Adiantum: length-preserving encryption for entry-level processors

Paul Crowley and Eric Biggers

Google LLC

March 28, 2019

Overview

- The problem
- The solution

Section 1

The problem

The problem

- Hardware (eg ARM CE) makes AES fast
- ...but some devices don't have it

The solution (for TLS)

- RFC7539
 - ChaCha for encryption
 - Poly1305 for authentication
- Much faster

- RFC7539 is an AEAD mode, so |C| > |P|
 - nonce
 - MAC
- Storage encryption requires |C| = |P|

Full disk encryption

- 4KiB virtual sector <-> 4KiB real sector
- No special flash hardware

File based encryption

- Databases update sectors
- If read/write of one sector touches two sectors...
 - Atomicity more difficult
 - Speed is halved
 - Lifetime is halved

Android "Compatibility Definition Document", version 8.1, section 9.9:

If device implementations [...] support data storage encryption with Advanced Encryption Standard (AES) crypto performance above 50MiB/sec, they MUST enable the data storage encryption by default [...]

Section 2

The solution

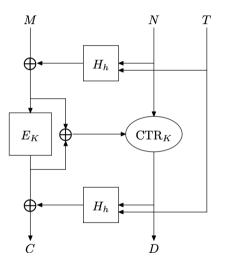
Formal properties

- Deterministic
- No nonce
- Tweakable super-pseudorandom permutation (SPRP)
 - family of permutations indexed by tweak and length
 - indistinguishable from random permutations
 - attacker can query f, f^{-1}

AES-XTS

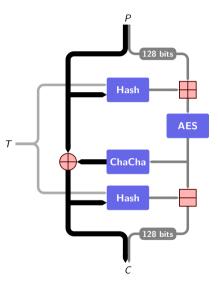
- 128-bit tweakable SPRP
- 4KiB sector: applied 256 times
- Two-part tweak
- Cortex A7: 58.6 cpb (decryption)

Whole sector encryption


- 4KiB tweakable SPRP
- every bit of plaintext affects all of ciphertext
- every bit of ciphertext affects all of plaintext
- every tweak a new permutation
- opportunity to be faster

Three-pass structure

- SPRP: read all before writing any
- same in decryption direction
- minimum three passes
- hash-XOR-hash faster than XOR-hash-XOR


HCTR, HCH

- hash-XOR-hash structure
- Block cipher defeats LR attack
- But no faster on our hardware (AES, GF(2¹²⁸))

HPolyC and Adiantum

- Similar structure: hash-XOR-hash with block cipher
- More parallel decryption
- Use RFC7539 primitives
- HPolyC-ChaCha20-AES: 17.8 cpb
- Use ChaCha12 instead: HPolyC, 13.6 cpb
- Use NH
- ...but combine with Poly1305
- Adiantum: 10.6 cpb

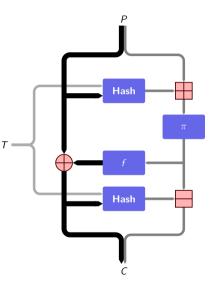
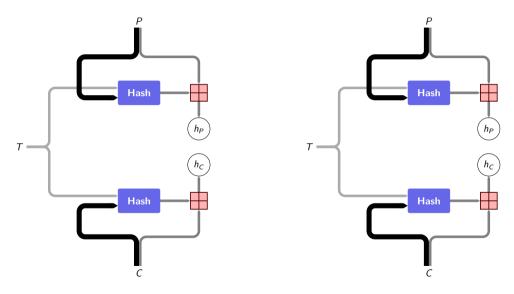
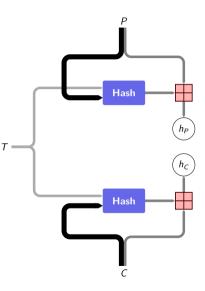

Performance

Table: Performance on ARM Cortex-A7

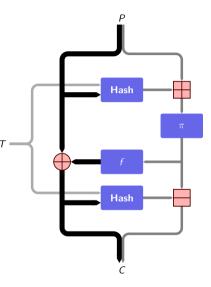

Algorithm	cbp (4096)	cpb (512)
Adiantum-XChaCha12-AES HPolyC-XChaCha12-AES	10.6 13.6	15.8 18.7
Adiantum-XChaCha20-AES	14.7	20.2
Speck128/256-XTS	15.8	16.9
HPolyC-XChaCha20-AES	17.8	23.4
NOEKEON-XTS	26.9	27.9
AES-128-XTS (decryption)	42.7	43.9
AES-256-XTS (decryption)	58.6	60.1

Proof (main step)

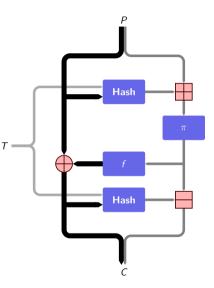
- Adversary distinguishes world X and world Y
- Plaintext, ciphertext queries, any length and tweak
- World X: Adiantum, with random permutation π and random function f
- World Y: all answers random
- H-coefficient technique
- After final query, attacker gets the hash key



Bad transcripts


Bad transcripts

- Results are random in world Y
- Collision in result: 2^{-128}
- We forbid pointless queries
- Collision in query: at most ϵ
- Total across all queries: at most $(\epsilon + 2^{-128}) {q \choose 2}$


Good transcripts

- In world Y, all responses have probability 2^{-|P|}
- In world X
 - probability f has right output: $2^{-(|P|-128)}$
 - probability π has right output: $\frac{1}{2^{128}-i}$
 - where *i* is the number of queries before this one
- These are independent, so overall probability is $2^{-(|P|-128)} \frac{1}{2^{128}-i}$
- ...which is equal to or slightly larger than 2^{-|P|}

H-coefficient technique

- Every good transcript is at least as likely in world X as world Y
- Probability of bad transcript $\leq (\epsilon + 2^{-128}) {q \choose 2}$
- By H-coefficient technique, distinguishing advantage $\leq (\epsilon + 2^{-128}) \binom{q}{2}$

Security

Distinguishing bound quadratic in queries, linear in message/tweak lenth

$$egin{aligned} &(3(2^{-128})+2^{-103}\max(1+\left\lceil I_{T}/128
ight
ceil,2\left\lceil (I_{M}-128)/8192
ight
ceil))inom{q}{2}\ + &\operatorname{Adv}^{\mathrm{sc}}_{\mathcal{S}_{\mathcal{K}_{S}}}(1+q,9088+q(I_{M}-128),t')+&\operatorname{Adv}^{\pm\mathrm{prp}}_{\mathcal{E}_{\mathcal{K}_{E}}}(q,t') \end{aligned}$$

where

- q: number of queries
- I_T , I_M : maximum length of tweak, message in bits
- $\operatorname{Adv}_{E_{K_E}}^{\pm \operatorname{prp}}(q,t')$: distinguishing advantage against AES-256
- $\operatorname{Adv}_{\mathcal{S}_{K_{S}}}^{\operatorname{sc}}(q, l, t')$: distinguishing advantage against XChaCha12
- $t' = t + O(q(I_T + I_M))$

Adiantum in Android

- Part of Linux 5.0
- Android "dessert" releases
 - Cupcake, Donut, Eclair, ...
 - ..., Oreo (2017), Pie (2018), "Q" (2019)
- Some Android Pie devices will use it
- No carveout: devices shipping "Q" will all be encrypted