

SnT, University of Luxembourg, Luxembourg Inria, Paris, France HGI, Ruhr-Universität Bochum, Germany

FSE 2019

Linear cryptanalysis [Matsui 94] as a standard attack method.
 → approximate linear function in the output by a linear function.

- Linear cryptanalysis [Matsui 94] as a standard attack method.
 → approximate linear function in the output by a linear function.
- Generalization to nonlinear approximations was first discussed by Harpes, Kramer and Massey in 1995 and Knudsen, Robshaw in 1996.

- Linear cryptanalysis [Matsui 94] as a standard attack method.
 → approximate linear function in the output by a linear function.
- Generalization to nonlinear approximations was first discussed by Harpes, Kramer and Massey in 1995 and Knudsen, Robshaw in 1996.
- They were rediscovered in the context of invariant attacks, i.e., invariant subspace attacks [Leander et al. 2011] and the nonlinear invariant attack [Todo, Leander, Sasaki 2016].
 - \rightarrow deterministic nonlinear approximations

- Linear cryptanalysis [Matsui 94] as a standard attack method.
 → approximate linear function in the output by a linear function.
- Generalization to nonlinear approximations was first discussed by Harpes, Kramer and Massey in 1995 and Knudsen, Robshaw in 1996.
- They were rediscovered in the context of invariant attacks, i.e., invariant subspace attacks [Leander et al. 2011] and the nonlinear invariant attack [Todo, Leander, Sasaki 2016].
 - \rightarrow deterministic nonlinear approximations

Our Contribution

We study nonlinear approximations using the framework of linear cryptanalysis.

1 Our framework for (non-)linear approximations

Invariants imply highly-biased linear approximations (in many cases)

Probabilistic nonlinear approximations for cryptanalysis

(Non-)linear Approximations

- Let $F \colon \mathbb{F}_2^m \to \mathbb{F}_2^n$ be a function (e.g., a block cipher with a fixed key)
- Approximate a Boolean function *h* in the output by a Boolean function *g* in the input
- Quantify $Prob_x [g(x) + h(F(x)) = 0] \frac{1}{2}$

(Non-)linear Approximations

- Let $F \colon \mathbb{F}_2^m \to \mathbb{F}_2^n$ be a function (e.g., a block cipher with a fixed key)
- Approximate a Boolean function *h* in the output by a Boolean function *g* in the input
- Quantify $Prob_x [g(x) + h(F(x)) = 0] \frac{1}{2}$

Definition: Correlation of an Approximation

Let $g : \mathbb{F}_2^m \to \mathbb{F}_2, h : \mathbb{F}_2^n \to \mathbb{F}_2$ be Boolean functions. The correlation of the approximation $g(x) \approx h(F(x))$ is defined as

$$\operatorname{cor}_F(g,h) \coloneqq 2 \cdot \operatorname{Prob}_X[g(x) = h(F(x))] - 1$$
.

(Non-)linear Approximations

- Let $F \colon \mathbb{F}_2^m \to \mathbb{F}_2^n$ be a function (e.g., a block cipher with a fixed key)
- Approximate a Boolean function *h* in the output by a Boolean function *g* in the input
- Quantify $Prob_x [g(x) + h(F(x)) = 0] \frac{1}{2}$

Definition: Correlation of an Approximation

Let $g : \mathbb{F}_2^m \to \mathbb{F}_2, h : \mathbb{F}_2^n \to \mathbb{F}_2$ be Boolean functions. The correlation of the approximation $g(x) \approx h(F(x))$ is defined as

$$\operatorname{cor}_F(g,h) \coloneqq 2 \cdot \operatorname{Prob}_x [g(x) = h(F(x))] - 1$$
.

Example: For $\gamma \in \mathbb{F}_2^n$, let ℓ_{γ} be the linear function defined by

$$\ell_{\gamma} \colon \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}, x \mapsto \langle \gamma, x \rangle$$
.

Linear cryptanalysis exploits the existence of $\gamma, \gamma' \in \mathbb{F}_2^n$ for which $|\operatorname{cor}_{E_k}(\ell_{\gamma}, \ell_{\gamma'})| \gg 2^{-\frac{n}{2}}$.

Beierle, Canteaut, Leander

Definition: Invariant Set

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation. $S \subseteq \mathbb{F}_2^n$ is an <u>invariant set</u> for F if F(S) = S or $F(S) = \mathbb{F}_2^n \setminus S$.

Definition: Invariant Set

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation. $S \subseteq \mathbb{F}_2^n$ is an <u>invariant set</u> for F if F(S) = S or $F(S) = \mathbb{F}_2^n \setminus S$.

Definition: Invariant Set

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation. $S \subseteq \mathbb{F}_2^n$ is an <u>invariant set</u> for F if F(S) = S or $F(S) = \mathbb{F}_2^n \setminus S$.

Equivalently:

Let g be the n-bit Boolean function defined by g(x) := 1 iff $x \in S$. Then,

$$\forall x \in \mathbb{F}_2^n : g(F(x)) = g(x) \text{ or } \forall x \in \mathbb{F}_2^n : g(F(x)) = g(x) + 1.$$

Definition: Invariant Set

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation. $S \subseteq \mathbb{F}_2^n$ is an <u>invariant set</u> for F if F(S) = S or $F(S) = \mathbb{F}_2^n \setminus S$.

Equivalently:

Let g be the n-bit Boolean function defined by g(x) := 1 iff $x \in S$. Then,

$$\forall x \in \mathbb{F}_2^n : g(F(x)) = g(x) \text{ or } \forall x \in \mathbb{F}_2^n : g(F(x)) = g(x) + 1.$$

Correlation of an invariant

$$\operatorname{cor}_F(g,g) \in \{\pm 1\}$$

Beierle, Canteaut, Leander

Linear vs Nonlinear Approximations: Trail Composition

Thm: Linear Trail Composition [Daemen, Govaerts, Vandewalle 1995] Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be of the form $F = F_t \circ \cdots \circ F_1$ with $F_i : \mathbb{F}_2^n \to \mathbb{F}_2^n$. The correlation of an approximation $\ell_{\alpha\alpha}(x) \approx \ell_{\alpha\alpha}(F(x))$ can be given as

$$\operatorname{cor}_{F}(\ell_{\alpha_{0}},\ell_{\alpha_{t}}) = \sum_{\alpha_{1},\ldots,\alpha_{t-1}\in\mathbb{F}_{2}^{n}}\prod_{i=1}^{t}\operatorname{cor}_{F_{i}}(\ell_{\alpha_{i-1}},\ell_{\alpha_{i}}) \; .$$

Linear vs Nonlinear Approximations: Trail Composition

Thm: Linear Trail Composition [Daemen, Govaerts, Vandewalle 1995]

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be of the form $F = F_t \circ \cdots \circ F_1$ with $F_i : \mathbb{F}_2^n \to \mathbb{F}_2^n$. The correlation of an approximation $\ell_{\alpha_0}(x) \approx \ell_{\alpha_t}(F(x))$ can be given as

$$\operatorname{cor}_{F}(\ell_{\alpha_{0}},\ell_{\alpha_{t}}) = \sum_{\alpha_{1},\ldots,\alpha_{t-1}\in\mathbb{F}_{2}^{n}}\prod_{i=1}^{t}\operatorname{cor}_{F_{i}}(\ell_{\alpha_{i-1}},\ell_{\alpha_{i}}) \; .$$

Thm: Nonlinear Trail Composition

Let $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ and let $g, h \colon \mathbb{F}_2^n \to \mathbb{F}_2$. Then,

$$\operatorname{cor}_{F}(g,h) = \sum_{\gamma,\gamma' \in \mathbb{F}_{2}^{n}} \operatorname{cor}_{g}(\ell_{\gamma}) \operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'}) \operatorname{cor}_{h}(\ell_{\gamma'}),$$

where $\operatorname{cor}_{g}(\ell_{\gamma}) \coloneqq \operatorname{cor}_{g}(\ell_{\gamma}, \ell_{1}) = 2 \operatorname{Prob}_{x}(\langle \gamma, x \rangle = g(x)) - 1.$

1 Our framework for (non-)linear approximations

Invariants imply highly-biased linear approximations (in many cases)

Probabilistic nonlinear approximations for cryptanalysis

Thm: Nonlinear Trail Composition

Let $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ and let $g, h \colon \mathbb{F}_2^n \to \mathbb{F}_2$. Then,

$$\operatorname{cor}_{F}(g,h) = \sum_{\gamma,\gamma' \in \mathbb{F}_{2}^{n}} \operatorname{cor}_{g}(\ell_{\gamma}) \operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'}) \operatorname{cor}_{h}(\ell_{\gamma'}),$$

where $\operatorname{cor}_{g}(\ell_{\gamma}) \coloneqq \operatorname{cor}_{g}(\ell_{\gamma}, \ell_{1}) = 2 \operatorname{Prob}_{x}(\langle \gamma, x \rangle = g(x)) - 1.$

Thm: Nonlinear Trail Composition

Let $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ and let $g, h \colon \mathbb{F}_2^n \to \mathbb{F}_2$. Then,

$$\operatorname{cor}_{F}(g,h) = \sum_{\gamma,\gamma' \in \mathbb{F}_{2}^{n}} \operatorname{cor}_{g}(\ell_{\gamma}) \operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'}) \operatorname{cor}_{h}(\ell_{\gamma'}),$$

where
$$\operatorname{cor}_g(\ell_\gamma) \coloneqq \operatorname{cor}_g(\ell_\gamma, \ell_1) = 2 \operatorname{Prob}_x(\langle \gamma, x \rangle = g(x)) - 1.$$

Let g be an invariant for a permutation F. We obtain

 $1 = |\operatorname{cor}_F(g,g)|$

Thm: Nonlinear Trail Composition

Let $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ and let $g, h \colon \mathbb{F}_2^n \to \mathbb{F}_2$. Then,

$$\operatorname{cor}_{F}(g,h) = \sum_{\gamma,\gamma' \in \mathbb{F}_{2}^{n}} \operatorname{cor}_{g}(\ell_{\gamma}) \operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'}) \operatorname{cor}_{h}(\ell_{\gamma'}),$$

where
$$\operatorname{cor}_g(\ell_\gamma) \coloneqq \operatorname{cor}_g(\ell_\gamma, \ell_1) = 2 \operatorname{Prob}_x(\langle \gamma, x \rangle = g(x)) - 1.$$

Let g be an invariant for a permutation F. We obtain

$$1 = |\operatorname{cor}_{\mathsf{F}}(g,g)| = |\sum_{\gamma,\gamma' \in \mathsf{\Gamma}_g} \operatorname{cor}_g(\ell_\gamma) \operatorname{cor}_{\mathsf{F}}(\ell_\gamma,\ell_{\gamma'}) \operatorname{cor}_g(\ell_{\gamma'})| ,$$

where $\Gamma_g := \{\gamma | \operatorname{cor}_g(\ell_\gamma) \neq 0\}.$

BPF: A balanced Boolean function g such that, $\forall \gamma : cor_g(\ell_{\gamma}) \in \{0, \pm L\}$

Thm: Existence of Highly-Biased Linear Approximations (1)

Let g be a BPF which is invariant for a permutation $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then, there exists an *n*-bit Boolean function f such that

$$|\sum_{\gamma,\gamma'\in \mathsf{\Gamma}_{g}} (-1)^{f(\gamma)+f(\gamma')} \operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'})| = |\mathsf{\Gamma}_{g}|$$

Moreover, there exist nonzero γ, γ' such that $|\operatorname{cor}_{F}(\ell_{\gamma}, \ell_{\gamma'})| \geq \frac{1}{|\Gamma_{r}|}$.

BPF: A balanced Boolean function g such that, $\forall \gamma : cor_g(\ell_{\gamma}) \in \{0, \pm L\}$

Thm: Existence of Highly-Biased Linear Approximations (1)

Let g be a BPF which is invariant for a permutation $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then, there exists an *n*-bit Boolean function f such that

$$|\sum_{\gamma,\gamma'\in \mathsf{\Gamma}_{\mathsf{g}}} (-1)^{f(\gamma)+f(\gamma')} \operatorname{cor}_{\mathsf{F}}(\ell_{\gamma},\ell_{\gamma'})| = |\mathsf{\Gamma}_{\mathsf{g}}|$$

Moreover, there exist nonzero γ, γ' such that $|\operatorname{cor}_{F}(\ell_{\gamma}, \ell_{\gamma'})| \geq \frac{1}{|\Gamma_{r}|}$.

If g is a quadratic Boolean function, then

$$\operatorname{cor}_g(\ell_\gamma) \in \{0,\pm 2^{rac{\dim \mathsf{LS}(g)-n}{2}}\}$$
 .

• It is n = 128. Let g be the quadratic invariant. There are 2^{96} weak keys.

- It is n = 128. Let g be the quadratic invariant. There are 2^{96} weak keys.
- For each weak key k, there exists a Boolean function f such that

$$|\sum_{\gamma,\gamma'\in \mathsf{\Gamma}_{g}}(-1)^{f(\gamma)+f(\gamma')}\operatorname{cor}_{E_{k}}(\ell_{\gamma},\ell_{\gamma'})|=|\mathsf{\Gamma}_{g}|=2^{32}.$$

- It is n = 128. Let g be the quadratic invariant. There are 2^{96} weak keys.
- For each weak key k, there exists a Boolean function f such that

$$|\sum_{\gamma,\gamma'\in \mathsf{\Gamma}_{g}}(-1)^{f(\gamma)+f(\gamma')}\operatorname{cor}_{E_{k}}(\ell_{\gamma},\ell_{\gamma'})|=|\mathsf{\Gamma}_{g}|=2^{32}.$$

• This implies, that for each weak key k, there exist a linear approximation $\ell_{\gamma}(x) \approx \ell_{\gamma'}(E_k(x))$ with

$$|\operatorname{cor}_{E_k}(\ell_{\gamma},\ell_{\gamma'})| \geq 2^{-32} \gg 2^{-\frac{n}{2}}$$

- It is n = 128. Let g be the quadratic invariant. There are 2^{96} weak keys.
- For each weak key k, there exists a Boolean function f such that

$$|\sum_{\gamma,\gamma'\in \mathsf{\Gamma}_g} (-1)^{f(\gamma)+f(\gamma')} \operatorname{cor}_{E_k}(\ell_\gamma,\ell_{\gamma'})| = |\mathsf{\Gamma}_g| = 2^{32} .$$

• This implies, that for each weak key k, there exist a linear approximation $\ell_{\gamma}(x) \approx \ell_{\gamma'}(E_k(x))$ with

$$|\operatorname{cor}_{E_k}(\ell_{\gamma},\ell_{\gamma'})| \ge 2^{-32} \gg 2^{-\frac{n}{2}}$$

• Since g is invariant for each of the rounds, the existence of this linear approximation is independent on the number of rounds!

Invariant subspace attack: g is the indicator function of an affine subspace

Thm: Existence of Highly-Biased Linear Approximations (2)

Let $(U + a) \subseteq \mathbb{F}_2^n$ be an invariant affine subspace for a permutation F. Then, for any nonzero $\gamma' \in U^{\perp}$, there exists a $\gamma \in U^{\perp} \setminus \{0\}$ such that

 $|\operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'})|\geq 2^{-n+\dim U}$

Invariant subspace attack: g is the indicator function of an affine subspace

Thm: Existence of Highly-Biased Linear Approximations (2)

Let $(U + a) \subseteq \mathbb{F}_2^n$ be an invariant affine subspace for a permutation F. Then, for any nonzero $\gamma' \in U^{\perp}$, there exists a $\gamma \in U^{\perp} \setminus \{0\}$ such that

 $|\operatorname{cor}_{F}(\ell_{\gamma},\ell_{\gamma'})| \geq 2^{-n+\dim U}$

In 2011, Leander et al. already proved the existence of a linear approximation with

$$|\operatorname{cor}_{\mathcal{F}}(\ell_{\gamma},\ell_{\gamma'})| \geq 2^{-n+\dim U} - 2^{2(-n+\dim U)}$$

- Can we say anything more about the highly-biased linear approximations besides their mere existence?
- In particular, can we understand more about the distribution of the correlations cor_F(ℓ_γ, ℓ_{γ'}) over all γ, γ' ∈ Γ_g?

Invariants imply highly-biased linear approximations (in many cases)

3 Probabilistic nonlinear approximations for cryptanalysis

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Idea

Instead of using nonlinear cryptanalysis over the cipher, we use \underline{linear} cryptanalysis over a transformed version of the cipher.

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Idea

Instead of using nonlinear cryptanalysis over the cipher, we use \underline{linear} cryptanalysis over a transformed version of the cipher.

• let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation, let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be balanced.

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Idea

Instead of using nonlinear cryptanalysis over the cipher, we use \underline{linear} cryptanalysis over a transformed version of the cipher.

- let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation, let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be balanced.
- construct a permutation $\mathcal{G} \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for which $g(x) = \langle \alpha, \mathcal{G}(x) \rangle$

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Idea

Instead of using nonlinear cryptanalysis over the cipher, we use <u>linear</u> cryptanalysis over a transformed version of the cipher.

- let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation, let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be balanced.
- construct a permutation $\mathcal{G} \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for which $g(x) = \langle \alpha, \mathcal{G}(x) \rangle$
- we look at the transformed permutation $F^{\mathcal{G},\mathcal{G}^{-1}} := \mathcal{G} \circ F \circ \mathcal{G}^{-1}$

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Idea

Instead of using nonlinear cryptanalysis over the cipher, we use <u>linear</u> cryptanalysis over a transformed version of the cipher.

- let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation, let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be balanced.
- construct a permutation $\mathcal{G} \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for which $g(x) = \langle \alpha, \mathcal{G}(x) \rangle$
- we look at the transformed permutation $F^{\mathcal{G},\mathcal{G}^{-1}} \coloneqq \mathcal{G} \circ F \circ \mathcal{G}^{-1}$
- the approximation $g(x) \approx g(F(x))$ is the same as $\ell_{\alpha}(x) \approx \ell_{\alpha}(F^{\mathcal{G},\mathcal{G}^{-1}}(x))$

The Goal

Express probabilistic nonlinear approximations in the framework of linear cryptanalysis.

The Idea

Instead of using nonlinear cryptanalysis over the cipher, we use <u>linear</u> cryptanalysis over a transformed version of the cipher.

- let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation, let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be balanced.
- construct a permutation $\mathcal{G} \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for which $g(x) = \langle \alpha, \mathcal{G}(x) \rangle$
- we look at the transformed permutation $F^{\mathcal{G},\mathcal{G}^{-1}} := \mathcal{G} \circ F \circ \mathcal{G}^{-1}$
- the approximation $g(x) \approx g(F(x))$ is the same as $\ell_{\alpha}(x) \approx \ell_{\alpha}(F^{\mathcal{G},\mathcal{G}^{-1}}(x))$

• we can now use linear cryptanalysis over $F^{\mathcal{G},\mathcal{G}^{-1}}$

• if
$$E_k = R_{k_t} \circ \cdots \circ R_{k_1}$$
, then $E_k^{\mathcal{G},\mathcal{G}^{-1}} = R_{k_t}^{\mathcal{G},\mathcal{G}^{-1}} \circ \cdots \circ R_{k_1}^{\mathcal{G},\mathcal{G}^{-1}}$

• if
$$E_k = R_{k_t} \circ \cdots \circ R_{k_1}$$
, then $E_k^{\mathcal{G},\mathcal{G}^{-1}} = R_{k_t}^{\mathcal{G},\mathcal{G}^{-1}} \circ \cdots \circ R_{k_1}^{\mathcal{G},\mathcal{G}^{-1}}$
• we have

$$\operatorname{cor}_{\mathsf{E}_{k}^{\mathcal{G},\mathcal{G}^{-1}}}(\ell_{\alpha_{0}},\ell_{\alpha_{t}}) = \sum_{\alpha_{1},\ldots,\alpha_{t-1}\in\mathbb{F}_{2}^{n}}\prod_{i=1}^{t}\operatorname{cor}_{\mathsf{R}_{k_{i}}^{\mathcal{G},\mathcal{G}^{-1}}}(\ell_{\alpha_{i-1}},\ell_{\alpha_{i}})$$

• if
$$E_k = R_{k_t} \circ \cdots \circ R_{k_1}$$
, then $E_k^{\mathcal{G},\mathcal{G}^{-1}} = R_{k_t}^{\mathcal{G},\mathcal{G}^{-1}} \circ \cdots \circ R_{k_1}^{\mathcal{G},\mathcal{G}^{-1}}$

we have

$$\operatorname{cor}_{\mathsf{E}_{k}^{\mathcal{G},\mathcal{G}^{-1}}}(\ell_{\alpha_{0}},\ell_{\alpha_{t}}) = \sum_{\alpha_{1},\ldots,\alpha_{t-1}\in\mathbb{F}_{2}^{n}}\prod_{i=1}^{t}\operatorname{cor}_{\mathsf{R}_{k_{i}}^{\mathcal{G},\mathcal{G}^{-1}}}(\ell_{\alpha_{i-1}},\ell_{\alpha_{i}})$$

• we base the analysis on a single linear trail $(\alpha_0, \alpha_1, \dots, \alpha_t)$ with correlation $\prod_{i=1}^t \operatorname{cor}_{R_{k_i}^{\mathcal{G},\mathcal{G}^{-1}}}(\ell_{\alpha_{i-1}}, \ell_{\alpha_i})$

Example: The invariant attack on Midori64 [Todo, Leander, Sasaki, 2016]

Example: The invariant attack on Midori64 [Todo, Leander, Sasaki, 2016]

 let S denote the S-box layer, i.e., a 16-times parallel application of the 4-bit S-box Sb. Let S_k: x → S(x + k)

Example: The invariant attack on Midori64 [Todo, Leander, Sasaki, 2016]

- let S denote the S-box layer, i.e., a 16-times parallel application of the 4-bit S-box Sb. Let S_k: x → S(x + k)
- g(x) = x₃x₂ + x₂ + x₁ + x₀ is used as an invariant for Sb. Weak keys are (0, 0, *, *).

Example: The invariant attack on Midori64 [Todo, Leander, Sasaki, 2016]

- let S denote the S-box layer, i.e., a 16-times parallel application of the 4-bit S-box Sb. Let S_k: x → S(x + k)
- g(x) = x₃x₂ + x₂ + x₁ + x₀ is used as an invariant for Sb. Weak keys are (0, 0, *, *).
- choose a permutation $G : \mathbb{F}_2^4 \to \mathbb{F}_2^4$ with $g(x) = \langle 8, G(x) \rangle$ and define $\mathcal{G} := (G, G, \dots, G)$

Example: The invariant attack on Midori64 [Todo, Leander, Sasaki, 2016]

- let S denote the S-box layer, i.e., a 16-times parallel application of the 4-bit S-box Sb. Let S_k: x → S(x + k)
- g(x) = x₃x₂ + x₂ + x₁ + x₀ is used as an invariant for Sb. Weak keys are (0, 0, *, *).
- choose a permutation $G : \mathbb{F}_2^4 \to \mathbb{F}_2^4$ with $g(x) = \langle 8, G(x) \rangle$ and define $\mathcal{G} := (G, G, \dots, G)$

In this view, all S-boxes are active

A Four-Round Linear Trail for transformed Midori64

• we choose another (balanced) invariant for the S-box, i.e., $g'(x) = x_3x_2x_1 + x_3x_1 + x_3 + x_2 + x_1 + x_0$

- we choose another (balanced) invariant for the S-box, i.e., $g'(x) = x_3x_2x_1 + x_3x_1 + x_3 + x_2 + x_1 + x_0$
- choose $G' \colon \mathbb{F}_2^4 \to \mathbb{F}_2^4$ with $g'(x) = \langle 8, G'(x) \rangle$, define $\mathcal{G}' \coloneqq (G', \dots, G')$

- we choose another (balanced) invariant for the S-box, i.e., $g'(x) = x_3x_2x_1 + x_3x_1 + x_3 + x_2 + x_1 + x_0$
- choose $G' \colon \mathbb{F}_2^4 \to \mathbb{F}_2^4$ with $g'(x) = \langle 8, G'(x) \rangle$, define $\mathcal{G}' \coloneqq (G', \dots, G')$
- we omit the key-schedule of Midori64 and assume independent round keys!

A Four-Round Linear Trail for transformed Midori64

A Four-Round Linear Trail for Transformed Midori64

- if we use independent round keys in each round, 2^{208} out of all possible 2^{256} keys are weak
- as the absolute correlation of the linear trail, we obtain $|\operatorname{cor}| = 2^{-12.325}$
- by experiments, we obtain $2^{-12.16}$ for the absolute correlation of the approximation using 2^{32} randomly chosen plaintexts

A Four-Round Linear Trail for Transformed Midori64

- if we use independent round keys in each round, 2^{208} out of all possible 2^{256} keys are weak
- as the absolute correlation of the linear trail, we obtain $|\, \mbox{cor}\,| = 2^{-12.325}$
- by experiments, we obtain $2^{-12.16}$ for the absolute correlation of the approximation using 2^{32} randomly chosen plaintexts

but

 by the wide-trail strategy, we expect | cor | ≥ 2⁻¹⁶ as the correlation of a four-round linear trail (16 active S-boxes)

Another Linear Trail for transformed Midori64

• we now use a probabilistic nonlinear approximation for the S-box layer

Another Linear Trail for transformed Midori64

- we now use a probabilistic nonlinear approximation for the S-box layer
- use the bijection $\mathcal{G}'' \coloneqq (G', G, \dots, G)$ with $\langle 8, G(x) \rangle = x_3 x_2 + x_2 + x_1 + x_0$ (invariant for S), $\langle 8, G'(x) \rangle = x_3 x_2 x_1 + x_3 x_1 + x_3 + x_2 + x_1 + x_0$. Then

$$|\operatorname{cor}_{\mathcal{S}_{k}^{G',G'-1}}(\ell_{8},\ell_{8})| = \begin{cases} 1 & \text{if } k \in \{(0,0,0,*)\} \\ rac{1}{2} & \text{else} \end{cases}$$

Another Linear Trail for transformed Midori64

- we now use a probabilistic nonlinear approximation for the S-box layer
- use the bijection $\mathcal{G}'' := (G', G, ..., G)$ with $\langle 8, G(x) \rangle = x_3 x_2 + x_2 + x_1 + x_0$ (invariant for S), $\langle 8, G'(x) \rangle = x_3 x_2 x_1 + x_3 x_1 + x_3 + x_2 + x_1 + x_0$. Then

$$|\operatorname{cor}_{\mathcal{S}_{k}^{G',G'-1}}(\ell_{8},\ell_{8})| = egin{cases} 1 & ext{if } k \in \{(0,0,0,*)\} \ rac{1}{2} & ext{else} \end{cases}$$

The trail correlation does not approximate the correlation of the approximation!

- In which cases can we approximate the approximation with a single trail?
- From another view: Can we use nonlinear approximations to quantify linear-hull effects in general?

- In which cases can we approximate the approximation with a single trail?
- From another view: Can we use nonlinear approximations to quantify linear-hull effects in general?

Thanks for your attention! Any questions?