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Abstract. The boomerang attack is a cryptanalysis technique against block ciphers
which combines two differentials for the upper part and the lower part of the cipher.
The dependency between these two differentials then highly affects the complexity of
the attack and all its variants. Recently, Cid et al. introduced at Eurocrypt’18 a new
tool, called the Boomerang Connectivity Table (BCT) that permits to simplify this
complexity analysis, by storing and unifying the different switching probabilities of
the cipher’s Sbox in one table. In this seminal paper a brief analysis of the properties
of these tables is provided and some open questions are raised. It is being asked
in particular whether Sboxes with optimal BCTs exist for even dimensions, where
optimal means that the maximal value in the BCT equals the lowest known differential
uniformity. When the dimension is even and differs from 6, such optimal Sboxes
correspond to permutations such that the maximal value in their DDT and in their
BCT equals 4 (unless APN permutations for such dimensions exist). We provide in
this work a more in-depth analysis of boomerang connectivity tables, by studying
more closely differentially 4-uniform Sboxes. We first completely characterize the
BCT of all differentially 4-uniform permutations of 4 bits and then study these
objects for some cryptographically relevant families of Sboxes, as the inverse function
and quadratic permutations. These two families provide us with the first examples
of differentially 4-uniform Sboxes optimal against boomerang attacks for an even
number of variables, answering the above open question.
Keywords: Sbox · Boomerang Connectivity Table · Boomerang attack · Boomerang
uniformity

1 Introduction
The boomerang attack, introduced byWagner in 1999 [Wag99] is an important cryptanalysis
technique against block ciphers. These attacks can be seen as an extension of classical
differential attacks [BS91]. Boomerang cryptanalysis can be applied in cases when it is not
possible to find a high probability differential trail for the whole cipher and is based on
the idea of combining differential properties of smallest parts of the cipher instead. More
precisely, in a classical boomerang attack, a cipher E is seen as the composition of two
sub-ciphers E0 and E1, i.e. E = E1 ◦ E0. Boomerang attacks work by forming a quartet
structure based on a differential a→ d for E0 of probability p and a differential c→ b for
E1 of probability q, as depicted in Figure 1. Using the following estimate

Pr[E−1(E(x)⊕ b)⊕ E−1(E(x⊕ a)⊕ b) = a] = p2q2, (1)

the attack consists in mounting a distinguisher with a data complexity corresponding to
(pq)−2 adaptive chosen plaintexts/ciphertexts.
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Figure 1: Basic boomerang attack (left) and sandwich attack (right)

Since Wagner’s seminal paper, many improvements and variants of boomerang attacks
have been proposed [KKS01, BDK01, BDK02, BDD03, BK09, DKS10, KHP+12]. However,
Murphy [Mur11] pointed out that the independence assumption used for establishing Eq. (1)
may fail: he exhibited some counterexamples for which the probability in (1) is much
smaller than this estimate, and some other ones for which this probability is much higher.

A rigorous analysis capturing all these variants has been provided in [DKS14] through
the notion of sandwich attack. In this case, the cipher is decomposed into three parts,
E = E1 ◦ Em ◦ E0, where the middle part Em is a simple transformation, typically one
round (or one S-box layer) of the cipher (see right part of Figure 1). This transition
through the middle sub-cipher then formalizes the dependence between the two involved
differentials. More precisely, the probability in the previous statistical analysis has to be
multiplied by

Pr
[
E−1
m (Em(x)⊕ c)⊕ E−1

m (Em(x⊕ d)⊕ c) = d
]
. (2)

For instance, the incompatibility exhibited by Murphy corresponds to the situation where
this probability vanishes. The so-called Feistel switch [BDK05, BK09] refers to the case
where Em is a round of a Feistel cipher. Then, it is easy to see that the Feistel structure
implies that the probability (2) is always equal to 1. Similarly, the ladder switch introduced
by Biryukov and Khovratovich in [BK09] refers to the case where Em corresponds to the
parallel application of smaller transformations, typically to an Sbox layer. Then, if the
input difference di of the i-th Sbox Si vanishes, the corresponding contribution to the
probability satisfies

Pr[S−1
i (Si(xi)⊕ ci)⊕ S−1

i (Si(xi ⊕ di)⊕ ci) = di] = 1 .

The same property obviously holds if the output difference ci of the i-th Sbox vanishes.
These observations point out that the value (2) plays a key role when estimating the

complexity of boomerang attacks and their generalizations. Recently, in [CHP+18] the
authors proposed a new method for evaluating this probability in a more systematic way
than by running experiments. This approach consists in studying (2) for a single Sbox
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by a method which follows closely what is done for measuring the resistance of a cipher
against differential cryptanalysis. Indeed, for differential cryptanalysis, a table called the
difference distribution table (DDT) is created for the cipher’s Sbox S by recording for
each input difference a and for each output difference b the number of solutions of the
equation S(x ⊕ a) ⊕ S(x) = b. The smaller the maximal value of the DDT, the better
the resistance of the cipher against differential cryptanalysis. In order to evaluate the
resistance of a cipher against boomerang attacks, the authors of [CHP+18] introduce a
similar table, called the Boomerang Connectivity Table (BCT), to keep for each a and b
the number of solutions of the equation

S−1(S(x)⊕ b)⊕ S−1(S(x⊕ a)⊕ b) = a.
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Figure 2: A quartet at the Sbox level

The values of the BCT then record the probability of generating boomerang quartets
at the Sbox level (up to a factor 2−n) (see Figure 2). In particular, this representation
permits to visualize in a single table both the ladder switch and the Sbox switch (see
Figure 3). More importantly, it can reveal in some cases better possible switches. The
smaller the maximal value β in the table (excluding the values for a or b = 0) the better
the resistance of the cipher against boomerang-style attacks. Understanding the properties
of such tables allows then designers and cryptanalysts to better evaluate the applicability
of boomerang attacks and provides new criteria for designing Sboxes.

The introduction of the Boomerang Connectivity Tables in [CHP+18] was accompanied
by a preliminary analysis of their properties and especially of their link with the corre-
sponding DDTs. The authors show notably that the maximum in the BCT, β, is at least
equal to the differential uniformity of the Sbox. Moreover, for Almost Perfect Nonlinear
(APN) permutations, that are the permutations offering an optimal resistance against
differential attacks, the BCT and DDT tables coincide for all values with a, b 6= 0. In other
words, for APN Sboxes, there are no other switching techniques than the ladder switch
and the Sbox switch. On the other hand, it is experimentally shown that, for permutations
of F4

2, a row in a DDT composed only of 0s and 4s leads to an entry equal to 16 in the
corresponding row of the BCT. In these cases, there exist some efficient switches other
than the ladder switch.

This preliminary analysis therefore raises many important open questions. The case
of APN permutations, i.e. permutations with differential uniformity 2, is entirely settled
and it was shown, as said before, that such permutations offer an optimal resistance to
both differential and boomerang attacks. However, such permutations are only known
to exist for odd dimensions, with the only exception being Dillon et al.’s permutation in
dimension 6 [BDMW10]. While it is known that for n = 4 APN permutations do not exist,
for other even dimensions n ≥ 8, the existence of APN permutations remains an open
question, known as the Big APN Problem [BDMW10]. Therefore, in even dimensions,
notably for n = 4 or n = 8, designers typically choose Sboxes that offer the next best
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Figure 3: Ladder and Sbox switch at the Sbox level

possible resistance to differential cryptanalysis, that is Sboxes with differential uniformity 4.
Studying therefore the resistance of such Sboxes against boomerang attacks is an important
task. Notably, an open question raised in [CHP+18] is whether optimal differentially 4-
uniform Sboxes exist against boomerang attacks, where optimal means that the maximal
value in the BCT is 4.

Our contributions. In this paper we study the properties of BCTs, solve some of the prob-
lems raised in [CHP+18] and provide results for the BCTs of some important cryptographic
families of Sboxes. First, we show that the multi-set composed of all values in the BCT is
preserved under affine equivalence and inversion. This very simple result is useful as it
restrains the study of BCTs in a given dimension to the study of the properties of a single
representative of the affine equivalence class. We then provide a detailed study of the BCTs
of all differentially 4-uniform 4-bit permutations and mathematically prove some of the
results that were only experimentally verified in [CHP+18]. Next, we entirely determine
the boomerang properties for the inverse mapping. In odd dimension this permutation is
known to be APN while in even dimension it is differentially 4-uniform. We show here
that the maximal value in its BCT is 6 for n ≡ 0 mod 4 and equals 4 for n ≡ 2 mod 4.
Therefore, this proves that the inverse mapping has an optimal BCT in such dimensions
for a non-APN Sbox. In other words, this solves, for n ≡ 2 mod 4, the open problem
raised in [CHP+18]. Finally, we focus on quadratic permutations as these objects present a
particular interest for cryptography. Indeed, because of their low multiplicative depth, such
functions are good candidates for side-channel resistant and for FHE and MPC-friendly
constructions. For example, the Sbox used inside the hash-standard SHA-3 [Dwo15] is
a quadratic permutation of F5

2. We prove first that the maximal value in the BCT of
differentially 4-uniform quadratic permutations is at most 12. Also we show that this
maximal value is exactly 4 for quadratic power permutations over F2n when n ≡ 2 mod 4.
Hence, the inverse function and the quadratic differentially 4-uniform power permutations
for n ≡ 2 mod 4 provide us with the first examples of optimal non-APN functions against
boomerang cryptanalysis.

2 Preliminaries
From now on, the terminology Sbox will refer to a vectorial Boolean function S : Fn2 → Fn2 .
We introduce here the notions and definitions related to the differential properties of such
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functions.

Definition 1 (Derivative of a function). Let S be a function from Fn2 into Fn2 . The
derivative of S with respect to a ∈ Fn2 is the function

∆aS : x ∈ Fn2 7→ S(x⊕ a)⊕ S(x).

The multi-sets corresponding to the images of the derivatives of S are usually represented
as a two-dimensional array called the difference distribution table.

Definition 2 (DDT and its characteristics). Let S be a function from Fn2 into Fn2 . The
difference distribution table (DDT) of S is the two-dimensional table defined by

δS(a, b) = #{x ∈ Fn2 : ∆aS(x) = b} with a, b ∈ Fn2 .

The differential uniformity of S [Nyb94], denoted by δS , is the highest value in the DDT,
i.e.

δS = max
a,b∈Fn2 ,a6=0

δS(a, b).

A function S with δS = δ is called differentially δ-uniform. Finally, the differential spectrum
of S is the multi-set

{δS(a, b), a ∈ Fn2 \ {0}, b ∈ Fn2}.

Example 1. When F24 is identified with F4
2 by the primitive polynomial x4 + x+ 1, the

inverse permutation over F24 , S : x 7→ x14 has the following value table

S = [0, 1, 9, 14, 13, 11, 7, 6, 15, 2, 12, 5, 10, 4, 3, 8]

and its DDT is provided in Table 1. As it can be seen from this table, S is differentially
4-uniform, i.e. δS = 4.

Table 1: DDT of the permutation x 7→ x2n−2 for n = 4
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 0 0 0 0 2 2 0 2 0 2 0 2 2 0
2 0 0 0 2 0 0 0 2 0 4 2 0 2 2 0 2
3 0 0 2 0 0 0 0 2 2 0 2 2 2 0 4 0
4 0 0 0 0 0 2 2 0 2 0 2 0 0 4 2 2
5 0 0 0 0 2 0 2 0 2 2 0 4 2 0 0 2
6 0 2 0 0 2 2 2 4 0 0 2 0 2 0 0 0
7 0 2 2 2 0 0 4 2 2 0 0 0 0 0 0 2
8 0 0 0 2 2 2 0 2 0 0 0 2 0 0 2 4
9 0 2 4 0 0 2 0 0 0 2 0 0 2 0 2 2
a 0 0 2 2 2 0 2 0 0 0 0 0 4 2 2 0
b 0 2 0 2 0 4 0 0 2 0 0 2 2 2 0 0
c 0 0 2 2 0 2 2 0 0 2 4 2 0 0 0 0
d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2
e 0 2 0 4 2 0 0 0 2 2 2 0 0 0 2 0
f 0 0 2 0 2 2 0 2 4 2 0 0 0 2 0 0

The lowest possible value for the differential uniformity of a function from Fn2 into
itself is two and the functions with differential uniformity two are called almost perfect
nonlinear (APN). While for n odd many families of APN permutations are known [BN15],
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for n even only one permutation (up to CCZ equivalence) for n = 6, discovered by Dillon
et al. in 2009 [BDMW10], is known today. The problem of finding APN permutations for
other even dimensions is open and is called The Big APN Problem. Therefore, for even
dimensions n 6= 6, the best choice regarding the differential criterion is the differentially
4-uniform permutations. Such permutations, for both even and odd dimensions, are the
object of our study in this article.

We provide now the definition of the Boomerang Connectivity Table (BCT) for a
permutation of Fn2 .
Definition 3 ([CHP+18]). Let S be a permutation of Fn2 . The Boomerang Connectivity
Table (BCT) of S is the two-dimensional table defined by

βS(a, b) = #{x ∈ Fn2 : S−1(S(x)⊕ b)⊕ S−1(S(x⊕ a)⊕ b) = a}, with a, b ∈ Fn2 .

The boomerang uniformity, denoted by βS , is the highest value in the BCT without
considering the row and the column of index 0:

βS = max
a,b∈Fn2 \{0}

βS(a, b).

Example 2. The BCT of the inverse permutation over F24 is provided in Table 2. It can
be seen that βS = 6.

Table 2: BCT of the permutation x 7→ x2n−2 for n = 4
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 4 0 0 0 0 6 6 0 2 0 2 0 2 2 0
2 16 0 0 6 0 0 0 2 0 4 6 0 2 2 0 2
3 16 0 6 0 0 0 0 2 2 0 2 2 6 0 4 0
4 16 0 0 0 0 6 2 0 6 0 2 0 0 4 2 2
5 16 0 0 0 6 0 2 0 2 2 0 4 2 0 0 6
6 16 6 0 0 2 2 6 4 0 0 2 0 2 0 0 0
7 16 6 2 2 0 0 4 6 2 0 0 0 0 0 0 2
8 16 0 0 2 6 2 0 2 0 0 0 6 0 0 2 4
9 16 2 4 0 0 2 0 0 0 2 0 0 6 0 6 2
a 16 0 6 2 2 0 2 0 0 0 0 0 4 2 6 0
b 16 2 0 2 0 4 0 0 6 0 0 2 2 6 0 0
c 16 0 2 6 0 2 2 0 0 6 4 2 0 0 0 0
d 16 2 2 0 4 0 0 0 0 0 2 6 0 2 0 6
e 16 2 0 4 2 0 0 0 2 6 6 0 0 0 2 0
f 16 0 2 0 2 6 0 2 4 2 0 0 0 6 0 0

3 Invariance under some equivalence relations
We show that the multi-set composed of all values in the BCT is preserved under affine
equivalence.
Proposition 1. Let F and G be two permutations of Fn2 which are affine-equivalent, i.e.,
there exist two affine permutations A1 and A2 such that

G = A2 ◦ F ◦A1.

Then, the BCT of F and G are related by

βG(a, b) = βF (L1(a), L−1
2 (b)), for all a, b ∈ Fn2 ,

where L1 and L2 denote the linear parts of A1 and A2 respectively.
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Proof. Let x ∈ Fn2 be a solution of the equation

G−1(G(x)⊕ b)⊕G−1(G(x⊕ a)⊕ b) = a.

Equivalently,

(A2 ◦ F ◦A1)−1 [(A2 ◦ F ◦A1)(x)⊕ b]⊕ (A2 ◦ F ◦A1)−1 [(A2 ◦ F ◦A1)(x⊕ a)⊕ b] = a

⇔ F−1 ◦A−1
2 [(A2 ◦ F ◦A1)(x)⊕ b]⊕ F−1 ◦A−1

2 [(A2 ◦ F ◦A1)(x⊕ a)⊕ b] = L1(a) (3)

where this equality is obtained by using that, for any affine function A,

A(x1)⊕A(x2) = L(x1 ⊕ x2)

where L is the linear part of A.
Now, by writing A2(x) = L2(x)⊕γ, we have that A−1

2 (x) = L−1
2 (x⊕γ). It follows that

A−1
2 [(A2 ◦ F ◦A1)(x)⊕ b] = L−1

2 [(L2 ◦ F ◦A1)(x)⊕ γ ⊕ b⊕ γ]
= (F ◦A1)(x)⊕ L−1

2 (b) .

We then deduce that Equation (3) is equivalent to

F−1 [F (A1(x))⊕ L−1
2 (b)

]
⊕ F−1 [F (A1(x⊕ a))⊕ L−1

2 (b)
]

= L1(a).

By setting y = A1(x) we get that y is a solution of

F−1 [F (y)⊕ L−1
2 (b)

]
⊕ F−1 [F (y ⊕ L1(a))⊕ L−1

2 (b)
]

= L1(a).

In other words, x belongs to the set involved in βG(a, b) if and only if y = A1(x) belongs
to the set involved in βF (L1(a), L−1

2 (b)).

A similar relation can be exhibited between the BCT of a permutation and the BCT
of its inverse.
Proposition 2. Let S be a permutation of Fn2 . Then, the BCT of S and of S−1 are
related by

βS−1(a, b) = βS(b, a), for all a, b ∈ Fn2 .
Proof. Let x ∈ Fn2 be a solution of

S(S−1(x⊕ a)⊕ b)⊕ S(S−1(x)⊕ b) = a .

Equivalently,
S−1(x⊕ a)⊕ b = S−1 (S(S−1(x)⊕ b)⊕ a

)
which means that y = S−1(x) is a solution of

S−1(S(y)⊕ a)⊕ b = S−1 (S(y ⊕ b)⊕ a) .

In other words x belongs to the set involved in βS−1(a, b) if and only if y = S−1(x) belongs
to the set involved in βS(b, a).

We have proved that the multi-set formed by all values in the BCT is invariant under
affine equivalence and inversion. In other words, the behaviour of the BCT with respect
to these two classes of transformations is exactly the same as the behaviour of the DDT.
However, while the differential spectrum of a function is also preserved by the extended-
affine (EA) equivalence (i.e. all transformations of the form A2 ◦F ◦A1⊕A0 where A1, A2
are affine permutations and A0 is an affine function), this is not the case for the BCT.
For instance, the two permutations G4 and G6 from [LP07] are EA-equivalent, but their
boomerang uniformities differ: βG4 = 10 and βG6 = 8. Another important equivalence
notion between Sboxes is the so-called CCZ-equivalence [CCZ98]. Two functions F and G
are said to be CCZ-equivalent if and only if {(x,G(x)), x ∈ Fn2} = A{(x, F (x)), x ∈ Fn2}
for some affine permutation A of Fn2 × Fn2 . As EA-equivalence is a special case of CCZ-
equivalence, we deduce that the boomerang uniformity is also not always preserved under
CCZ-equivalence.
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4 An alternative formulation
Let us define the following two sets of Fn2 :

USa,b = {x ∈ Fn2 : S(x)⊕ S(x⊕ a) = b},
VSa,b = {S(x) ∈ Fn2 : S(x)⊕ S(x⊕ a) = b}

For the sake of simplicity, Parameter S will be omitted in this notation if the involved
mapping is clear from the context. A simple remark is that

VSa,b = US
−1

b,a .

Indeed,

VSa,b = {S(x) ∈ Fn2 : S(x)⊕ S(x⊕ a) = b}
= {y ∈ Fn2 : y ⊕ S(S−1(y)⊕ a) = b}
= {y ∈ Fn2 : S−1(y)⊕ S−1(y ⊕ b) = a}
= US

−1

b,a .

We now provide an alternative formula for computing the entries in a BCT of a
permutation.

Proposition 3. For any permutation S of Fn2 , for all a, b ∈ Fn2 , we have

βS(a, b) = δS(a, b) +
∑
γ 6=0,b

#
(
VSa,γ ∩ (VSa,γ ⊕ b)

)
. (4)

Proof.

βS(a, b) = #{x ∈ Fn2 : S−1(S(x)⊕ b)⊕ S−1(S(x⊕ a)⊕ b) = a}
=

∑
γ 6=0

#{x : S(x)⊕ S(x⊕ a) = γ and S−1(S(x)⊕ b)⊕ S−1(S(x⊕ a)⊕ b) = a}

=
∑
γ 6=0

#{x : S(x)⊕ S(x⊕ a) = γ and S−1(S(x)⊕ b)⊕ S−1(S(x)⊕ b⊕ γ) = a}

When γ = b, any x satisfying the first equation satisfies the second one too. Indeed, if
x ∈ Ua,b, then

S−1(S(x)⊕ b)⊕ S−1(S(x)) = S−1(S(x⊕ a))⊕ S−1(S(x)) = a .

We then deduce that

βS(a, b) = δS(a, b) +
∑
γ 6=0,b

#{x ∈ USa,γ and S(x)⊕ b ∈ US
−1

γ,a }

= δS(a, b) +
∑
γ 6=0,b

#{y ∈ VSa,γ and y ⊕ b ∈ US
−1

γ,a }

= δS(a, b) +
∑
γ 6=0,b

#{y ∈ VSa,γ and y ⊕ b ∈ VSa,γ}

= δS(a, b) +
∑
γ 6=0,b

(
VSa,γ ∩ (VSa,γ ⊕ b)

)
.
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We directly recover from Eq. (4) the following two observations from [CHP+18],
corresponding to the ladder switch and to the Sbox switch respectively:

βS(a, 0) = 2n and βS(a, b) ≥ δS(a, b) ,

for all a, b ∈ Fn2 .
Most notably, the highest entry in the BCT βS is larger than or equal to the differential

uniformity of the Sbox. It follows that the lowest possible value for βS is two, and it is
achieved if and only if S is APN. Since no APN permutation of Fn2 is known for even
n 6= 6, an optimal BCT in this case corresponds to βS = 4, and can only be achieved for
differentially 4-uniform Sboxes.

Case of planar permutations. In most practical cases, the Sboxes used in symmetric
primitives are planar in the sense of the following definition introduced by Daemen and
Rijmen.

Definition 4. [DR07] A mapping S from Fn2 into Fn2 is called planar if and only if, for all
a and b in Fn2 , both sets Ua,b and Va,b are affine subspaces.

Differentially 4-uniform permutations form an important family of planar mappings.
Indeed, since USa,b consists of at most 2 pairs of elements of the form (x, x⊕ a), it is an
affine subspace of dimension at most 2. Also, the concatenation of several Sboxes with
differential uniformity 4 is planar, implying that the substitution layers in the AES [AES01],
in Serpent [BAK98], in Present [BKL+07], Prince [BCG+12] and in many other lightweight
ciphers are planar.

For any planar mapping S, we can write USa,b and VSa,b as

USa,b = ua,b ⊕ USa,b
VSa,b = va,b ⊕ V Sa,b,

where USa,b and V Sa,b are linear spaces and ua,b and va,b are some constants such that
ua,b ∈ USa,b and va,b ∈ VSa,b. Moreover, if δS(a, b) 6= 0, we obviously have that a ∈ USa,b and
b ∈ V Sa,b.

In the special case of a planar permutation, Proposition 3 can be formulated in a
simpler way showing that any entry within Row a in the BCT corresponds to a sum of
some entries within Row a in the DDT.

Proposition 4. For any planar permutation S of Fn2 , for all a, b ∈ Fn2 , we have

βS(a, b) =
∑

γ 6=0:b∈V Sa,γ

δS(a, γ) ,

where V Sa,γ is the linear space associated to the affine space VSa,γ .

Proof. Proposition 3 involves the cardinality of the intersection

VSa,γ ∩ (VSa,γ ⊕ b) .

When S is planar, VSa,γ is an affine subspace, VSa,γ = va,γ ⊕ V Sa,γ . Then, only two situations
may occur:

• either b ∈ V Sa,γ , which equivalently means that (VSa,γ ⊕ b) = VSa,γ ,

• or b 6∈ V Sa,γ , which means that (VSa,γ ⊕ b) is a coset of V Sa,γ different from VSa,γ . In this
case, the intersection between the two cosets of the same linear space is empty.
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It follows that
VSa,γ ∩ (VSa,γ ⊕ b)

equals δS(a, γ) when b ∈ V Sa,γ and 0 otherwise. Then,

βS(a, b) = δS(a, b) +
∑

γ 6∈{0,b}:b∈V Sa,γ

δS(a, γ) ,

and the result directly follows from the fact that b ∈ V Sa,γ .

Example 3. We illustrate Propositions 3 and 4 by using the Sbox S introduced in
Example 1. Let a = 1. It can be checked that VS1,1 = {0, 1, 6, 7}, VS1,6 = {11, 13},
VS1,7 = {9, 14}, VS1,9 = {5, 12}, VS1,11 = {3, 8}, VS1,13 = {2, 15}, VS1,14 = {4, 10} and VS1,γ = ∅
for all other γ ∈ F4

2. For the respective linear spaces we have that V S1,1 = {0, 1, 6, 7},
V S1,γ = {0, γ} for γ ∈ {6, 7, 9, 11, 13, 14} and V S1,γ = ∅ for all other γ ∈ F4

2.
Let b = 6. We see that (VS1,γ ∩ (VS1,γ ⊕ 6)) 6= ∅ only for γ = 1. In this case, we have

(VS1,γ ⊕ 6) = VS1,γ . Therefore, Proposition 3 leads to

βS(1, 6) = δS(1, 6) + #(VS1,1 ∩ (VS1,1 ⊕ 6)) = 2 + 4 = 6.

Alternatively, as S is planar since it has differential uniformity 4, Proposition 4 gives:

βS(1, 6) = δS(1, 6) + δS(1, 1) = 2 + 4 = 6.

5 BCT tables for 4-bit permutations
5.1 BCT of all 4-bit permutations with δS = 4
We have shown that the maximum value in the BCT is preserved under affine equivalence.
It is then sufficient to study the BCT for one representative of the affine equivalence
class. For n = 4 full classifications exist, see for example [DeC07] or [LP07]. Following the
classification by De Cannière, we show in Table 3 the spectrum of the BCT for all classes
of 4-bit permutations with δS = 4, i.e., the values ni corresponding to the number of times
the value i appears in the BCT. This classification includes all optimal permutations with
δS = 4 and optimal linearity L(S) = 8 listed in [LP07], and also permutations with δS = 4
and a higher linearity.

A first important observation from Table 3 is that all 4-bit permutations with δS = 4
have boomerang uniformity at least 6. This then proves that 4-bit Sboxes with boomerang
uniformity 4 do not exist, as conjectured in [CHP+18, Section 6.1].

Another remark is that the inverse of Permutation 11 in Table 3 belongs to the
affine-equivalence class of Permutation 10, implying that their BCTs contain the same
values as shown by Proposition 2. Similarly, the inverse of Permutation 16 belongs to the
affine-equivalence class of Permutation 13. Then, any two 4-bit permutations with δS = 4
that are not related by inversion or affine equivalence have different BCT spectra.

We also notice that for all permutations with δS = 4 in four variables n12 = 0 and
n14 = 0, meaning that the values 12 and 14 never appear in the BCT table.
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Table 3: Spectrum of the BCT for all 4-bit permutations with differential uniformity 4. Column 4 mentions the link with the functions of Table
5.2 in [DeC07]. For the first 16 permutations, we also mention the corresponding equivalence class in the Leander-Poschmann classification [LP07].

Representative L(S) [DeC07] [LP07] n0 n2 n4 n6 n8 n10 n16 βS

1 [8, 0, 1, 12, 15, 5, 6, 7, 4, 3, 10, 11, 9, 13, 14, 2] 8 3 G3 120 60 15 30 0 0 0 6
2 [2, 0, 1, 8, 3, 11, 6, 7, 4, 9, 10, 15, 12, 13, 14, 5] 8 6 G5 108 72 27 18 0 0 0 6
3 [8, 0, 1, 12, 2, 5, 6, 9, 4, 3, 10, 11, 7, 13, 14, 15] 8 2 G6 104 80 27 10 4 0 0 8
4 [8, 0, 1, 9, 2, 5, 13, 7, 4, 6, 10, 11, 12, 3, 14, 15] 8 8 G11 100 85 30 5 5 0 0 8
5 [4, 0, 1, 15, 2, 11, 6, 7, 3, 9, 10, 5, 12, 13, 14, 8] 8 1 G13 105 78 28 11 2 1 0 10
6 [2, 0, 1, 8, 3, 13, 6, 7, 4, 9, 10, 5, 12, 11, 14, 15] 8 4 G4 112 72 23 14 0 4 0 10
7 [2, 0, 1, 8, 3, 15, 6, 7, 4, 9, 5, 11, 12, 13, 14, 10] 8 5 G7 105 80 30 5 0 5 0 10
8 [4, 8, 1, 2, 3, 11, 6, 7, 0, 9, 10, 14, 12, 13, 5, 15] 8 7 G12 110 75 25 10 0 5 0 10
9 [8, 14, 1, 2, 3, 5, 6, 7, 4, 12, 10, 11, 9, 13, 0, 15] 8 9 G9 108 69 28 14 5 1 0 10
10 [8, 14, 1, 2, 3, 5, 6, 7, 4, 9, 15, 11, 12, 13, 0, 10] 8 10 G14 108 70 27 13 6 1 0 10
11 [8, 15, 1, 2, 3, 5, 12, 7, 4, 9, 10, 11, 6, 13, 14, 0] 8 11 G15 108 70 27 13 6 1 0 10
12 [8, 15, 1, 2, 3, 5, 6, 13, 4, 9, 10, 11, 12, 7, 14, 0] 8 12 G10 108 69 30 12 3 3 0 10
13 [12, 0, 1, 9, 3, 5, 4, 7, 6, 2, 10, 11, 8, 13, 14, 15] 8 13 G2 107 64 32 8 12 0 2 16
14 [12, 11, 1, 2, 3, 5, 4, 7, 6, 9, 10, 0, 8, 13, 14, 15] 8 14 G1 107 60 36 12 8 0 2 16
15 [12, 9, 1, 2, 3, 5, 4, 7, 6, 0, 10, 11, 8, 13, 14, 15] 8 15 G8 103 72 32 0 16 0 2 16
16 [8, 14, 1, 2, 3, 5, 4, 7, 6, 9, 10, 0, 12, 13, 11, 15] 8 16 G0 107 64 32 8 12 0 2 16
17 [8, 15, 1, 2, 3, 12, 6, 7, 4, 9, 10, 11, 5, 13, 14, 0] 12 34 − 112 57 35 14 0 7 0 10
18 [8, 0, 1, 12, 2, 5, 11, 7, 4, 9, 10, 6, 3, 13, 14, 15] 12 35 − 109 60 34 15 4 3 0 10
19 [8, 0, 1, 12, 2, 5, 13, 7, 4, 9, 10, 11, 3, 6, 14, 15] 12 36 − 109 60 34 15 4 3 0 10
20 [12, 0, 1, 2, 3, 15, 6, 7, 4, 9, 10, 11, 8, 13, 14, 5] 12 37 − 110 58 30 14 12 0 1 16
21 [12, 0, 1, 2, 3, 5, 6, 13, 4, 9, 10, 11, 8, 7, 14, 15] 12 38 − 106 62 36 8 10 2 1 16
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5.2 Understanding the results
The previous table confirms several observations on 4-bit Sboxes reported in [CHP+18],
which have been obtained experimentally by examining all Sboxes having specific properties.
Most of these phenomena can actually be deduced from the following lemma which is very
specific to the case of mappings over F4

2.

Lemma 1. Let S be a permutation on F4
2 such that there exist a, b1, b2 ∈ F4

2 satisfying
δS(a, b1) = δS(a, b2) = 4. Then,

Va,b1 ∩ Va,b2 6= {0} .

Proof. Since δS(a, b1) = δS(a, b2) = 4, Va,b1 and Va,b2 are two affine subspaces of dimen-
sion 2. Let Va,b1 = c1⊕〈b1, γ1〉 and Va,b2 = c2⊕〈b2, γ2〉. By definition, Va,b1 and Va,b2 are
disjoint. This means that c2 6∈ c1 ⊕ 〈b2, γ2, b1, γ1〉. However, if Va,b1 ∩ Va,b2 = {0}, then
〈b1, γ1, b2, γ2〉 covers the whole space F4

2, which contradicts the previous property.

Example 4. We illustrate Lemma 1 on the PRESENT [BKL+07] Sbox. The DDT
of this Sbox S is shown in Table 4 while its BCT is shown in Table 5. Let the input
difference be a = 8. As it can be seen from Table 4, δS(8, b) = δS(8, f) = 4. It is easy
to check that V8,b = {1, 5, a, e} and V8,f = {2, 3, c, d}. The corresponding linear spaces
are V8,b = {0, 4, b, f} and V8,f = {0, 1, e, f} and we see that V8,b ∩ V8,d = {0, f} 6= {0}, as
expected by Lemma 1.

Table 4: Difference Distribution Table (DDT) of the PRESENT Sbox
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

The previous lemma implies a strong relationship between the boomerang uniformity
of a 4-bit Sbox and the number of values 4 in a row of its DDT. This relationship explains
for instance the fact observed in [CHP+18, Lemma 3]: if the DDT of a 4-bit Sbox S has a
row with entries 0 and 4 only, then βS = 16.

Proposition 5. Let S be a permutation of F4
2 with δs = 4. Then,

• If its DDT has a row with at least two values 4, then βS ≥ 8;

• If each row in its DDT has at most two values 4, then βS ≤ 10;

• If its DDT has a row with four values 4, then βS = 16.
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Table 5: Boomerang Connectivity Table of the PRESENT Sbox
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 0 4 4 0 16 4 4 4 4 0 0 4 4 0 0
2 16 0 0 6 0 4 6 0 0 0 2 0 2 2 2 0
3 16 2 0 6 2 4 4 2 0 0 2 2 0 0 0 0
4 16 0 0 0 0 4 2 2 0 6 2 0 6 0 2 0
5 16 2 0 0 2 4 0 0 0 6 2 2 4 2 0 0
6 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8
7 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8
8 16 4 0 2 4 0 0 2 0 2 0 4 0 2 4 8
9 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8
a 16 0 2 2 0 4 0 0 6 0 2 0 0 6 2 0
b 16 2 0 0 2 4 0 0 4 2 2 2 0 6 0 0
c 16 0 6 0 0 4 0 6 2 2 2 0 0 0 2 0
d 16 2 4 2 2 4 0 6 0 0 2 2 0 0 0 0
e 16 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 16 8 0 0 8 0 0 0 0 0 0 8 0 0 8 16

Proof. We know from Proposition 4 that, for any Sbox with differential uniformity 4,

βS(a, b) =
∑

γ 6=0:b∈Va,γ

δS(a, γ), for all a, b ∈ Fn2 .

Suppose that the row of index a in the DDT of S is such that there exist γ1 and γ2 with
δS(a, γ1) = δS(a, γ2) = 4. We then deduce from Lemma 1 that there exists a nonzero b in
Va,γ1 ∩ Va,γ2 . Thus,

βS(a, b) ≥ δS(a, γ1) + δS(a, γ2) = 8 .
Let us now assume that the row of index a contains exactly two values 4, i.e. δS(a, γ) ≤ 2

for all γ 6∈ {γ1, γ2}. Then, for all γ 6∈ {γ1, γ2}, Va,γ is either empty, or equal to {0, γ},
implying that b 6∈ Va,γ when γ 6∈ {0, b}. Then, the set of all γ 6= 0 such that b ∈ Va,γ is
always included in {b, γ1, γ2}. We deduce that, if b ∈ {γ1, γ2}, βS(a, b) = 8. Otherwise,

βS(a, b) ≤ δS(a, b) + δS(a, γ1) + δS(a, γ2) ≤ 10 .

Now we assume that all entries in the row of index a equal 4, i.e. there exist γ0, γ1, γ2, γ3
such that δS(a, γi) = 4 for all 0 ≤ i ≤ 3, and δS(a, γ) = 0 otherwise. We will show now that
in this special case the above spaces have not only non-trivial pairwise intersections, but on
top of that their joint intersection is not trivial i.e. Va,γ0 ∩Va,γ1 ∩Va,γ2 ∩Va,γ3 6= {0}, which
directly implies that the BCT uniformity is 16. Indeed, let b ∈ Va,γ0 ∩ Va,γ1 ∩ Va,γ2 ∩ Va,γ3 ,
then by Proposition 4, β(a, b) = δ(a, γ0) + δ(a, γ1) + δ(a, γ2) + δ(a, γ3) = 4 · 4 = 16.
For proving that the above intersection is non-trivial, we first show that any three
of these sets have a non-trivial intersection. By contradiction, suppose w.l.o.g. that
Va,γ0 ∩Va,γ1 ∩Va,γ2 = {0}. From Lemma 1, we know that Va,γ0 = 〈γ0, b〉 and Va,γ1 = 〈γ1, b〉
for some nonzero b. When γ1 = γ0⊕b, a trivial intersection between the 3 sets cannot occur:
otherwise, Va,γ0 = Va,γ1 and the intersection between the three sets equals Va,γ0 ∩ Va,γ2

which is non-trivial by Lemma 1. Let us now focus on the case where γ1 6= γ0 ⊕ b.
Since b does not belong to Va,γ2 , Va,γ2 must be one of the following spaces: 〈γ0, γ1〉,
〈γ0, b⊕ γ1〉, 〈b⊕ γ0, γ1〉 or 〈b⊕ γ0, b⊕ γ1〉. In other words, Va,γ2 is a 2-dimensional space
〈α, β〉 ⊂ 〈γ0, γ1, b〉 which differs from 〈γ0, b〉 and from 〈γ1, b〉. Moreover, by definition, the
three affine subspaces Va,γ0 = c0 ⊕ 〈γ0, b〉, Va,γ1 = c1 ⊕ 〈γ1, b〉 and Va,γ2 = c2 ⊕ 〈α, β〉 are
disjoint. This means that

c0 6∈ c1 ⊕ 〈γ0, b, γ1〉
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and
c0 6∈ c2 ⊕ 〈γ0, b, α, β〉 = c2 ⊕ 〈γ0, b, γ1〉 .

The linear space 〈γ0, γ1, b〉 has dimension 3 since b 6∈ {γ0, γ1} and γ1 6= γ0 ⊕ b. Moreover,
the two cosets of 〈γ0, γ1, b〉 defined by c1 and c2 are disjoint since Va,γ1 and Va,γ2 are disjoint.
Therefore, these two cosets cover the whole space F4

2, which leads to a contradiction. This
proves that any three sets among Va,γ0 , Va,γ1 , Va,γ2 and Va,γ3 have a nontrivial intersection.

Then, the only situation where Va,γ0 ∩ Va,γ1 ∩ Va,γ2 ∩ Va,γ3 = {0} corresponds to the
case where there are two distinct nonzero elements b0 and b1 which respectively belong to
(Va,γ0 ∩ Va,γ1 ∩ Va,γ2) and (Va,γ0 ∩ Va,γ1 ∩ Va,γ3). This means that (Va,γ0 ∩ Va,γ1) contains
two nonzero elements, implying that Va,γ0 = Va,γ1 . But in this case, the intersection
between the four subspaces equals the intersection between the last three subspaces, which
is known to be nontrivial, a contradiction.

Example 5. We illustrate Proposition 5 on the PRESENT [BKL+07] Sbox. From Table 4
we first observe that the row corresponding to the input difference a = 6 contains two
values 4. Then, we can check from Table 5 that βS(6, 15) = 8. On the other hand, the row
corresponding to a = 1 has four values 4. Then, as seen from Table 5, βS(1, 5) = 16 and
thus βS = 16.

This result does not hold anymore for higher even dimensions. For instance, we will
exhibit in Section 7 permutations of Fn2 with differential uniformity 4, for n ≡ 2 mod 4, such
that there is a row in their DDT with entries in {0, 4} while their boomerang uniformity
equals 4.

Proposition 5 also implies that the values 12 and 14 never appear in the BCT of
differentially 4-uniform permutations of F4

2, as observed in Table 3. Indeed, the DDT of
any such permutation does not contain any row with exactly 3 entries equal to 4 (and
2 entries equal to 2). Therefore, the nonzero entries in the BCT belong to {2, 4, 6, 8, 10, 16}.

6 BCT of the inverse mapping over F2n

We have proved that the lowest boomerang uniformity that can be achieved for 4-bit
permutations is βS = 6. This minimum is obtained for the inverse mapping x 7→ x14 over
F24 , which is affine equivalent to the Sbox in the first row of Table 3. We now investigate
the properties of the BCT of the inverse mapping S : x 7→ x2n−2 over F2n for larger values
of n. It is well-known that the inverse mapping over F2n is APN if n is odd. If n is even,
then its DDT has exactly one 4 and (2n−1 − 2) 2’s per row [Nyb94]. We show here that if
n ≡ 0 mod 4 then βS = 6 and this value is 4 if n ≡ 2 mod 4. This then solves the open
problem raised in [CHP+18] on the existence of Sboxes S such that βS = δS = 4.

Proposition 6. Let S be the inverse mapping over F2n for n even. Then:

βS =
{

4, if n ≡ 2 mod 4
6, if n ≡ 0 mod 4

Moreover,

• If n ≡ 2 mod 4, for any nonzero a, b, we have

βS(a, b) =
{

4 if b ∈ {a−1ω, a−1(ω ⊕ 1)}
δS(a, b) otherwise

• If n ≡ 0 mod 4, for any nonzero a, b, we have

βS(a, b) =
{

6 if b ∈ {a−1ω, a−1(ω ⊕ 1)}
δS(a, b) otherwise
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where ω is any element in F4 \ F2, i.e. any element1 in F2n \ F2 such that ω3 = 1.

Proof. Since the inverse mapping on an even number of variables has differential unifor-
mity 4, we use the equivalent formula given in Proposition 4 for computing the BCT
entries:

βS(a, b) =
∑

γ 6=0:b∈Va,γ

δS(a, γ).

As for each row of the DDT there is exactly one 4 per row, there is exactly one γa such
that δS(a, γa) = 4. Then, for all γ 6= γa, Va,γ is either empty, or equal to {0, γ}, implying
that b 6∈ Va,γ when γ 6∈ {0, b}. It follows that,

βS(a, b) =


δS(a, b) if b 6∈ Va,γa
4 if b = γa

δS(a, b) + 4 if b ∈ Va,γa \ {0, γa}
.

From this, we see already that the boomerang uniformity is at most 6. We will prove now
that, for any a 6= 0 and any b ∈ Va,γa \ {0, γa}, δS(a, b) = 0 if n ≡ 2 mod 4 and 2 if n ≡ 0
mod 4.

We first recall that in the case of the inverse function, for any a, γ 6= 0, δ(a, γ) = δ(1, aγ).
Indeed, consider the equation:

(X ⊕ a)2n−2 ⊕X2n−2 = γ.

This equation, by setting Y = a−1X, is equivalent to

(Y ⊕ 1)2n−2 ⊕ Y 2n−2 = aγ,

which proves that δ(a, γ) = δ(1, aγ).
Consider the case of a = 1. It is well-known that the equation

(X ⊕ 1)2n−2 ⊕X2n−2 = 1

has exactly four solutions. First, X = 0 and X = 1 are solutions of this equation. The
other two solutions are α 2n−1

3 and α2 2n−1
3 where α is a primitive element of F2n . If we

denote ω = α
2n−1

3 then the four solutions are {0, 1, ω, ω2} which means that

U1,1 = F4 = {0, 1, ω, ω2} = 〈ω, 1〉.

By taking now into account that δ(a, γa) = δ(1, aγa), this means that δ(a, γa) = 4 if and
only if aγa = 1, or equivalently γa = a−1. By using that Ua,γ = aU1,aγ and applying it to
γ = a−1, we deduce that Ua,a−1 = aU1,1 = 〈a, aω〉 and then Va,a−1 = Ua−1,a = 〈a−1, a−1ω〉.

We then need to consider b ∈ 〈a−1, a−1ω〉 \ {0, a−1}, i.e. b = a−1ω and b = a−1(ω⊕ 1).
We look at the value of δ(a, b), which is equivalent to looking at the value δ(1, ab) = δ(1, ω)
or δ(1, ω ⊕ 1).

When X 6∈ {0, 1}, the equations

(X ⊕ 1)2n−2 ⊕X2n−2 = ω

(X ⊕ 1)2n−2 ⊕X2n−2 = ω ⊕ 1

are equivalent to the equations

X2 ⊕X ⊕ ω = 0
X2 ⊕X ⊕ ω ⊕ 1 = 0

1It is worth noticing that there are two elements in F4 \ F2, ω and ω′ = ω ⊕ 1, and both of them
obviously lead to the same condition.
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and these last equations have two solutions if Tr(ω) = 0 (see e.g. [McE87, Page 108]).

Tr(ω) = ω ⊕ ω2 ⊕ ω4 ⊕ ω8 ⊕ · · · ⊕ ω2n−2
⊕ ω2n−1

= (ω ⊕ ω2)⊕ (ω4 ⊕ ω8)⊕ · · · ⊕ (ω2n−2
⊕ ω2n−1

)
= 1⊕ 1⊕ · · · ⊕ 1,

implying
Tr(ω) = 1 if and only if n ≡ 2 mod 4 . (5)

This means that δ(1, ω) = 0 and δ(1, ω ⊕ 1) = 0 if n ≡ 2 mod 4 and δ(1, ω) = 2 and
δ(1, ω ⊕ 1) = 2 if n ≡ 0 mod 4. This completes the proof.

7 BCT of quadratic permutations with differential unifor-
mity 4

In this section we concentrate on quadratic permutations that are differentially 4-uniform.
For an even number of variables, APN quadratic permutations do not exist [Nyb95].
Therefore, δS = 4 is the lowest differential uniformity that a quadratic permutation can
achieve in this case. Here, we provide an upper bound on the boomerang uniformity of
such permutations. More importantly, we exhibit quadratic permutations with optimal
BCT, i.e. which have differential uniformity and boomerang uniformity equal to 4.

We first emphasize a behaviour of differentially 4-uniform quadratic permutations that
is central in the proofs of the results in this section.

Lemma 2. Let S be a differentially 4-uniform quadratic permutation and let ∆aS be a
derivative whose differential spectrum is {0, 4}. Then, for all γ ∈ Im(∆aS), the affine
spaces Ua,γ are cosets of the same linear space 〈a, α〉:

Ua,γ = xγ ⊕ 〈a, α〉 for some xγ ∈ Fn2 .

Proof. If S is a quadratic permutation, then all its derivatives have degree at most 1.
Since ∆aS is an affine (or constant) function, all equations ∆aS(x) = γ are of the form
La(x) = (γ ⊕ ca) for a given linear function La and a given constant ca. Then, for any γ,
the set of solutions of ∆aS(x) = γ is either empty, or a coset of the linear space U = kerLa
of dimension da. Obviously, da ∈ {1, 2} when S has differential uniformity 4. This implies
that the affine subspaces Ua,γ obtained for the different values of γ are all cosets of the
same linear space U . The result directly follows from the fact that a ∈ U .

We now prove a general bound on βS for differentially 4-uniform quadratic permutations.

Proposition 7. Let S be a quadratic permutation of Fn2 with differential uniformity 4.
Then βS ≤ 12.

Proof. The previous lemma implies that the differential spectrum of a derivative ∆aS,
a 6= 0, is either {0, 2} or {0, 4}, depending on the value of a. For a derivative ∆aS whose
differential spectrum is {0, 2}, we have that for all b ∈ Fn2 , β(a, b) ∈ {0, 2}. We then
concentrate on derivatives ∆aS whose differential spectrum is {0, 4}. Let γi, 0 ≤ i < 2n−2

denote the elements in Im ∆aS. Then, from the previous lemma, we have

Ua,γi = xi ⊕ 〈a, α〉 and Va,γi = yi ⊕ 〈γi, βi〉 .

We now show that

{βi, βi ⊕ γi : 0 ≤ i < 2n−2} = Im ∆αS ∪ Im ∆a⊕αS
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where this equality is an equality between multi-sets (i.e. on elements and their multiplici-
ties). The form of Ua,γi and Va,γi implies that

S(xi)⊕ S(xi ⊕ a) = γi

S(xi ⊕ α)⊕ S(xi ⊕ α⊕ a) = γi ,

and βi = S(xi)⊕ S(xi ⊕ α), leading to

S(xi)⊕ S(xi ⊕ α) = βi

S(xi ⊕ a)⊕ S(xi ⊕ a⊕ α) = βi

and

S(xi)⊕ S(xi ⊕ α⊕ a) = γi ⊕ βi
S(xi ⊕ a)⊕ S(xi ⊕ α) = γi ⊕ βi .

This means that

Va,γi = Vα,βi = Va⊕α,γi⊕βi and Ua,γi = Uα,βi = Ua⊕α,γi⊕βi .

It follows that, for each γi in the image set of ∆aS, the corresponding βi and γi⊕βi belong
to the image set of ∆αS and to the image set of ∆a⊕αS respectively. Since all Ua,γi for
0 ≤ i < 2n−2, are disjoint, all Vα,βi are disjoint which implies that all βi are distinct. The
same holds obviously for all the βi ⊕ γi.

We now prove the bound on the βS of such permutations. From Proposition 4, we get
that

βS(a, b) =
∑

γ 6=0:b∈Va,γ

δS(a, γ) ,

which in our case can be equivalently written as

βS(a, b) = 4#{i : b ∈ {γi, βi, γi ⊕ βi}} .

Using that

{γi, βi, γi ⊕ βi, 0 ≤ i < 2n−2} = Im ∆aS ∪ Im ∆αS ∪ Im ∆a⊕αS

βS is maximized when b belongs to each one of the three sets Im ∆aS, Im ∆αS and
Im ∆a⊕αS. Then for such a b, β(a, b) = 12.

It is worth noticing that this result does not contradict Theorem 5 which states that if
the DDT of a 4-bit permutation with δS = 4 has a row with four values 4, then βS = 16.
The reason is that it can easily be checked from Table 3 that quadratic permutations of
F4

2 with differential uniformity 4 do not exist.
For n = 5 there are three differentially 4-uniform quadratic permutations up to affine

equivalence [BBS17]. For two of them, βS = 12 while for the third one βS = 8.

We now show that some of the so-called Gold power permutations [Gol68], which are
differentially 4-uniform quadratic permutations of Fn2 , also have an optimal BCT when
n ≡ 2 mod 4, i.e. they satisfy βS = 4.

Proposition 8. Let n ≡ 2 mod 4 and let t be an even integer such that gcd(t, n) = 2.
Then S : x 7→ x2t+1 over F2n is a differentially 4-uniform permutation and satisfies βS = 4.
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Proof. It is well-known that the power function with Gold exponent x2t+1 over F2n has
differential uniformity 2d where d = gcd(t, n) [Nyb94, Prop. 3]. Moreover, this mapping is
bijective if and only if gcd(2t + 1, 2n − 1) = 1. Recall that (see e.g. [McE87, Lemma 11.1])

gcd
(
2t + 1, 2n − 1

)
= 1 if and only if gcd(t, n) = gcd(2t, n) .

It follows that, when gcd(t, n) = 2, x2t+1 is a permutation of F2n if and only if n ≡ 2 mod 4.
It is also known from [BCC10, Lemma 4] that, for any nonzero a and b, the set Ua,b

is either empty or a coset of aF4 = 〈a, aω〉 where ω is an element in F4 \ F2. Then, by
applying the same technique as in the proof of the previous proposition, we have that
maxb6=0 βS(a, b) = 4 if and only if Im ∆aS, Im ∆aωS and Im ∆a(ω⊕1) are disjoint.

Each set Im ∆aS is an affine subspace of codimension 2. We now describe it as a coset
of the orthogonal of a 2-dimensional subspace. To this purpose, we use that, for any
nonzero λ ∈ F2n

Tr(λ∆aS(x)) = Tr
(
λ(x⊕ a)2t+1 ⊕ λx2t+1

)
= Tr

(
λax2t ⊕ λa2tx⊕ λa2t+1

)
= Tr

(
x2t(λa⊕ λ2ta22t

)
)
⊕ Tr(λa2t+1) .

It follows that x 7→ Tr(λ∆aS(x)) is constant if and only if

λa⊕ λ2ta22t
= 0

which equivalently means that (
λa2t+1

)2t−1
= 1 .

Since gcd(2t − 1, 2n − 1) = 2gcd(t,n) − 1 = 3, this occurs if and only if λa2t+1 ∈ F∗4. It
follows that, for every λ = a−(2t+1)β with β ∈ F4 and every x ∈ F2n ,

Tr(λ∆aS(x)) = Tr(λa2t+1) = Tr(β) .

For β = ω ∈ F4 \ F2, we have Tr(ω) = 1 when n ≡ 2 mod 4 (see (5)), implying that

Im ∆aS = {x ∈ F2n : Tr(a−(2t+1)x) = 0 and Tr(a−(2t+1)ωx) = 1} .

Now, we observe that, since t is even, ω2t+1 = ω2 × ω2t−1 = ω2. Thus

(aω)−(2t+1) = a−(2t+1)(ω2)−1 = a−(2t+1)ω ,

and we obtain that

Im ∆aωS = {x ∈ F2n : Tr(a−(2t+1)ωx) = 0 and Tr(a−(2t+1)ω2x) = 1}
= {x ∈ F2n : Tr(a−(2t+1)ωx) = 0 and Tr(a−(2t+1)x) = 1} .

Similarly,

Im ∆a(ω⊕1)S = {x ∈ F2n : Tr(a−(2t+1)x) = 1 and Tr(a−(2t+1)ωx) = 1} .

Therefore, for any nonzero a, Im ∆aS, Im ∆aωS and Im ∆a(ω⊕1)S are three different cosets
of the same linear space, and are then disjoint. We eventually deduce that βS = 4.

As an example of the previous proposition, we get that S : x 7→ x5 over F2n with
n ≡ 2 mod 4 is an Sbox with optimal BCT in the sense of [CHP+18] since it satisfies
δS = βS = 4. It is worth noticing that, for these dimensions, these quadratic differentially 4-
uniform permutations have the same behaviour as the inverse mapping studied in Section 6,
while their DDTs are very different. Indeed, the DDTs of the quadratic mappings in
Proposition 8 consist of 0 and 4 only, while the DDT of the inverse mapping has a single 4
in each row.
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8 Conclusion
Boomerang connectivity tables are newly introduced objects for measuring the resistance
of a block cipher against boomerang attacks. Apart from a brief analysis of their properties
provided in the introductory paper, very little was known about these tables. In this
paper we exhibited some new BCT properties, by showing for example that the boomerang
uniformity is invariant up to affine equivalence and inversion and we used this result to
entirely determine the value of the boomerang uniformity for all differentially 4-uniform
permutations of F4

2. More importantly, we answered an open question from [CHP+18] on
the existence of differentially 4-uniform permutations with optimal boomerang uniformity
in even dimensions. Indeed, we exhibited two different families of permutations in Fn2 ,
with n ≡ 2 mod 4 that are both differentially 4-uniform and have boomerang uniformity
4. These two families then provide a positive answer to the problem in dimensions n ≡ 2
mod 4. However, while we proved that the best possible boomerang uniformity for n = 4
is 6, the problem remains open for larger n multiple of 4, notably for n = 8. Another open
problem is to determine whether the BCT spectrum determines the function up to some
simple equivalence. A similar question has been raised for the DDT in [BCJS18]. Here,
we showed that, for n = 4, differentially 4-uniform Sboxes that are not affine equivalent or
inverse of each other have different BCT spectra. But what happens for higher dimensions
remains unclear.
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