## Lightweight SCA Secure 4 $\times$ 4 S-Boxes from Cellular Automata Rules

Ashrujit Ghosal <sup>1</sup>, **Rajat Sadhukhan** <sup>1</sup>, Sikhar Patranabis <sup>1</sup>, Nilanjan Datta <sup>1</sup>, Stjepan Picek <sup>2</sup> and Debdeep Mukhopadhyay <sup>1</sup>

- 1. Indian Institute of Technology, Kharagpur, India
- 2. Delft University of Technology, The Netherlands

FSE, 2019 March 27, 2019



Lightweight CA S-Boxes with SCA Security

### 1 Introduction

- 2 Background
- 3 Design Optimal Light-weight 4  $\times$  4 CA-based S-Boxes with TI

#### 4 Applications



э

(B)

< 一型

### Introduction

æ

イロト イヨト イヨト イヨト

#### Motivation

To provide solutions tailored for resource-constrained devices such as RFID tags, smart cards, sensor nodes.

#### Light-weight Metrics

- Cost: Area, Memory, Energy consumption.
- Performance: Throughput, Power consumption.

#### Side Channel Resilience

- SCA: Implementation vulnerability of cryptographic algorithms due to timing, power and EM attacks.
- NIST Light-weight competition requirement: "...the ability to provide it easily and at low cost is highly desired. Side channel resistance may be necessary in some applications."

< 47 >

## Light-weight Side-Channel resistant Block Cipher Design

#### Designing Light-weight Linear Layer:

- Bit-permutation (e.g. PRESENT, GIFT)
- Shuffle-cells + Light-weight Mix-column operations (e.g. MIDORI)
- SCA countermeasures for linear layer is cheap.

## Light-weight Side-Channel resistant Block Cipher Design

#### Designing Light-weight Linear Layer:

- Bit-permutation (e.g. PRESENT, GIFT)
- Shuffle-cells + Light-weight Mix-column operations (e.g. MIDORI)
- SCA countermeasures for linear layer is cheap.

#### Designing Light-weight S-Boxes:

- $\bullet~4\times4$  S-Boxes with good cryptographic properties
- SCA countermeasures for S-Box is costly: requires dedicated Design

## Light-weight Side-Channel resistant Block Cipher Design

#### Designing Light-weight Linear Layer:

- Bit-permutation (e.g. PRESENT, GIFT)
- Shuffle-cells + Light-weight Mix-column operations (e.g. MIDORI)
- SCA countermeasures for linear layer is cheap.

#### Designing Light-weight S-Boxes:

- $4 \times 4$  S-Boxes with good cryptographic properties
- SCA countermeasures for S-Box is costly: requires dedicated Design

#### Our Goal

Designing dedicated Light-weight 4  $\times$  4 S-Boxes with Side channel resistance.

## Our Contribution

#### Light-weight and SCA Resistant S-Box Design

- Novelty of using cellular automata (CA) rules to design class of optimal S-Boxes with inherently lightweight (focusing area only) implementations.
- Choice of the best (area and power efficient) class depending on the (cubic, quadratic, linear) terms of ANF.
- Our CA-based S-Boxes have 49.42% (35.36%) smaller area-footprint, consumes 52.3% (44.46%) lesser power as compared to the PRESENT (GIFT) S-Box.

#### Applications

Two design paradigms for combining the CA-based optimal S-Boxes with the linear layer to achieve SPN block ciphers with low-area and low-power TI circuits.

イロト イ団ト イヨト イヨト

### Background

æ

イロト イヨト イヨト イヨト

- Non-linearity:  $NL_F = 2^{n-1} \frac{1}{2} \max_{a, v} |W_F(a, v)|$ , where  $W_F(a, v) = \sum_{x \in \mathbb{F}_2^n} (-1)^{v \cdot F(x) + a \cdot x}$  is the Walsh Hadamard transform of the function F.
- Delta Uniformity:  $\delta_F = \max_{a,b} | \{x \in \mathbb{F}_2^n : F(x) \oplus F(x \oplus a) = b\} |.$

#### Optimal $4 \times 4$ S-Box

- Bijective,
- Non-linearity: 4,
- Differential-uniformity: 4.

#### Masking

- One of the most efficient and powerful approaches to thwart DPA
- Targets to break the correlation between the power traces and the intermediate values of the computations.
- Achieves security by randomizing the intermediate values using secret sharing and carrying out all the computations on the shared values.

#### Masking

- One of the most efficient and powerful approaches to thwart DPA
- Targets to break the correlation between the power traces and the intermediate values of the computations.
- Achieves security by randomizing the intermediate values using secret sharing and carrying out all the computations on the shared values.

#### Threshold Implementation (Nikova et al.)

Countermeasure against Differential Power Attacks (DPA).

#### Threshold Implementation (TI)

Boolean masking technique based on secret sharing and secure multi-party computation.

#### Threshold Implementation (TI)

Boolean masking technique based on secret sharing and secure multi-party computation.

#### **Desired Properties**

- Correctness.
- Non-Completeness.
- Uniformity.

Rajat Sadhukhan

## Threshold Implementation: A Simple Example

#### TI of a two-bit multiplier circuit: $\mathbf{a} = \mathbf{x}\mathbf{y}$

$$\mathbf{x} = (x_1 \oplus x_2 \oplus x_3 \oplus x_4)$$
$$\mathbf{y} = (y_1 \oplus y_2 \oplus y_3 \oplus y_4)$$
$$\mathbf{a} = (a_1 \oplus a_2 \oplus a_3 \oplus a_4)$$

where the output shares  $a_1, a_2, a_3, a_4$  are computed as:

$$a_1 = (x_2 \oplus x_3 \oplus x_4)(y_2 \oplus y_3) \oplus y_3$$
  

$$a_2 = (x_1 \oplus x_3)(y_1 \oplus y_4) \oplus x_1y_3 \oplus x_4$$
  

$$a_3 = (x_2 \oplus x_4)(y_1 \oplus y_4) \oplus x_4 \oplus y_4$$
  

$$a_4 = x_1y_2 \oplus y_3$$

### Cellular Automata and Vectorial Boolean Function

- Parallel computational models to simulate and analyze discrete complex systems
- Consists of a regular grid (lattice) of cells
- At every time step every cells update their states synchronously
- Vectorial Boolean function: every cell is in state 0 or 1 and the lattice is a linear array

#### Periodic Boundary CA (PBCA)

$$F(x_1, x_2, \cdots, x_n) = (f(x_1, \cdots, x_d), \cdots, f(x_n, \cdots, x_{d-1})),$$

where f is local rule.

#### A Simple Example

- PBCA with n = 6
- $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$



Periodic Boundary CA – PBCA

э

## Design Optimal Light-weight 4 $\times$ 4 CA-based S-Boxes with TI

#### Why CA-based S-Boxes?

- Choosing a local CA rule is essentially a  $4 \times 1$  Boolean function.
- $4 \times 4$  S-Box mapping is obtained by applying the same CA rule to four different (cyclic) permutations of the input bits.
- Allows an iterative implementation in hardware:
  - CA rule implemented once in the data-path
  - control unit applying a cyclically shifted variant of the input bits in each clock cycle.

• Instead of a  $4 \times 4$  function, we need the area of a  $4 \times 1$  function.

#### Optimal $4 \times 4$ S-Boxes using CA Rules

- Total CA based  $4 \times 4$  S-Boxes:  $2^{2^4} = 65536$
- Optimal 4 × 4 CA-based S-Boxes: 512

## Classification of Optimal $4 \times 4$ S-Boxes

- Area and Power: Relation with the ANF representation of the S-Boxes.
- All S-Boxes under consideration has optimal algebraic degree 3.

#### Observations

- Boolean functions with the same # (cubic, quadratic, linear) terms in their ANF form have similar area footprint and expected power consumption in hardware.
- CA-based S-Boxes with the same # (cubic, quadratic, linear) terms in their ANF form have nearly identical TI circuits owing to their nearly identical algebraic structure.

#### Table: Grouping S-Boxes into classes by ANF properties

| Class     | Representative CA Rule $f(X, Y, Z, W)$                                                                   |
|-----------|----------------------------------------------------------------------------------------------------------|
| (1,2,2)   | $XZW \oplus XY \oplus YW \oplus Y \oplus Z$                                                              |
| (1, 3, 1) | $YZW \oplus XZ \oplus YZ \oplus YW \oplus X$                                                             |
| (1,3,3)   | $YZW \oplus XY \oplus XZ \oplus YW \oplus Y \oplus Z \oplus W$                                           |
| (1,4,2)   | $YZW \oplus XY \oplus XZ \oplus XW \oplus ZW \oplus X \oplus W$                                          |
| (1, 5, 1) | $XYW \oplus XY \oplus XZ \oplus XW \oplus YW \oplus ZW \oplus Z$                                         |
| (1,5,3)   | $XYW \oplus XY \oplus XZ \oplus XW \oplus YZ \oplus YW \oplus Y \oplus Z \oplus W$                       |
| (3,2,2)   | $XYZ \oplus XZW \oplus YZW \oplus XZ \oplus YZ \oplus X \oplus Y$                                        |
| (3,3,1)   | $XYZ \oplus XZW \oplus YZW \oplus XZ \oplus XW \oplus YW \oplus Z$                                       |
| (3,3,3)   | $XYW \oplus XZW \oplus YZW \oplus XY \oplus XZ \oplus YW \oplus X \oplus Z \oplus W$                     |
| (3,4,2)   | $XYZ \oplus XYW \oplus XZW \oplus XY \oplus XZ \oplus XW \oplus YZ \oplus Z \oplus W$                    |
| (3,5,1)   | $XYZ \oplus XYW \oplus YZW \oplus XZ \oplus XW \oplus YZ \oplus YW \oplus ZW \oplus Y$                   |
| (3,5,3)   | $XYZ \oplus XYW \oplus XZW \oplus XY \oplus XZ \oplus YZ \oplus YW \oplus ZW \oplus X \oplus Y \oplus W$ |

### Direct Share Architecture



Figure: Basic Direct Share TI Architecture

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

-∢∃>

## TI of CA-based S-Boxes: Area and Power Consumption

| S-Box Class | Area (GE) | Dyn. Power ( $\mu$ W) |
|-------------|-----------|-----------------------|
| (1,2,2)     | 265.03    | 232.51                |
| (1,3,1)     | 259.23    | 222.36                |
| (1,3,3)     | 276.06    | 247.78                |
| (1,4,2)     | 288.35    | 254.89                |
| (1,5,1)     | 276.55    | 244.97                |
| (1,5,3)     | 298.7     | 284.19                |
| (3,2,2)     | 378.98    | 349.76                |
| (3,3,1)     | 393.83    | 357.6                 |
| (3,3,3)     | 415.21    | 398.51                |
| (3,4,2)     | 405.57    | 381.00                |
| (3,5,1)     | 397.10    | 381.46                |
| (3,5,3)     | 418.16    | 413.14                |

#### Observation on CA-based S-Boxes

An S-Box of class  $(a_1, b_1, c_1)$  is area and power efficient than an S-Box of class  $(a_2, b_2, c_2)$  iff

a<sub>1</sub> < a<sub>2</sub> or

• 
$$(a_1 = a_2)$$
 and  $(b_1 + c_1) < (b_2 + c_2)$ .

## Composite TI: Optimizing TI for Low Area and Power

Generic technique for highly optimized TI designs of CA rules:

• Express each 4 × 1 CA rule of algebraic degree 3 as a composition of Boolean sub-functions of degree 2.



Figure: Composite TI Architecture

Table: Hardware overhead of highly optimized composite TI of CA-Based S-Boxes and Comparison with popular S-Boxes

| S-Box    |         | Area (CE) | Dynamic Power $(\mu M)$   |  |  |
|----------|---------|-----------|---------------------------|--|--|
| CA Recod | Class   | Alea (GL) | Dynamic Fower ( $\mu m$ ) |  |  |
| CA-Daseu | (1,2,2) | 212.61    | 170.2                     |  |  |
|          | (1,3,1) | 140.62    | 113.3                     |  |  |
| GIFT     |         | 217.57    | 207.75                    |  |  |
| PRESENT  |         | 278.00    | 237.4                     |  |  |
| Skinny   |         | 321.24    | 282.3                     |  |  |
| Piccolo  |         | 324.75    | 281.1                     |  |  |
| Midori   |         | 367.29    | 331.5                     |  |  |
| Prince   |         | 475.55    | 411.8                     |  |  |

э

-∢∃>

< 一型

#### Experimental Set-up

- Evaluation performed on a Virtex-5 FPGA on a SASEBO-GII board.
- Programming file generated using Xilinx ISE 14.7 with the Keep Hierarchy on.
- Total 10 00 000 power trace samples were collected.
- Fixed-vs-random statistical test performed on these collected traces.
- The fixed class for the test was chosen as the all-zero input in all our evaluations.



Figure: TVLA of Composite-TI circuit for CA-Based S-Box class (1,3,1)

- Range of the outcome values: (-0.4, 0.3).
- Permissible range: (-4.5.4.5).

## Applications

æ

イロト イヨト イヨト イヨト

## Application: Designing SPN Block Ciphers Focusing on Area Only

#### Use SPN based on Bit-Permutation

- Very Low Hardware Footprint.
- Less Diffusion  $\Rightarrow$  More Rounds  $\Rightarrow$  Lower Throughput.

#### Examples

- PRESENT: Optimal S-Box with branch number 3, 31 rounds.
- GIFT: Non-Optimal S-Box, branch number 2, Possess BOGI (Bad Output must go to Good Input) property, 28 rounds.

## Application: Designing SPN Block Ciphers Focusing on Area Only

#### Using CA-Based S-Boxes with Bit-Permutation

- Optimal S-Box, branch number 2.
- Doesn't provide BOGI property.
- Number of rounds  $\approx$  40 (64-bit block ciphers).

# Application: Design Paradigm II Focusing on Area and Throughput

- Use SPN based on Bit-Permutation + Almost-MDS Mix Column Almost\_MDS\_MixColumns :  $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$ 
  - Better Diffusion  $\Rightarrow$  Less Rounds  $\Rightarrow$  Higher Throughput.
  - Slightly Higher Hardware Footprint.

#### An Example: Midori-64

- Optimal S-Box, branch number 2, doesn't possess BOGI property.
- Number of rounds: 16.

## Application: Design Paradigm II Focusing on Area and Throughput

## Using CA-Based S-Boxes with Bit-Permutation + Almost-MDS Mix Column

- Optimal S-Box, branch number 2.
- Doesn't provide BOGI property.
- Number of rounds  $\approx$  16 (64 bit block ciphers).

Table: Area and Power Comparison for TI of SPN block cipher across different choices of S-Boxes and design paradigms (ASIC Technology: 180nm)

| S-Box    |         | Diffusion Lavor      |            | Powor(mW)       |          |      |
|----------|---------|----------------------|------------|-----------------|----------|------|
| CA-Based | Class   |                      | 16 S-Boxes | Diffusion Layer | Total    |      |
|          | (1,2,2) | Bit permutation      | 2 401 76   | 3.15            | 3 404.91 | 2.72 |
|          |         | Almost-MDS           | 5401.70    | 216.62          | 3 618.38 | 4.19 |
|          | (1,3,1) | Bit permutation      | 2 240 02   | 3.15            | 2 253.07 | 1.81 |
|          |         | Almost-MDS           | 2 249.92   | 216.62          | 2 466.54 | 3.28 |
| PRESENT  |         | Bit permutation      | 4 448.00   | 3.15            | 4 451.15 | 3.79 |
| GIFT     |         | GIFT Bit permutation |            | 3.15            | 3 484.27 | 3.32 |
| SKINNY   |         | Almost-MDS           | 5 139.84   | 216.62          | 5 356.46 | 5.99 |
| MIDORI   |         | Almost-MDS           | 5 876.64   | 216.62          | 6 093.26 | 7.35 |

Table: Area, Power and Throughput Comparison for TI of SPN block cipher across different choices of S-Boxes and design paradigms (ASIC Technology: 180nm)

| S-Box              | Diffusion       | Rounds | Area (GE) | Power (mW) | Throughput (MBps) |
|--------------------|-----------------|--------|-----------|------------|-------------------|
| CA-Based (1, 3, 1) | Bit Permutation | 40     | 2 253.07  | 1.81       | 17.54             |
| CA-Based (1, 3, 1) | Almost-MDS      | 16     | 2 466.54  | 3.28       | 43.85             |
| PRESENT            | Bit Permutation | 31     | 4 448.00  | 3.79       | 61.41             |
| GIFT               | Bit Permutation | 28     | 3 484.27  | 2.72       | 71.42             |
| SKINNY             | Almost-MDS      | 32     | 5 356.46  | 5.99       | 62.5              |
| MIDORI             | Almost-MDS      | 16     | 6 093.26  | 7.35       | 125               |

- Each of these S-Boxes have non-linearity 0 or 2 or linear and differential characteristics greater than or equals to 2<sup>-1.414</sup>.
- None of these 1024 non-optimal CA-based S-Boxes exhibit the BOGI property of the GIFT S-Box.

#### Side Channel Resistance Light-weight Primitive Design

- CA based Approach: Design Optimal  $4 \times 4$  light-weight TI S-Box.
- Build Light-weight Block-ciphers of different Paradigm.

#### Extension to $8 \times 8$ CA-based S-Boxes

- Possible Choices  $2^{256}$ , can not use brute force search.
- Can we combine  $4 \times 4$  S-Boxes?

## Thank You...