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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 1 / 29



Summary of the talk

1 Overview

2 Generalized Nonlinear Invariants

3 Closed Loop Invariants

4 Conclusions
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Nonlinear invariant attack

Attack was introduced by Todo, Leander and Sasaki in 2016.

Core idea

Considering an n-bit block cipher whose encryption function is E (x , k),
look for a non-linear Boolean function g : GF (2)n → GF (2) such that

g(x)⊕ g(E (x , k)) = constant ∀x .

We call g a nonlinear invariant for E (x , k),

Those keys which admit a nonlinear invariant are called weak keys.

Why is it important?

Commonly induce distinguishing attacks, especially lightweight block
ciphers are susceptible to this kind of cryptanalysis.
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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 4 / 29



Example

S-box

RCkx 

y

Let g : F 4
2 → F2 be a nonlinear function defined as

g(a4, a3, a2, a1) = a4a3 ⊕ a3 ⊕ a2 ⊕ a1

ai = xi ⊕ ki ⊕ RCi

If k3 ⊕ RC3 = 0 and k4 ⊕ RC4 = 0,
then, g(x4, x3, x2, x1)⊕ g(y4, y3, y2, y1) = c for all x

If k3 ⊕ RC3 6= 0 or k4 ⊕ RC4 6= 0, then,
g(x4, x3, x2, x1)⊕ g(y4, y3, y2, y1) 6= c for all x
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Vulnerable lightweight block ciphers

PRINT-cipher [Leander et al. 2011]

iSCREAM, Robin, Zorro [Leander, Minaud, Rønjom 2015]

Midori-64 [Guo et al. 2016]

iSCREAM, SCREAM, Midori-64 [Todo, Leander, Sasaki 2016]

Simpira v1 [Rønjom 2016]

Haraka v.0 [Jean 2016]

NORX v2.0 [Chaigneau et al. 2017]
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How to provide resistance?

Beierle, Canteaut, Leander and Rotella (BCLR) in 2017 studied the
mathematical nature of these invariants providing certain conditions under
which an iterated block cipher could be resistant against invariant attacks.

Theorem

Let g be an invariant of the substitution layer and of the linear parts
Addki ◦ L (including addition of the keys). Then LS(g) must be a
subspace invariant under L containing all the differences of the keys.

LS(g) is a subspace of linear structures and WL(c) is the minimal
L-invariant subspace containing c.

Need that WL(D) ⊆ LS(g) where D is a set of differences of keys.
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Main conclusions of BCLR are:

Assuming dimWL(D) ≥ n − 1 implies deg(g) is trivial (constant
function), [Independent of the S-Layer]

In some cases when n − dimWL(D) is small, they found certain
structure of the S-Layer which allows to conclude that there are no
non-trivial invariants.

The following lightweight ciphers are resistant against invariant attacks.

Skinny -64,

Prince,

Mantis7
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Nonlinear invariant attacks can lead not only to distinguishing attacks but
sometimes to more dangerous scenarios (ciphertext-only attack in certain
modes of operation).
Two natural questions arising here are:

Are there more similar attacks?

Moreover, how can we protect ciphers against them?

Goal of the paper

Provide useful generalizations of nonlinear invariant attacks.

René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 9 / 29



Nonlinear invariant attacks can lead not only to distinguishing attacks but
sometimes to more dangerous scenarios (ciphertext-only attack in certain
modes of operation).

Two natural questions arising here are:

Are there more similar attacks?

Moreover, how can we protect ciphers against them?

Goal of the paper

Provide useful generalizations of nonlinear invariant attacks.
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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 9 / 29



Summary of the talk

1 Overview

2 Generalized Nonlinear Invariants

3 Closed Loop Invariants

4 Conclusions
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Generalized Nonlinear Invariants

Main idea

Look for a nonlinear Boolean function g and a pair a1, a2 ∈ GF (2)n, such
that g(x ⊕ a1)⊕ g(Fki (x)⊕ a2) = const. ∀x .

These are called, generalized nonlinear invariants, where Fki (x) is a
round function. For any function F , let us denote by

U(F , a1, a2) := {g : Fm
2 → F2|g(x ⊕ a1) = g(F (x)⊕ a2)⊕ c}
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We assume that the nonlinear terms of g(x) only cover the first s input
variables, and the remaining t variables have a linear relation, i.e
g(x) = f (x (1))⊕ l(x (2)).

)1(
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)1(

2x ……
)1(

sx )2(
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)2(

2x )2(
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]1[)1(

1a ]2[)1(
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1 sa ]1[)2(

1a ]2[)2(

1a ][)2(
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]1[)1(

2a ]2[)1(

2a …… ][)1(

2 sa ……]1[)2(

2a ]2[)2(

2a ][)2(

2 ta

If the round
subkeys Keyj and the constants ai , (i = 1, 2)
satisfy any one of the following two conditions:

(1) a
(1)
1 = 0, a

(1)
2 ⊕ Key

(1)
j = 0;

(2) a
(1)
1 6= 0, a

(1)
1 ⊕ a

(1)
2 ⊕ Key

(1)
j = 0,

The generalized nonlinear invariant attack
can work on the full-round block cipher.
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Case 1: for a
(1)
1 = 0, a

(1)
2 ⊕ Key

(1)
j = 0, we have

g(C ) = g(xr ⊕ a2 ⊕ a2)

= g(F (xr−1)⊕ Keyr−1 ⊕ a2 ⊕ a2)

= g(F (xr−1)⊕ a2)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 )

= g(xr−1 ⊕ a1)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 )⊕ cr−1

= g(xr−1 ⊕ a2 ⊕ a2)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 ⊕ a

(2)
1 )⊕ cr−1

. . .

= g(P)⊕
r−1∑

i=0

l(Key
(2)
i ⊕ a

(2)
2 ⊕ a

(2)
1 )⊕

r−1∑

j=0

cj

Moreover, we have
g(P)⊕ g(C ) = Constant ′.
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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 13 / 29



Case 1: for a
(1)
1 = 0, a

(1)
2 ⊕ Key

(1)
j = 0, we have

g(C ) = g(xr ⊕ a2 ⊕ a2)

= g(F (xr−1)⊕ Keyr−1 ⊕ a2 ⊕ a2)

= g(F (xr−1)⊕ a2)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 )

= g(xr−1 ⊕ a1)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 )⊕ cr−1

= g(xr−1 ⊕ a2 ⊕ a2)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 ⊕ a

(2)
1 )⊕ cr−1

. . .

= g(P)⊕
r−1∑

i=0

l(Key
(2)
i ⊕ a

(2)
2 ⊕ a

(2)
1 )⊕

r−1∑

j=0

cj

Moreover, we have
g(P)⊕ g(C ) = Constant ′.
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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 13 / 29



Case 2: for a
(1)
1 6= 0, a

(1)
1 ⊕ a

(1)
2 ⊕ Key

(1)
j = 0, we have

g(C ⊕ a1) = g(xr ⊕ a1 ⊕ a2 ⊕ a2)

= g(F (xr−1)⊕ Keyr−1 ⊕ a1 ⊕ a2 ⊕ a2)

= g(F (xr−1)⊕ a2)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 ⊕ a

(2)
1 )

= g(xr−1 ⊕ a1)⊕ l(Key
(2)
r−1 ⊕ a

(2)
2 ⊕ a

(2)
1 )⊕ cr−1

. . .

= g(P ⊕ a1)⊕
r−1∑

i=0

l(Key
(2)
i ⊕ a

(2)
2 ⊕ a

(2)
1 )⊕

r−1∑

j=0

cj

Moreover, we have

g(P ⊕ a1)⊕ g(C ⊕ a1) = Constant ′.
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Generalized Nonlinear Invariant Attack

Distinguishing Attack by using Generalized Nonlinear Invariant Attack

Assume that (Pi ,Ci ), (i = 1, ...,N) are N pairs of plaintexts and ciphtexts.
In a known-plaintext attack scenario, the adversary can easily determine
whether g(P)⊕ g(C ) (or g(P ⊕ a1)⊕ g(C ⊕ a1) ) is constant or not for
all pairs. It is clear that any random permutation has this property with a
probability of 21−N if g is balanced.
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Standard procedure:

Viewing the round function as L ◦ S, one first finds a set of
generalized invariants U(S , a1, a2) for a single S-box.

Combine these to get an invariant of the entire S-box layer S as
gS =

∑m
i=1 βigi , with βi ∈ {0, 1}.

If L can be viewed as an orthogonal matrix and deg(g) = 2 then one
can easily specify invariant for a whole round.

  g          ),,( 21 aaSU ),,( 21 aaLU
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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 16 / 29



Standard procedure:

Viewing the round function as L ◦ S, one first finds a set of
generalized invariants U(S , a1, a2) for a single S-box.

Combine these to get an invariant of the entire S-box layer S as
gS =

∑m
i=1 βigi , with βi ∈ {0, 1}.

If L can be viewed as an orthogonal matrix and deg(g) = 2 then one
can easily specify invariant for a whole round.

  g          ),,( 21 aaSU ),,( 21 aaLU
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Assumptions-more formally

Theorem

Assume that gi ∈ U(S , a1, a2), i = 1, . . . ,m are arbitrary generalized
nonlinear invariants of a given S-box. Define

gS(x1, . . . , xm) =
m∑

i=1

βigi (xi ), βi ∈ GF (2),

which is a generalized nonlinear invariant of entire S-box layer.

Theorem

For SPN network if L is an orthogonal matrix M ∈ GF (2)m×m and
g ′ ∈ U(S , a1, a2) is quadratic, then g(x1, . . . , xm) =

∑m
i=1 g

′(xi ) is also a
generalized nonlinear invariant for the round function L ◦ S.
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Are generalized invariants useful?

Lead to an efficient distinguishing attack on iSCREAM under weak
key assumption (identifying 296 + 280 weak keys)

Weak keys are different from those found for standard nonlinear
invariants of iSCREAM

Generalized nonlinear invariants are translates of standard invariants.

Remark

If some nonlinear term of g involves a nonzero bit of the round constant
c∗, then the classical invariant attack becomes rather inefficient. A pair of
constants (a1, a2), can be helpful for eliminating the impact of this !!
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Summary of the talk

1 Overview

2 Generalized Nonlinear Invariants

3 Closed Loop Invariants

4 Conclusions
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Is the BCLR criterion optimal?

A large dimension of WL(D) should prevent from invariant attacks
(regardless of S layer)?! When WL(D) ≥ n − 1 block cipher is provably
resistant against these attacks.

Definition

For any S-box define the closed-loop invariant CLI (S) as the following set

{(g1, g2) : g1(x)⊕ g2(S(x)) = c1, g2(x)⊕ g1(S(x)) = c2, ci ∈ GF (2)}

CLI (S) is a linear subspace

For every g ∈ U(S), (g , g) ∈ CLI (S) and (g , 1⊕ g) ∈ CLI (S)

Usually there are more elements in CLI (S) than those induced by
standard invariants !!
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Midori64

Midori64 uses an SPN structure and a very simple key schedule. The initial
state of Midori64 can be seen as a 4× 4-nibble array. A 64-bit plaintext is
first input into the initial state and the key pre-whitening operation is
performed. Then the state is iteratively operated 16 times with the round
function. At last, the state is XORed with the post whitening key.

4.4 Application to iSCREAM

The authenticated encryption iSCREAM also has the similar structure of SCREAM. The specifications
of the S-box and L-box are given in Appendix C. We search for the nonlinear invariant for the
underlying tweakable block cipher iScream. As a result, the following quadratic Boolean function

gS(x) = (x[4] ∧ x[5])⊕ x[0]⊕ x[6].

is nonlinear invariant for the S-box5, and it holds

gS(x)⊕ gS(S(x)) = gS(x)⊕ gS(x) = 0.

Therefore, from Theorem 1, the following Boolean function

g(x) =
15⊕

j=0

gS(x[?, j]) =
15⊕

j=0

(
x[4, j] ∧ x[5, j]⊕ x[0, j]⊕ x[6, j]

)
.

is nonlinear invariant for the LS function.

5 Practical Attack on Midori64

5.1 Specification of Midori64

Midori is a light-weight block cipher recently proposed by Banik et al. [BBI+15], which is particularly
optimized for low-energy consumption. There are two versions depending on the block size; Midori64
for 64-bit block and Midori128 for 128-bit block. Both use 128-bit key. The nonlinear invariant attack
can be applied to Midori64, thus we only explain the specification of Midori64 briefly.

Midori64 adopts an SPN structure with a non-MDS matrix and a very light key schedule. The
state is represented by a 4 × 4-nibble array. At first the plaintext is loaded to the state, then the
key whitening is performed. The state is updated with a round function 16 times, and a final key
whitening is performed. The resulting state is the ciphertext. The overall structure is illustrated in
Fig. 6. More details on each operation will be given in the following paragraphs.
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Fig. 6. Computation structure of Midori64

5 In the round function of iScream with the constant addition, the equation, gS(x) = (x[5] ∧ x[6])⊕ x[2]⊕
x[5]⊕ x[6]⊕ x[7], is another nonlinear invariant.

Figure: The structure of Midori64
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The variant of Midori64

Construction

The Midori64 variant shares the same round function and key schedule
scheme as the original Midori64. However, the only different place is that
the round constants are selected from the following parameters:
Let α∗i = (α∗1

i ||...||α∗16
i ), α∗ji ∈ GF (2)4, (i = 0, 1, ..., 14), (j = 1, ..., 16).

(1)If i mod 2 = 1, the 1st and 3rd bits of α∗ji are always 0.
(2)If i mod 2 = 0, α∗i can choose random round constants.
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The Closed-loop Invariant for Midori64

1. For the S-box of Midori64, we can find the Closed-loop invariant below.





g ′1(x [4], ..., x [1])⊕ g ′2(y [4], ..., y [1]) = 1

g ′2(x [4], ..., x [1])⊕ g ′1(y [4], ..., y [1]) = 1

g ′1 = x [1]⊕ x [2]⊕ x [4]⊕ x [1]x [3]

g ′2 = y [1]⊕ y [3]

2. The linear layer of Midori64 is selected as an orthogonal matrix
operation. Therefore,

g1(X ) =
16∑

j=1

g ′1(xj), g2(X ) =
16∑

t=1

g ′2(xt)

are the closed-loop invariants of the round function.
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Attacking variant of Midori64

There are CLI (S) for our variant of Midori64, with deg(g1) = 2 and
deg(g2) = 1.

One can specify CLI (S) for the whole round of this variant of
Midori-64

Efficient distinguishing attack !!

Remark

The attack works despite the fact that in this version of Midori64
dimWL(D) = 64 = n - standard invariant attack does not apply !!
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Building WL(D) of large dimension

For the Midori64 variant, the round keys repeat each second round.
64-bit round constants α∗i , for i = 0, . . . , 14 may be defined so that

D := {α∗0 ⊕ α∗2, α∗0 ⊕ α∗4, . . . , α∗0 ⊕ α∗14, α
∗
1 ⊕ α∗3, α∗1 ⊕ α∗5, . . . , α∗1 ⊕ α∗13},

has the maximum dimension n = 64.

Conclusion

No obvious weaknesses for the choice of round constants, dimWL(D) = n
protects against standard invariant attacks, BUT attack based on CLI still
applies !!
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Additional criteria

Ensuring that WL(D) is large appears to be necessary BUT NOT sufficient
criterion !!

Design/security criterion

One must make sure that every round constant lies outside LS(gi ) for
every (g1, g2) ∈ CLI (S).

Using computer simulations one can verify that PRESENT, PRINCE and
Lblock are resistant against (CLI) generalized invariant attacks.
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René Rodŕıguez (UP-Famnit) GNIA and CLI March 25th, 2019 26 / 29



Summary of the talk
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There are more generalizations and attempts to unify the work on
invariant attacks. For instance, Beyne [2018] proposed a unified study
within the framework of correlation matrices giving more insight towards a
general structure.

Work of Beierle, Canteaut and Leander [2018] shows a nice proposal to
study the actual mathematical nature of these invariants in the framework
of linear approximations thus reducing this kind of cryptanalysis to linear
cryptanalysis.

There are many open questions regarding invariant attacks including: how
to employ the generalized nonlinear invariants into these frameworks?

Current work: Further generalization of the concept and deeper
theoretical analysis !!
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Merci beaucoup!
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