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Introduction

Linear cryptanalysis [Matsui 94] as a standard attack method.
→ approximate linear function in the output by a linear function.

Generalization to nonlinear approximations was first discussed by
Harpes, Kramer and Massey in 1995 and Knudsen, Robshaw in 1996.
They were rediscovered in the context of invariant attacks, i.e.,
invariant subspace attacks [Leander et al. 2011] and the nonlinear
invariant attack [Todo, Leander, Sasaki 2016].
→ deterministic nonlinear approximations

Our Contribution
We study nonlinear approximations using the framework of linear
cryptanalysis.
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Outline

1 Our framework for (non-)linear approximations

2 Invariants imply highly-biased linear approximations (in many cases)

3 Probabilistic nonlinear approximations for cryptanalysis
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(Non-)linear Approximations

Let F : Fm
2 → Fn

2 be a function (e.g., a block cipher with a fixed key)
Approximate a Boolean function h in the output by a Boolean
function g in the input
Quantify Probx [g(x) + h(F (x)) = 0]− 1

2

Definition: Correlation of an Approximation
Let g : Fm

2 → F2, h : Fn
2 → F2 be Boolean functions. The correlation of the

approximation g(x) ≈ h(F (x)) is defined as

corF (g , h) := 2 · Probx [g(x) = h(F (x))]− 1 .

Example: For γ ∈ Fn
2, let `γ be the linear function defined by

`γ : Fn
2 → F2, x 7→ 〈γ, x〉 .

Linear cryptanalysis exploits the existence of γ, γ′ ∈ Fn
2 for which

| corEk (`γ , `γ′)| � 2− n
2 .
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(Nonlinear) Invariant Attacks [Todo, Leander, Sasaki 2016]

Definition: Invariant Set
Let F : Fn

2 → Fn
2 be a permutation. S ⊆ Fn

2 is an invariant set for F if
F (S) = S or F (S) = Fn

2 \ S.

S S

F

F−1

Fn
2 Fn

2

S S

F

F−1

Fn
2 Fn

2

Equivalently:
Let g be the n-bit Boolean function defined by g(x) := 1 iff x ∈ S. Then,

∀x ∈ Fn
2 : g(F (x)) = g(x) or ∀x ∈ Fn

2 : g(F (x)) = g(x) + 1.

Correlation of an invariant
corF (g , g) ∈ {±1}
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Linear vs Nonlinear Approximations: Trail Composition

Thm: Linear Trail Composition [Daemen, Govaerts, Vandewalle 1995]
Let F : Fn

2 → Fn
2 be of the form F = Ft ◦ · · · ◦ F1 with Fi : Fn

2 → Fn
2. The

correlation of an approximation `α0(x) ≈ `αt (F (x)) can be given as

corF (`α0 , `αt ) =
∑

α1,...,αt−1∈Fn
2

t∏
i=1

corFi (`αi−1 , `αi ) .

Thm: Nonlinear Trail Composition
Let F : Fn

2 → Fn
2 and let g , h : Fn

2 → F2. Then,

corF (g , h) =
∑

γ,γ′∈Fn
2

corg (`γ) corF (`γ , `γ′) corh(`γ′) ,

where corg (`γ) := corg (`γ , `1) = 2Probx (〈γ, x〉 = g(x))− 1.
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Representing Invariants as a Nonlinear Approximation

Thm: Nonlinear Trail Composition
Let F : Fn

2 → Fn
2 and let g , h : Fn

2 → F2. Then,

corF (g , h) =
∑

γ,γ′∈Fn
2

corg (`γ) corF (`γ , `γ′) corh(`γ′) ,

where corg (`γ) := corg (`γ , `1) = 2Probx (〈γ, x〉 = g(x))− 1.

Let g be an invariant for a permutation F .
We obtain

1 = | corF (g , g)| = |
∑

γ,γ′∈Γg

corg (`γ) corF (`γ , `γ′) corg (`γ′)| ,

where Γg := {γ| corg (`γ) 6= 0}.
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The case of balanced plateaued functions (BPF)

BPF: A balanced Boolean function g such that, ∀γ : corg (`γ) ∈ {0,±L}

Thm: Existence of Highly-Biased Linear Approximations (1)
Let g be a BPF which is invariant for a permutation F : Fn

2 → Fn
2. Then,

there exists an n-bit Boolean function f such that

|
∑

γ,γ′∈Γg

(−1)f (γ)+f (γ′) corF (`γ , `γ′)| = |Γg |

Moreover, there exist nonzero γ, γ′ such that | corF (`γ , `γ′)| ≥ 1
|Γg | .

If g is a quadratic Boolean function, then

corg (`γ) ∈ {0,±2
dim LS(g)−n

2 } .
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Ex: Nonlinear invariant attack on SCREAM [TLS 2016]

It is n = 128. Let g be the quadratic invariant. There are 296 weak
keys.

For each weak key k, there exists a Boolean function f such that

|
∑

γ,γ′∈Γg

(−1)f (γ)+f (γ′) corEk (`γ , `γ′)| = |Γg | = 232 .

This implies, that for each weak key k, there exist a linear
approximation `γ(x) ≈ `γ′(Ek(x)) with

| corEk (`γ , `γ′)| ≥ 2−32 � 2−
n
2

Since g is invariant for each of the rounds, the existence of this linear
approximation is independent on the number of rounds!
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The case of invariant subspaces

Invariant subspace attack: g is the indicator function of an affine subspace

Thm: Existence of Highly-Biased Linear Approximations (2)
Let (U + a) ⊆ Fn

2 be an invariant affine subspace for a permutation F .
Then, for any nonzero γ′ ∈ U⊥, there exists a γ ∈ U⊥ \ {0} such that

| corF (`γ , `γ′)| ≥ 2−n+dim U

In 2011, Leander et al. already proved the existence of a linear
approximation with

| corF (`γ , `γ′)| ≥ 2−n+dim U − 22(−n+dim U) .
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Open Questions

Can we say anything more about the highly-biased linear
approximations besides their mere existence?
In particular, can we understand more about the distribution of the
correlations corF (`γ , `γ′) over all γ, γ′ ∈ Γg?
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1 Our framework for (non-)linear approximations

2 Invariants imply highly-biased linear approximations (in many cases)

3 Probabilistic nonlinear approximations for cryptanalysis
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Nonlinear Cryptanalysis

The Goal
Express probabilistic nonlinear approximations in the framework of linear
cryptanalysis.

The Idea
Instead of using nonlinear cryptanalysis over the cipher, we use linear
cryptanalysis over a transformed version of the cipher.

let F : Fn
2 → Fn

2 be a permutation, let g : Fn
2 → F2 be balanced.

construct a permutation G : Fn
2 → Fn

2 for which g(x) = 〈α,G(x)〉
we look at the transformed permutation FG,G−1 := G ◦ F ◦ G−1

the approximation g(x) ≈ g(F (x)) is the same as
`α(x) ≈ `α(FG,G−1(x))
we can now use linear cryptanalysis over FG,G−1
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G-shifted Linear Trails

as typical for linear cryptanalysis, we consider linear trails

if Ek = Rkt ◦ · · · ◦ Rk1 , then EG,G
−1

k = RG,G
−1

kt
◦ · · · ◦ RG,G

−1

k1

we have

cor
EG,G−1

k
(`α0 , `αt ) =

∑
α1,...,αt−1∈Fn

2

t∏
i=1

cor
RG,G−1

ki

(`αi−1 , `αi )

we base the analysis on a single linear trail (α0, α1, . . . , αt) with
correlation

∏t
i=1 cor

RG,G−1
ki

(`αi−1 , `αi )
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The linear trail corresponding to the invariant attack

Example: The invariant attack on Midori64 [Todo, Leander, Sasaki, 2016]

let S denote the S-box layer, i.e., a 16-times parallel application of
the 4-bit S-box Sb. Let Sk : x 7→ S(x + k)
g(x) = x3x2 + x2 + x1 + x0 is used as an invariant for Sb. Weak keys
are (0, 0, ∗, ∗).
choose a permutation G : F4

2 → F4
2 with g(x) = 〈8,G(x)〉 and define

G := (G ,G , . . . ,G)

SG,G−1

k

| cor | = 1

for k ∈ WK

PG,G−1
= P

cor = 1

MG,G−1

| cor | = 1

SG,G−1

k

| cor | = 1

for k ∈ WK

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8
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8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

In this view, all S-boxes are active
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A Four-Round Linear Trail for transformed Midori64

we choose another (balanced) invariant for the S-box, i.e.,
g ′(x) = x3x2x1 + x3x1 + x3 + x2 + x1 + x0

chooseG ′ : F4
2 → F4

2 with g ′(x) = 〈8,G ′(x)〉, define G′ := (G ′, . . . ,G ′)

we omit the key-schedule of Midori64 and assume independent round
keys!
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A Four-Round Linear Trail for transformed Midori64

SG′,G′
−1

k0

| cor | = 1
for k0 ∈ WK′0

PG′,G′−1

cor = 1

MG′,G′−1

cor =
(
11
32

)3

SG′,G′
−1

k1

| cor | = 1
for k1 ∈ WK′1

PG′,G′−1

cor = 1

MG′,G′−1

cor =
(
11
32

)1

SG′,G′
−1

k2

| cor | = 1
for k2 ∈ WK′2

PG′,G′−1

cor = 1

MG′,G′−1

cor =
(
11
32

)1

SG′,G′
−1

k3

| cor | = 1
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A Four-Round Linear Trail for Transformed Midori64

if we use independent round keys in each round, 2208 out of all
possible 2256 keys are weak
as the absolute correlation of the linear trail, we obtain
| cor | = 2−12.325

by experiments, we obtain 2−12.16 for the absolute correlation of the
approximation using 232 randomly chosen plaintexts

but

by the wide-trail strategy, we expect | cor | ≥ 2−16 as the correlation
of a four-round linear trail (16 active S-boxes)
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Another Linear Trail for transformed Midori64

we now use a probabilistic nonlinear approximation for the S-box layer

use the bijection G′′ := (G ′,G , . . . ,G) with
〈8,G(x)〉 = x3x2 + x2 + x1 + x0 (invariant for S),
〈8,G ′(x)〉 = x3x2x1 + x3x1 + x3 + x2 + x1 + x0. Then

| cor
SG′,G′−1

k
(`8, `8)| =

{
1 if k ∈ {(0, 0, 0, ∗)}
1
2 else

SG′′,G′′
−1

k

| cor | ≥ 2−1

for k ∈ WK′′

PG′′,G′′−1
= P

cor = 1

MG′′,G′′−1

| cor | ≈ 2−0.83

SG′′,G′′
−1

k

| cor | ≥ 2−1

for k ∈ WK′′

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

Correlation of the full-round trail is ≥ (2−1.83)16 = 2−29.28.

but..
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A Strong Linear-Hull Effect

The trail correlation does not approximate the correlation of the
approximation!

Ex: Single column
Let G̃ = (G ′,G ,G ,G).

S G̃,G̃
−1

k0

| cor | ≥ 2−1

MG̃,G̃
−1

| cor | ≈ 2−0.83

S G̃,G̃
−1

k1

| cor | ≥ 2−1

MG̃,G̃
−1

| cor | ≈ 2−0.83

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

If k0 ∈ F4
2 × {(0, 0, ∗, ∗)}3 and k1 ∈

(
F4

2 \ {(0, 0, ∗, ∗)}
)
× {(0, 0, ∗, ∗)}3,

corRk1◦Rk0

(
`(8,8,8,8), `(8,8,8,8)

)
= 0
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Open questions?

In which cases can we approximate the approximation with a single
trail?
From another view: Can we use nonlinear approximations to quantify
linear-hull effects in general?

Thanks for your attention! Any questions?
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