
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 3, pp. 265–289. DOI:10.13154/tosc.v2018.i3.265-289

Generating Graphs Packed with Paths
Estimation of Linear Approximations and Differentials

Mathias Hall-Andersen1 and Philip S. Vejre2

1 University of Copenhagen, Copenhagen, Denmark
mathias@hall-andersen.dk

2 Technical University of Denmark, Kongens Lyngby, Denmark
psve@dtu.dk

Abstract.
When designing a new symmetric-key primitive, the designer must show resistance to
known attacks. Perhaps most prominent amongst these are linear and differential
cryptanalysis. However, it is notoriously difficult to accurately demonstrate e.g. a
block cipher’s resistance to these attacks, and thus most designers resort to deriving
bounds on the linear correlations and differential probabilities of their design. On
the other side of the spectrum, the cryptanalyst is interested in accurately assessing
the strength of a linear or differential attack.
While several tools have been developed to search for optimal linear and differential
trails, e.g. MILP and SAT based methods, only few approaches specifically try to
find as many trails of a single approximation or differential as possible. This can
result in an overestimate of a cipher’s resistance to linear and differential attacks, as
was for example the case for present.
In this work, we present a new algorithm for linear and differential trail search. The
algorithm represents the problem of estimating approximations and differentials as
the problem of finding many long paths through a multistage graph. We demon-
strate that this approach allows us to find a very large number of good trails for
each approximation or differential. Moreover, we show how the algorithm can be
used to efficiently estimate the key dependent correlation distribution of a linear
approximation, facilitating advanced linear attacks. We apply the algorithm to 17
different ciphers, and present new and improved results on several of these.
Keywords: Linear cryptanalysis · Differential cryptanalysis · Linear Approximations
· Differentials · Trail search · Correlation distributions · Graph theory

1 Introduction
Whenever a new design for a symmetric-key primitive is proposed, it is usually accompanied
by a design rationale. This rationale explains how the specific choice of components ensure
resistance to a set of common attack techniques. However, thoroughly checking maybe a
dozen different attacks is laborious work for the designer, and it is therefore common to
somehow make an estimate of how well a design resists a specific attack.

Two attack techniques that are almost always featured in the security analysis of a
new design, due to their long history and many strong results, are linear [Mat93] and
differential [BS90] cryptanalysis. However, it is notoriously difficult to make an accurate
and complete analysis of a cipher’s security against these attacks, and for this reason
methods of estimating the strength of these attacks feature prominently in the initial
analysis of a new design. For block ciphers, this will often consist of lower-bounding the
number of active S-boxes in a linear or differential trail, thus showing how many rounds
the cipher needs to resist these attacks.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2018-06-01, Accepted: 2018-08-01, Published: 2018-09-04

https://doi.org/10.13154/tosc.v2018.i3.265-289
mailto:mathias@hall-andersen.dk
mailto:psve@dtu.dk
http://creativecommons.org/licenses/by/4.0/

266 Generating Graphs Packed with Paths

Nevertheless, several examples exist of this approach not giving the full picture, in
particular due to the existence of linear approximations or differentials that contain a very
large number of good trails. This effect was already recognised for differential cryptanalysis
in [LMM91] and subsequently extended to linear cryptanalysis in [Nyb94] where it was
dubbed the linear hull effect. As an example of this phenomenon, it was demonstrated in
[Ohk09] that for the block cipher present the difference between a single linear trail and
the full linear approximation is quite significant. Thus, it would be extremely helpful for a
designer if a simple tool existed that could more accurately find linear approximations and
differentials for a given design. This would not only save the designer time, but potentially
also allow for exploration of a larger design space as well as enabling a more informed
choice of the number of rounds needed to obtain adequate security.

1.1 Previous Work
Several approaches for finding linear and differential trails have been suggested in the
literature. Perhaps the most well known technique is Matsui’s original branch-and-bound
algorithm [Mat94], which can essentially be viewed as a depth-first search with pruning.
While this algorithm does guarantee to return the optimal trail for any starting value, one
still needs to have some idea what a good starting value might be. Moreover, while the
algorithm can be adapted to return multiple trails, this is not very efficient if the number
of trails is extremely large.

Several other approaches for finding linear and differential trails have been proposed.
Amongst these are MILP based algorithms [MWGP11, SHW+14, FWG+16, YML+17]
and SAT based algorithms [KLT15, MP13, AK18], as well as more dedicated approaches
[DEM15, FLN07, Ste13]. Both the MILP and SAT based approaches can be extended in
order to find multiple trails by removing already known trails from the solution space,
but this approach also has the problem of scaling linearly with the number of trails.
Additionally, in order to use these algorithms, every design one wishes to analyse has to
be formulated as a MILP/SAT model.

A few approaches for finding large numbers of linear or differential trails have been
suggested. Matsui’s algorithm was generalised in [CMST15a, CMST15b] to search for
multiple differential trails of generalised Feistel networks. A more versatile approach
was presented in [Abd12], where the idea of using partial, sparse correlation/differential
transitions matrices to find multiple trails was proposed. While this approach does scale
well with the number of trails found, it potentially has high memory requirements. This
problem was acknowledged in [AAA+15] where the matrix method was combined with
the MILP method to improve results for ARX designs. Still, these works do not offer a
general, design agnostic strategy for choosing the partial matrices.

While the mentioned works focus on estimating expected differential probabilities or
expected squared correlations, we note that for linear cryptanalysis especially, there has
recently been an increased focus on the key dependent distribution of correlations. Namely,
several works developing models for the key dependent behaviour of correlations have
been published [BT13, HVLN15, BN17, BN16] as well as some advanced attack techniques
exploiting these correlations distributions [BV17, BTV18]. Thus, it is of additional interest
to develop algorithms that also allow for efficient estimation of these distributions.

1.2 Contributions
In this work, we propose a new algorithm for linear and differential trail search. The
overall concept of the algorithm is to represent all linear/differential trails as paths in a
multistage graph, and then find a manageable subgraph which hopefully contains good
trails. By performing a breadth first traversal of this subgraph, we can very efficiently
consider a larger number of trails when estimating the squared correlation/differential

Mathias Hall-Andersen and Philip S. Vejre 267

probability, and even do so for many linear approximations/differentials simultaneously.
Moreover, for linear cryptanalysis, the algorithm allows us to very efficiently approximate
the correlation distributions over the key space.

While the overall concept of this approach is related to the idea of partial correlation and
difference transition matrices, the graph representation allows a designer or cryptanalyst
to gain additional insight, e.g. one can extract the actual trails from the graph or visualise
the trail structure in order to gain deeper understanding of a cipher’s linear and differential
behaviour (see e.g. Figure 5). Moreover, we can more easily obtain the key-dependent
linear correlations without having the recompute everything for each new key. In more
detail, we achieve the following:

• Efficient graph generation We present a heuristic approach for selecting a
subgraph of the linear/differential trail graph, i.e. we identify good approxima-
tions/differentials over a single round. For SPN ciphers, we give a highly efficient
algorithm for generating these. Moreover, we show how to remove redundant infor-
mation from the graph in order to reduce memory costs. As opposed to the strategy
for choosing partial correlation/difference matrices in [Abd12], our heuristic is design
agnostic.

• Algorithm optimisations We present a number of optimisations to the basic
algorithm which both reduces the time it takes to generate the trail graph and the
amount of memory consumed while generating the graph. The latter is done by
removing single round approximations/differentials which are not part of any trail
before it is ever added to the graph. While the most effective improvements only
apply to SPN ciphers, they allow us to increase the effective size of our search space;
as an example, for Midori64 [BBI+15] we were able to include as many as 246.5 single
round approximations in our search space.

• Improved estimates of ELP and EDP Compared to algorithms that find one
trail at a time (e.g. MILP and SAT based methods), our graph representation allows
us to consider a much larger number of trails when estimating the expected squared
correlation or the expected differential probability. As an example, we are able to
consider 2112.4 linear trails for a single approximation of PUFFIN [CHW08]. This
ensures a more accurate estimate of these statistics.

• Extensive application We use the new algorithm to find linear approximations
and differentials for 17 different SPN ciphers. The selection of ciphers have block
sizes ranging from 48 to 128 bits, use 4- and 8-bit S-boxes, and apply a variety of
different design approaches for choosing the linear layer, e.g. from very lightweight
bit permutations to heavy MDS matrices. We present new results on several ciphers,
and improve existing results for five ciphers.

• Correlation distributions We demonstrate that for SPN ciphers, the graph rep-
resentation can also be used to efficiently obtain estimates for the key dependent
correlation distribution of a linear approximation. In particular, it takes at most a
couple of minutes to generate key dependent correlation values for 10 000 randomly
chosen keys. We use this fact to investigate the correlation distributions of several
ciphers, and show for example that GIFT-64 [BPP+17] exhibits multiple approxi-
mations with asymmetries similar to those observed for DES in [BV17]. In general,
this feature of our algorithm facilitates easier application of more advanced linear
attacks.

• Software implementation Finally, we make our implementation of the algorithm
freely available at https://gitlab.com/psve/cryptagraph. This implementation
is written in Rust, and is highly optimised and parallelised. At the time of writing,

https://gitlab.com/psve/cryptagraph

268 Generating Graphs Packed with Paths

it supports analysis of SPN ciphers whose substitution layer consists of applying S-
boxes to the state, as well as Feistel ciphers with SPN-like F -functions. Additionally,
adding new ciphers to the implementation only requires the usual implementation of
the S-box and the linear layer, as opposed to MILP and SAT based tools that require
modelling of the cipher in the relevant framework. We hope that the availability of
this tool, as well as its ease of use, will facilitate more informed design processes and
improved cryptanalysis.

The rest of this work is structured as follows: In Section 2 we introduce the basic
definitions for linear and differential cryptanalysis. Section 3 introduces the idea of the
graph framework, while Section 4 outlines the basic algorithm for trail search. Section 5
contains several improvements to the basic algorithm. In Section 6 and Section 7 we
present the results we obtain by using the algorithm on various ciphers. Finally, Section 8
discusses some prospects for future work.

2 Preliminaries
Throughout the paper we consider block ciphers, i.e. functions of the type

E(k,m) : Fκ2 × Fn2 → Fn2 ,

where E is a permutation on the plaintext space Fn2 for each key k ∈ Fκ2 . In particular, we
consider iterative block ciphers where E is defined as a composition of several (potentially
different) round-functions, i.e.

E = fr ◦ . . . ◦ f1.

We define a distinguisher as an algorithm which attempts to distinguish between the
function E and a permutation picked uniformly at random from the space of all permutations
on Fn2 . In particular, the cryptanalyst is interested in a distinguisher which succeeds with
high probability and uses time less than 2κ.

In the following, we briefly describe the main ideas of linear and differential distinguishers
as well as the problem of finding good properties of these types. While we only describe
the techniques from a distinguisher viewpoint, distinguishers of both types can be turned
into key-recovery attacks in most cases.

2.1 Linear Cryptanalysis
We define a linear approximation of a block cipher as the pair of masks (α, β) ∈ Fn2 × Fn2 .
Let 〈·, ·〉 denote the canonical inner product on Fn2 . We say that the approximation (α, β)
has a linear correlation defined by

Ck(α,β) = 2 · Pr
m∈Fn

2

(〈α,m〉 = 〈β, E(k,m)〉)− 1.

Note that the correlation is key dependent, and thus has some distribution over Fκ2 . For a
randomly chosen permutation, the correlation is drawn from the distribution N (0, 2−n)
[DR07]. Thus, if there exists a linear approximation (α, β) of a block cipher such that
Ck(α,β) is distributed significantly differently from N (0, 2−n), we can use this approximation
to build a distinguisher.

2.2 Differential Cryptanalysis
We define a differential of a block cipher as the pair of differences (∆,∇) ∈ Fn2 × Fn2 . Let
⊕ denote the componentwise addition of vectors in Fn2 . Then we say that the differential

Mathias Hall-Andersen and Philip S. Vejre 269

(∆,∇) has a differential probability defined by

pk(∆,∇) = Pr
m∈Fn

2

(E(k,m)⊕ E(k,m⊕∆) = ∇).

For a randomly chosen permutation, we expect the differential probability to be close
to 2−n. Thus, if there exists a differential (∆,∇) of a block cipher such that pk(∆,∇) is
significantly bigger than 2−n for almost all keys, we can us this differential to build a
distinguisher.

2.3 Finding Approximations and Differentials
Determining either Ck(α,β) or pk(∆,∇) is not feasible for the values of n and κ used in practice.
Therefore, for iterative block ciphers, the problem is usually reduced to that of finding
linear and differential trails. A linear trail of an approximation (α, β) is defined as a
sequence of masks U = (u0, . . . , ur), with (u0, ur) = (α, β). Then, we define the correlation
contribution of this trail as

CkU =
r∏
i=0

C(ui,ui+1)(i),

where C(ui,ui+1)(i) is the correlation of the approximation (ui, ui+1) for the i’th round
function fi. Since the fi usually have a simple form, it is easier to determine the correlation
of these functions. The set of all trails of an approximation is called the linear hull of the
approximation. It can be shown that the correlation of (α, β) is the sum of the correlation
contributions of all trails in the linear hull [DR02], i.e.

Ck(α,β) =
∑

(u0,ur)=(α,β)

CkU .

The situation is analogous for differentials. Although the number of trails is extremely
large, it often suffices to find a set of trails with high correlation or probability contribution,
such that computing the partial sum over these trails is a good approximation of the actual
correlation or probability. Thus, finding a good set of trails is essential to both linear and
differential cryptanalysis, and it is this problem that we will consider in the following.

A note on ELP and EDP As explained above, the linear correlation and differential
probability of a cipher depends on the specific key used. However, for the initial analysis
of these attacks, it is often more convenient to consider the expected linear potential and
the expected differential probability.

In the case of differentials, EDP is defined as E(pk(∆,∇)) and it is often assumed that
pk(∆,∇) ≈ E(pk(∆,∇)) for most keys. For approximations, ELP is defined as E((Ck(α,β))2),
and it can be shown that E((Ck(α,β))2) ≈

∑
(CkU)2, and that for key-alternating ciphers (or

Feistel ciphers with SPN-like structures) (CkU)2 is independent of the key [DR02].
Thus, considering ELP and EDP eliminates the key and therefore greatly simplifies

the search, and usually gives a good indicator for the strength of an approximation or
differential. We will therefore initially take this approach, and then show in Section 7 how
to find the key-dependent linear correlation distributions.

3 Trail Search Viewed as a Graph Problem
Although finding trails of a specific approximation or differential is already a difficult
problem, for a newly designed block cipher it might not even be clear what approximations

270 Generating Graphs Packed with Paths

or differentials we should be considering. In the following, we will view the problem of
finding good approximations and differentials more abstractly as a graph problem. This
perspective will help us develop a trail search algorithm which does not require any initial
understanding of the linear or differential behaviour of the cipher being analysed. We will
describe the graph problem and the algorithm in terms of linear cryptanalysis, but all
observations are directly applicable to the case of differential cryptanalysis.

We first introduce some graph notation. A directed graph G is a set of vertices V and a
set of directed edges E. We associate a value to each vertex. Throughout the paper, we will
not differentiate between a vertex and its value, and use the two concepts interchangeably.
We denote a directed edge from a vertex u ∈ V to a vertex v ∈ V by u→ v. For a weighted
graph, each edge u→ v has a length, denoted by l(u→ v). We furthermore denote a path
from a vertex u to a vertex v by u; v. If v = v1, . . . , u = vk are the vertices traversed by
this path, then we define the length of the path as:

l(u; v) =
k−1∏
i=1

l(vi → vi+1).

Furthermore, we call the set of all paths u; v the hull of (u, v). We denote the hull by
u ♦ v and associate to it a weight defined as:

w(u ♦ v) =
∑

l(u; v),

i.e. the sum of the length of all the paths contained in the hull. We will exclusively consider
a special type of directed graph, called a multistage graph.

Definition 1 (Multistage Graph). Let G be a directed graph with vertices V and edges
E. If the vertices in V are partitioned into ` subsets S0, . . . , S`−1, called stages, such that
any edge in E has the form u → v with u ∈ Si and v ∈ Si+1, for some i ∈ [0, ` − 1[, we
call the graph a multistage graph.

By definition, a multistage graph is a directed acyclic graph (DAG). We now define a
weighted multistage graph GE which represents the linear hulls of all approximations of an
iterative block cipher E . Assume that E has r rounds. Then GE has r+ 1 stages each with
2n vertices representing the elements of Fn2 . GE contains all edges u→ v for u ∈ Si and
v ∈ Si+1, i ∈ [0, r[. The length of an edge is defined as

l(u→ v) = (C(u,v)(i))2 if u ∈ Si.

Note that if α ∈ S0 and β ∈ Sr, then a path (α ; β) is equivalent to a linear trail
U = (α, . . . , β) and its length is exactly (CkU)2. Moreover, α ♦ β corresponds exactly to
the linear hull of the approximation (α, β) and its weight is equal to the ELP of (α, β).
Thus, the graph GE represents the linear hulls of all approximations of E . Finding good
approximations therefore corresponds to finding pairs of vertices (α, β) ∈ S0 × Sr such
that w(α ♦ β) is as large as possible. In the following section, we describe an algorithm
that aims to solve this problem.

4 A New Algorithm for Trail Search
The graph GE defined above is exceedingly huge; it has (r + 1) · 2n vertices and r · 22n

edges. Thus, it is completely infeasible to run even a linear time algorithm on the graph1.
We therefore have to somehow reduce the size of the graph, i.e. we have to reduce the size
of the search space. Straight away, we can remove any edges u→ v with l(u→ v) = 0 as

1Note that the longest path problem can be solved in linear time for DAGs.

Mathias Hall-Andersen and Philip S. Vejre 271

any path which includes this edge will have length zero and therefore not contribute to
the hull. Nevertheless, for most ciphers the set of non-zero edges in GE is still intractable.
Thus, we propose the following approach:

1. Determine an interesting subgraph ḠE of GE .

2. Calculate w(α ♦ β) for all (α, β) ∈ S0 × Sr in ḠE .

For this approach to give a good result, would like many of the longest paths of α ♦ β to
appear in ḠE . How to ensure this is clearly highly dependent on the cipher E in question.
Moreover, at first glance it seems that if we can specify ḠE , then we already know a good
collection of trails. However, we note that finding good approximations in some sense
corresponds to finding a minimal subgraph. In contrast, in the process of finding the
subgraph ḠE we can start with a larger subgraph that might contain a lot of unnecessary
vertices and edges. While this graph might be too large for us to perform Step 2 above, we
can then remove any superfluous information and hopefully arrive at a suitable subgraph
ḠE .

In Section 4.1, we propose a simple, generic approach to Step 1. Section 4.2 then details
how to efficiently perform Step 2 on the resulting subgraph. In Section 5 we propose
various improvements to the naive algorithm.

4.1 Choosing a Subgraph
We propose the following general, design agnostic heuristic for generating ḠE .

• Selection: Select the k longest edges going out from each stage in GE .

• Pruning: Remove any irrelevant edges and vertices from the resulting graph.

It is clear that this way of selecting edges does not guarantee that we find optimal paths.
Indeed, it could be the case that the longest paths contain a single very short edge.
However, as long as we are able to use fairly large values of k, we should be able to cover
a good fraction of the search space. Additionally, if we do find paths using this strategy,
we can at least be confident that they are quite close to optimal. A similar heuristic was
used in [Abd12, AAA+15] for constructing partial correlation matrices – here, single round
approximations with low hamming weight were selected. How well this heuristic works is
however heavily dependent on the cipher’s structure. Indeed, choosing the longest edges
seem like an approach that will work well in a more general setting.

We now show how the selection step can be performed efficiently for ciphers with
SPN-like round-functions and then detail how the pruning step works.

4.1.1 Edge Selection for SPN Ciphers

For the sake of simplicity, we will initially consider substitution-permutations networks (SPN
ciphers) with identical round-functions (aside from the key addition), i.e. ∀i, fi = f ⊕ ki,
although the approach also applies to the more general case of SPN ciphers with different
round-functions. Our goal is then to find a set A of the k approximations (each representing
an edge) with largest squared correlation. Following Section 2.3, we can ignore the key
addition in the following, and hence the SPN round-function takes on the form:

f = L ◦ S,

where L is a linear transformation of the state and S is the parallel application of t
independent S-boxes to the state. Let Si be the i’th S-box, i.e.

S = S0‖ · · · ‖St−1.

272 Generating Graphs Packed with Paths

Then, in the usual way, the correlation of an approximation (α, β) of f is entirely
determined by the approximation (α,L−1(β)) of S. This is in turn entirely determined by
the component approximations of the individual S-boxes so that

(C(α,β)(f))2 =
t−1∏
i=0

(C(αi,L−1(β)i)(Si))
2.

We can now reduce the problem of finding the k best approximations over f to the problem
of finding certain classes of approximations over S. To this end, we introduce the notion
of an S-box pattern.
Definition 2 (S-box pattern). Let S = S0‖ · · · ‖St−1 be the parallel application of t
independent S-boxes to a cipher state. Then a pattern of S is a tuple p ∈ Rt. The pattern
represents a set of approximations of S such that the squared correlation of Si is equal to
pi. We associate a value to a pattern p, namely C(p) =

∏
pi, i.e. the squared correlation

of any approximation represented by p.
We say that a pattern expands into a number of approximations, and denote this set

of approximations by Ex(p). As an example, consider an S function consisting of five
copies of a 4-bit S-box which has two approximations with squared correlation 2−2, namely
(0x3, 0xd) and (0x7, 0x4). Then the pattern

p = (1, 2−2, 1, 1, 2−2)

would have value C(p) = 2−4 and expands into the set of four approximations

Ex(p) = {(0x03003, 0x0d00d), (0x03007, 0x0d004),
(0x07003, 0x0400d), (0x07007, 0x04004)}.

We note that this expansion can be done in amortized linear time in the size of Ex(p),
independent of t. Moreover, if we just desire to know the input or output masks of the
approximations in Ex(p), these can also be generated in amortized linear time in the
number of inputs/outputs.

Now, if we can determine the set P of patterns with the k′ largest values, then clearly
Ex(P) = A contains approximations over f with the |A| largest correlations. This problem
can be efficiently solved using the approach of finding critical paths presented in [YDG89].
We briefly outline the idea of the algorithm here:

1. Compute lists Li of unique values in the LAT of each Si and sort them in descending
order.

2. Maintain a max-heap of partially determined patterns sorted by their current value.
Add a fully undetermined pattern p = (?, ?, . . . , ?) to the heap.

3. Create an empty set P. Repeat the following until P has the desired size:

(a) Pop the top pattern p off the heap. If it was fully determined, add it to P.
(b) Find the last determined position of p, say pi, and generate two new patterns:

i. Replace pi with the next value in the list Li and insert the pattern in the
heap.

ii. Replace the undetermined value pi+1 with the first value on the list Li+1
and insert the pattern in the heap.

Note that this pattern representation, aside from making it easy to find approximations
sorted by their correlation, is a very useful time-memory trade-off: each pattern can
represent a large number of approximations, allowing us to select a large number of
candidate edges for the graph ḠE without storing them explicitly. However, we need to
spend time expanding each pattern whenever we explicitly need the approximations.

Mathias Hall-Andersen and Philip S. Vejre 273

F

⊕β0

α0 ⊕ β1

β0

α0

F

⊕ β0 ⊕ α1

β1

β1

α1

F

⊕∆1 ⊕∇0

∆0

∇0

∆0

F

⊕ ∆1

∆0 ⊕∇1

∇1

∆1

Figure 1: An illustration of how linear approximations/differentials over the F -functions
of two consecutive Feistel rounds determine a linear approximation/differential over those
rounds.

Pruning

Figure 2: Left: A graph representing parts of linear/differential trails over three rounds of
a cipher. Right: The graph after all edges and vertices which are not part of a full trail
have been removed.

About Feistel constructions and other designs The process described here for selecting
edges is very efficient for SPN designs. However, it is less clear how to perform the
edge selection for other types of designs. For Feistel designs with SPN-like F -functions,
we can use the same approach with a slight modification: We let an S-box pattern
describe approximations over the F -functions of two consecutive rounds and then derive
approximations over two rounds from this pattern. The resulting two-round approximation
is shown in Figure 1. This concept can be extended to generalised Feistel constructions.

Concerning radically different design approaches, i.e. ARX and AND-RX designs,
we note that [BV14] and [KLT15] present formulas for the differential probabilities of
SPECK and SIMON-like round-functions, respectively. The latter work also gives a method
for determining linear correlations of SIMON-like round-functions. These results could
potentially be used to perform efficient edge selection for these types of designs.

4.1.2 Graph Pruning

By using the pattern representation introduced above, we can store a large set of interesting
edges in a space efficient way. However, not all edges in A might be relevant when added
to the graph ḠE . Consider Figure 2. On the left we show a graph which was generated
from a set of patterns, i.e. each edge represents an approximation over the round-function
f . The vertices marked in red cannot be a part of a path from a vertex in the first stage to
a vertex in the last stage. Hence, we can remove these vertices and all their edges, leaving
us with the second, smaller graph, which only contains the information we are interested
in. In other words:

• Remove any vertex in S0 with no outgoing edges.

• Remove any vertex in S1 to Sr−1, if it does not have at least one incoming and one
outgoing edge, remove it.

• Remove any vertex in Sr with no incoming edges.

We potentially have to repeat this process until no more vertices can be removed. There
is one major problem with naively generating the graph ḠE in this way, namely that we

274 Generating Graphs Packed with Paths

have to store the initial graph before pruning (which takes roughly r · |A| space), which
can be many times larger than the pruned graph. This essentially limits the number of
single round approximations we can consider, i.e. it limits the size of the search space we
can cover. In Section 5 we present a number of improvements that alleviate this problem.

4.2 Finding Linear Hulls and Differentials
Once the graph ḠE has been generated, we can quite easily calculate w(α ♦ β) for all pairs
(α, β) ∈ S0 × Sr by essentially performing a breadth first traversal of the graph for each α
while doing some bookkeeping. The idea is the following:

1. Let H be an empty hash table. Choose an α ∈ S0 and let H(α) = 1.

2. For each stage S0 to Sr−1 of ḠE , do the following:

(a) Create an empty hash table H′.
(b) For each key of H, let u be the corresponding vertex in ḠE . Let c = H(u).

Then, for each edge u → v, if H′(v) does not exists, let H′(v) = c · l(u → v).
Otherwise, let H′(v) = H′(v) + c · l(u→ v).

(c) Let H = H′.

3. H(β) now contains w(α ♦ β).

4. Repeat for a new value of α.

Note that the number of paths in any α ♦ β can also be calculated with a bit of extra
bookkeeping in step 2.b. The time complexity of this algorithm is O(|S0| · |ḠE |) and
the memory complexity is O(|S0| · |Sr|). The memory complexity can be reduced to a
constant by only storing the hulls with highest weight calculated so far in Step 3. The time
complexity can be reduced to O(|ḠE |) by considering all α ∈ S1 simultaneously. However,
this will increase the memory complexity, and in practice we find that this slows down the
search due to a poorer cache locality. Moreover, the procedure outlined above is trivially
parallelisable over different α values.

It is interesting to note that when the paths contained in α ♦ β are not completely
edge disjoint, the number of paths can be many orders of magnitude larger than the size
of ḠE . Thus, this way of computing w(α ♦ β) can be much more efficient than explicitly
finding each possible path of α ♦ β and adding their lengths. This graph representation of
linear hulls therefore allows us to compactly express a large number of trails for a linear
approximation, and potentially enables us to capture a much larger part of the linear hull
than if we had used a more direct trail search.

5 Improvements
The graph generation algorithm presented in Section 4.1 has two main limitations: First,
the time we spend generating the graph is proportional to the number of single round
approximations we consider, and second, we initially have to store a much larger graph
than we ultimately need. In the following, we present some improvements to the algorithm
which prevent this, as well as some additional useful techniques.

5.1 Vertex Generation
We first note that we can perform the pruning step of Section 4.1.2 without initially storing
all r · |A| edges. Let us denote by Exin(P) and Exout(P) the expansion of P into only
input masks and output masks, respectively. As noted in Section 4.1.1, for SPN ciphers

Mathias Hall-Andersen and Philip S. Vejre 275

0035

0041

120f

0120

0083

00ce

0106

0109

010e

3

d

6

3

5
Compression, g4

Figure 3: An example of graph compression using the compression function g4. The values
of the vertices are shown in hexadecimal notation. Vertices in the same stage with non-zero
nibbles in the same position are identified, and any multiple edges are removed.

we can generate Exin(P) or Exout(P) in linear time in the number of inputs or outputs.
Moreover, observe that if a vertex in any of the stages S1 to Sr−1 does not correspond
to a mask contained in Exin(P) ∩ Exout(P), then it will be removed during the pruning
process. Thus, we can initially set

Si =

Exin(P) i = 0,
Exin(P) ∩ Exout(P) 1 ≤ i ≤ r − 1,
Exout(P) i = r.

Then, when adding edges, we generate A and only add an edge if the corresponding vertices
already exists in the graph. Since usually Exin(P) ∩ Exout(P)� Exin(P) ∪ Exout(P), the
memory usage is greatly reduced. In practice, the time taken to generate the graph is also
reduced, even though we still have to generate the entire set A, as inserting edges and
vertices is much more expensive than checking set membership. Finally, we note that we
still have to prune the resulting graph to obtain the desired ḠE .

5.2 Graph Compression and Pattern Elimination
While vertex generation somewhat improves memory and running time, it still might
be the case that some patterns in P ultimately did not contribute to ḠE , i.e. all edges
expressed by the pattern are removed during pruning. We will call such a pattern a dead
pattern. Clearly, it would be preferable if we ignored dead patterns completely. We now
present a technique for finding dead patterns quickly while using little memory.

We first introduce the notion of a compression function gj(x) : Fn2 → Fn/j2 . Let
y = gj(x). Then for 0 ≤ i < j, yi = 1 iff (xj·i, . . . , xj·(i+1)−1) is non-zero. For example,

g4(0xf1a0000500705200) = 0b1110000100101100 = 0xe12c,

i.e. the value 0xf1a0000500705200 ∈ F64
2 is compressed to the value 0xe12c ∈ F16

2 . Note
that this is similar to the concept of truncated differentials/approximations. With some
abuse of notation, for a graph G will say that gj(G) is the graph obtained by applying gj
to all vertices, identifying vertices in the same stage that have the same compressed value,
and then removing multiple edges. An example of this process is shown in Figure 3.

We can use compression to find dead patterns in a space efficient way. Instead of
generating ḠE , we first generate an approximation to gj(ḠE), say ĝj(ḠE), by applying gj
to all values when generating the graph. Note that this does not yield gj(ḠE); any path
between two vertices in ḠE is preserved in ĝj(ḠE), but there might be some additional
false paths. As a result, when applying pruning to the compressed graph, some vertices
might not be removed, although they would have been removed in the actual graph.

Note now that if a pattern is dead when considering ĝj(ḠE), it is also dead when
considering ḠE (although the converse does not hold). Thus, we can use ĝj(ḠE) to remove
some dead patterns. We propose the following approach to removing dead patterns while
conserving memory:

276 Generating Graphs Packed with Paths

1. Generate a set of patterns P.

2. Pick a j > 1 such that j is a power of two, and do the following:

(a) Generate the graph ĝj(ḠE) as described above.
(b) Remove any patterns from P which are dead according to ĝj(ḠE).
(c) If j = 2 then stop. Otherwise set j = j/2 and repeat.

The main insight here is that initially Ex(P) can be many times larger than what
we can store in memory. By gradually using a finer compression, we decrease the size of
Ex(P), while still keeping the intermediate graphs manageable and without losing any
information from the original search space. In practice, for ciphers with a block size of
64 bits and 4-bit S-boxes, we find that starting with j = 4 works well. How many dead
patterns occur varies between different designs, but we find that in general, if there are
few dead patterns, we also rarely need to use a large set A to get good results.

Speedup for SPN Ciphers While the above processes has the potential to greatly reduce
memory usage, we still need to calculate the initial set A at least once, and potentially
multiple times if few patterns are eliminated. For SPN ciphers we can improve this by
observing that if j is a multiple of the width of the S-box, we can calculate the compression
of an approximation (α, β) simply by calculating L−1(β). This is true, since if the output
mask of any S-box is non-zero, then so is the corresponding input mask of that S-box,
which is all we need to know to calculate the compressed value of α. In this case we can
therefore generate ĝj(ḠE) in time O(|Exin(P)|+ |Exout(P)|) (recall that vertex generation
has this time complexity for SPN ciphers). This greatly improves the running time of the
algorithm for this type of ciphers.

5.3 Vertex Anchoring
One big limitation with the algorithm presented here is that the search space is limited
by how big a set A the available computing power allows us to consider. While the
improvements presented so far increase the possible size of A, we wont be able to find paths
that locally have very short edges. Note that such a path might still be comparatively
long, if all other edges of the path are long.

Without having cipher specific insight, it seems difficult to know when it is beneficial to
add a locally bad edge, and especially which edge to add. This problem is exacerbated by
the fact that short edges represent approximations which usually activate many S-boxes,
and so the number of short edges is usually much larger than the number of long edges.

We propose a partial solution to this problem by introducing a technique called vertex
anchoring. Consider the example given in Figure 4. Here, the red and black subgraph is
the graph we might obtain from a set of approximations A, before pruning. Note that all
the red vertices would be removed from this graph during pruning, as they are not part of
a path from a vertex in S0 to a vertex in S7. Nevertheless, the red paths might be quite
long paths and it is therefore potentially wasteful to discard such nearly complete paths.
Instead, note that we can freely add a vertex to S0, as long there exists an edge between
this vertex and any vertex of S1. Such an edge would be outside the set A, and including
it will effectively increase our search space. These edges are shown in blue in Figure 4,
and they ensure that the red subgraph is not removed during any subsequent pruning. As
the result of these observations, we propose the following approach:

1. Generate the graph ḠE for r − 2 rounds. Denote the stages S1, . . . , Sr−1.

2. Add a stage S0 at the start (respectively Sr at the end) of ḠE consisting of all
vertices and edges in A which are incident to a vertex in S1 (Sr−1).

Mathias Hall-Andersen and Philip S. Vejre 277

Pruned middle rounds

S0 S1 S2 S3 S4 S5 S6 S7

Figure 4: An illustration of vertex anchoring. The black and red graph represents trails
built from the set of single round approximations A. The red subgraph would be removed
if the red/black graph was pruned. The blue anchor vertices are added to prevent the red
subgraph from being removed, increasing the number of trails found.

3. For any vertex in S1 (respectively Sr−1) which does not have an incoming (outgoing)
edge, find the longest possible edge going into (out of) this vertex, and add this edge
and its start (end) vertex to S0 (Sr).

For SPN ciphers, Step 3 can be done efficiently simply by finding the output (input)
mask to the S-box layer represented by each vertex, and then choosing the best possible
input (output) masks for each S-box. In practice, we limit the number of anchor vertices
added so as to not increase the search time too much. We find that this method dramatically
improves the results for some ciphers.

5.4 Parallelisation
As a practical improvement to the algorithm, we note that most aspects can be parallelised.
In particular, whenever we need to calculate Ex(P), P can be split into parts and distributed
across different threads. Often a main thread will have to collect the results form each of
the worker threads, e.g. when calculating Exin(P) ∩ Exout(P) during vertex generation,
but this work is quite minimal. Moreover, as mentioned in Section 4.2, the search for hulls
can easily be parallelised by distributing different α values across threads. Thus, while the
scaling is not perfect, the algorithm benefits quite heavily from increasing the number of
threads, especially when A is large, which is often the case since we want to cover as large
a search space as possible.

6 Searching for Linear Approximations and Differentials
We applied the algorithm described here to 17 different SPN ciphers. The types of designs
vary from ciphers with very lightweight permutation layers, such as present, to ciphers
with very heavy permutation layers, such as KLEIN. While we did also apply the algorithm
to some Feistel designs (i.e. TWINE and MIBS), the main improvements over the basic
algorithm presented in Section 5 apply to strict SPN designs, and we were unable to obtain
any interesting results for these ciphers due to the increased running time. Moreover, the
current implementation of the algorithm only supports ciphers with identical S-boxes,
although adding this functionality would not slow down the implementation noticeably.

Note that we investigate three ciphers that use a PRINCE-like design, namely
PRINCE, MANTIS, and QARMA. For these ciphers, we generate a graph for the first half
of the rounds, as described above, reverse this graph, and then stitch these two graphs
together through the central permutation layer.

278 Generating Graphs Packed with Paths

Table 1: Result for linear cryptanalysis obtained using the algorithm presented in this
work. A is the set of single round approximations considered, a is the number of anchor
vertices used, α ♦ β is the set of trails found for the best approximation, ELP is the
expected squared correlation for the best approximation, and Tg and Ts is the time in
hours to generate and search through the graph, respectively. Entries annotated by †
indicates an improvement over a previously published result.

Cipher
(Total rounds,

block size)
Rounds |A| a |α ♦ β| ELP Tg Ts

AES [oST01]
(10, 128)

3 229.9 224.0 21 2−53.36 0.0 0.0
4 238.8 224.0 24 2−147.88 2.5 20.0

EPCBC-48 [YKPH11]
(32, 48)

15 † [Bul13] 226.1 – 231.3 2−43.74 0.0 0.4
16 † [Bul13] 226.1 – 234.0 2−46.77 0.0 0.4

EPCBC-96 [YKPH11]
(32, 96)

31 227.6 – 263.6 2−94.47 0.0 0.4
32 227.6 – 263.6 2−97.59 0.0 0.4

Fly [KG16]
(20, 64)

8 232.5 – 26.5 2−54.83 0.1 6.0
9 232.5 – 26.1 2−63.00 0.2 8.8

GIFT-64 [BPP+17]
(28, 64)

11 231.8 – 25.1 2−55.00 0.1 8.0
12 232.7 – 23.6 2−64.00 0.2 41.5

Khazad [BR00]
(8, 64)

2 218.3 225.0 20 2−37.97 0.0 0.0
3 230.1 225.0 20 2−68.01 0.2 0.2

KLEIN [GNL11]
(12, 64)

5 230.8 217.0 20 2−46.0 0.0 0.0
6 239.6 216.9 20 2−66.0 0.3 0.0

LED [GPPR11]
(32, 64)

4 224.7 225 22 2−48.68 0.0 0.9

MANTIS7 [BJK+16]
(2 · 8, 64)

2 · 4 234.3 224.0 215.0 2−49.05 0.1 0.0

Midori64 [BBI+15]
(16, 64)

6 244.3 – 219.0 2−53.02 25.9 0.8
7 246.5 – 221.9 2−62.88 53.1 5.5

present [BKL+07]
(31, 64)

23 † [Ohk09] 231.1 – 255.0 2−61.00 0.1 6.8
24 † [Ohk09] 231.1 – 257.9 2−63.61 0.1 6.9
25 † [Ohk09] 231.1 – 260.7 2−66.21 0.1 6.9

PRIDE [ADK+14]
(20, 64)

15 227.1 – 20 2−58.00 0.0 0.0
16 237.4 – 23 2−63.99 1.8 0.0

PRINCE [BCG+12]
(2 · 6, 64)

2 · 3 218.1 – 22.0 2−54.00 0.0 0.0
2 · 4 238.3 – 26.8 2−63.82 2.1 0.4

PUFFIN [CHW08]
(32, 64)

32 226.8 – 2112.4 2−51.90 0.0 0.0

QARMA [Ava17]
(2 · 8, 64)

2 · 3 224.8 224.0 25.0 2−53.71 0.0 0.0

RECTANGLE [ZBL+14]
(25, 64)

12 † [ZBL+14] 231.1 – 215.0 2−52.27 0.1 21.1
13 † [ZBL+14] 231.1 – 215.9 2−58.14 0.1 25.9
14 † [ZBL+14] 231.1 – 218.3 2−62.98 0.1 31.1

SKINNY-64 [BJK+16]
(32, 64)

8 241.4 223.7 234.4 2−50.46 0.7 50.7
9 241.4 223.9 231.3 2−69.83 0.4 8.9

Mathias Hall-Andersen and Philip S. Vejre 279

Table 2: Result for differential cryptanalysis obtained using the algorithm presented in
this work. D is the set of single round differentials considered, a is the number of anchor
vertices used, ∆ ♦ ∇ is the set of trails found for the best differential, EDP is the expected
differential probability for the best differential, and Tg and Ts is the time in hours to
generate and search through the graph, respectively. Entries annotated by † indicates an
improvement over a previously published result.

Cipher
(Total rounds,

block size)
Rounds |D| a |∆ ♦ ∇| EDP Tg Ts

AES [oST01]
(10, 128)

3 218.7 224.0 20 2−54.00 0.0 0.0
4 236.9 224.0 20 2−150.00 0.7 0.3

EPCBC-48 [YKPH11]
(32, 48)

13 228.4 – 221.2 2−43.86 0.1 13.7
14 228.4 – 220.4 2−47.65 0.1 14.0

EPCBC-96 [YKPH11]
(32, 96)

20 232.8 – 216.9 2−92.73 1.1 21.6
21 232.8 – 219.9 2−97.78 1.1 22.6

Fly [KG16]
(20, 64)

8 231.6 – 24.9 2−55.76 0.1 2.6
9 233.2 – 27.3 2−63.35 0.2 17.8

GIFT-64 [BPP+17]
(28, 64)

12 † [ZDY18] 222.4 – 23.3 2−56.57 0.0 0.0
13 222.4 – 23.6 2−60.42 0.0 0.0

Khazad [BR00]
(8, 64)

2 225.8 224.8 20 2−45.42 0.0 0.0
3 225.8 225.0 20 2−81.66 0.0 0.0

KLEIN [GNL11]
(12, 64)

5 230.8 217.0 21.0 2−45.91 0.0 0.0
6 239.7 224.0 21.0 2−69.00 0.3 6.4

LED [GPPR11]
(32, 64)

4 237.7 224.0 21 2−49.42 0.5 0.1

MANTIS7 [BJK+16]
(2 · 8, 64)

2 · 4 237.7 – 218.6 2−47.98 0.9 0.1

Midori64 [BBI+15]
(16, 64)

6 242.2 223.9 219.6 2−52.37 1.6 1.0
7 242.2 223.9 222.8 2−61.22 1.0 0.9

present [BKL+07]
(31, 64)

15 230.3 – 227.2 2−58.00 0.1 16.2
16 † [Abd12] 230.3 – 228.9 2−61.80 0.1 18.0

17 230.3 – 232.9 2−63.52 0.1 18.8
PRIDE [ADK+14]

(20, 64)
15 235.9 223.6 25.0 2−58.00 0.5 36.5
16 235.9 223.6 217.4 2−63.99 0.5 44.1

PRINCE [BCG+12]
(2 · 6, 64)

2 · 3 † [CFG+14] 214.0 219 21 2−55.91 0.0 0.0
2 · 4 238.7 – 29.0 2−67.32 3.0 1.0

PUFFIN [CHW08]
(32, 64)

32 226.0 – 263.7 2−59.63 0.0 0.0

QARMA [Ava17]
(2 · 8, 64)

2 · 3 224.8 226.0 27.3 2−56.47 0.1 0.0

RECTANGLE [ZBL+14]
(25, 64)

13 † [ZBL+14] 231.1 – 215.3 2−55.64 0.1 32.2
14 † [ZBL+14] 231.1 – 215.9 2−60.64 0.1 41.3
15 † [ZBL+14] 231.1 – 218.2 2−65.64 0.1 50.2

SKINNY-64 [BJK+16]
(32, 64)

8 239.4 224.0 231.0 2−50.72 0.2 15.0
9 241.7 223.8 231.2 2−69.64 0.4 6.4

280 Generating Graphs Packed with Paths

6.1 Results for ELP and EDP
We ran the algorithm using an Intel Xeon E5-2650 v4 processor (24 threads at 2.2 GHz)
with 256 GB of memory available. The results for linear cryptanalysis are shown in Table 1
and the results for differential cryptanalysis in Table 2. Note that the number of rounds
stated here is the number of non-linear layers (i.e. S-box layers) applied.

The number of single round approximations or differentials considered when generating
the graph is the smallest that gave the stated result – for most ciphers, we investigated larger
search spaces without obtaining any improvements. In general, it is interesting to note
that for the majority of ciphers, actually generating the graph is quite fast, while searching
through the graph can take considerably longer. If one has an idea of what input/output
masks/differences are good, the graph can be restricted to paths between these interesting
values, which will greatly reduce the search time. A general strategy for using the algorithm
could therefore be to find some preliminary interesting approximations/differentials using
a small search space, and then increase the search space while restricting the graph to
these approximations/differentials in order to improve the estimates.

Entries annotated with a † indicate improvements over previous best results. Entries
that are not annotated are either new or do not improve on known results. For many of
the ciphers, the search found multiple approximations/differentials that were equally good.
It is therefore possible that multiple linear/differential attacks could be mounted on a
larger number of rounds than stated here.

We highlight a few interesting results. For RECTANGLE, the designers did take into
account multiple trails in [ZBL+14], and estimated that over 14 rounds the best differential
has EDP 2−62.83. We improve this to 2−60.64, demonstrating that being able to include a
larger number of trails can improve estimates.

For GIFT-64, [ZDY18] used a MILP based tool to find a 12 round differential trail with
probability 2−60. By taking into account multiple trails, we improve this to 2−56.57 and
find a 13 round differential with probability 2−60.42. Thus, we can potentially extend their
attack by one round.

For present, we improve some results of [Abd12]. In particular, we improve their result
for 16 round differentials from 2−62.58 to 2−61.80 and furthermore find a 17 round differential
with probability 2−63.52. For linear cryptanalysis, we match the results of [Abd12], although
interestingly we find fewer trails. This shows that the algorithm presented here can match
or even improve the results obtained by the partial correlation/difference transition matrix
method, all the while being more versatile.

6.2 Visualising Trail Graphs
An interesting side effect of applying our new algorithm is that we can visualise the
linear/differential trails in order to get a better understanding of how the cipher’s structure
influences its resistance to linear and differential cryptanalysis. Figure 5 show the linear
hull graphs that we generated for three different ciphers: present, PRIDE, and KLEIN.
The vertices in each stage are ordered by their value as integers.

While the search spaces selected for the three ciphers are comparable in size, the
resulting graphs have widely different structures. The graph for present show that
each stage is identical, and that the stages are highly connected. Thus, as observed in
[Ohk09], there exists a very large number of trails for many approximations of present
that have similar structure and therefore similar correlation contribution. PRIDE also
exhibits identical stages, and we can even observe iterative trails, but there are only very
few vertices in each stage, preventing the number of trails from exploding. The graph for
KLEIN (which has a very heavy linear layer), shows a very large number of edges in the
graph, but the structure of the stages vary, resulting in no clustering of trails. Indeed,
Table 1 shows that we only found one trail for the best approximations over 5 and 6 rounds.

Mathias Hall-Andersen and Philip S. Vejre 281

Figure 5: Examples of linear hull graphs generated by our algorithm. Top: 23 rounds of
present using |A| = 224.7 single round approximations. Middle: 14 rounds of PRIDE,
also with |A| = 224.7. Bottom: 5 rounds of KLEIN, with |A| = 226.8 and using 217

anchoring vertices.

282 Generating Graphs Packed with Paths

7 Correlation Distributions
Determining the ELP and EDP of the best linear approximations and differentials is
important when assessing the strength of a cipher against these attacks. However, these
summary statistics do not paint to full picture: in reality, the linear correlation and
differential probability vary over the key space, and more detailed knowledge about the
distribution of these values can lead to stronger distinguishers. As an example, [BV17]
demonstrated how asymmetries in the joint correlation distribution of multiple linear
approximations of DES can be used to improve attacks.

For differentials, not much is known about how the differential probabilities vary as the
key changes. For linear cryptanalysis, there has been an increased interest in developing
more accurate models for the key dependent behaviour, see e.g. [BT13, HVLN15, BN17,
BN16, BTV18]. This line of research is in large part facilitated by the following useful
result.

Theorem 1 ([DR02]). Let (α, β) be a linear approximation of an SPN cipher and let k̄
denote the concatenation of the cipher’s round keys for the encryption key k. Then the
linear correlation is given by

Ck(α,β) =
∑
U

(−1)sU⊕〈U,k̄〉|CkU |,

where the sum is over trails U = (α, . . . , β), sU is the sign bit of U , and |CkU | is independent
of k.

The above theorem indicates that for an SPN cipher we can determine the key dependent
correlation by adjusting the sign of each trail’s correlation contribution. Consequently, we
can estimate the distribution over the key-space by doing this for a large number of keys.
A similar result holds for Feistel ciphers with SPN like F -functions.

7.1 Finding Key-Dependent Distributions
Our algorithm for estimating ELP can easily be adapted to efficiently calculate key
dependent correlations instead. The main idea is simply to construct the graph ḠE , but
using the signed correlation values instead of the squared correlation as edge weights, and
then adjust the sign of the edges for each different key. Note that we can easily find the
signs of each edge after we have generated ḠE , as we know the input and output masks
each edge represents. Thus, we can find the signed correlation of an approximation by
using a slightly adapted version of the algorithm presented in Section 4.2 (we assume that
a pre-whitening key k0 is used):

1. Choose an encryption key k.

2. Let H be an empty hash table. Choose an α ∈ S1 and let H(α) = (−1)〈α,k0〉.

3. For each stage S0 to Sr−1 of ḠE , do the following:

(a) Let ki be the current round-key.
(b) Create an empty hash table H′.
(c) For each key of H, let u be the corresponding vertex in ḠE . Let c = H(u). Then,

for each edge u→ v, if H′(v) does not exists, let H′(v) = c · (−1)〈v,ki〉 · l(u→ v).
Otherwise, let H′(v) = H′(v) + c · (−1)〈v,ki〉 · l(u→ v).

(d) Let H = H′.

4. H(β) now contains Ck(α,β).

Mathias Hall-Andersen and Philip S. Vejre 283

−2e−09 0e+00 2e−09
−

2e
−

09
2e

−
09

−2e−09 1e−09 −2e−09 1e−09 −2e−09 1e−09

−
2e

−
09

2e
−

09
−

2e
−

09
2e

−
09

−
2e

−
09

2e
−

09

−2e−09 1e−09

−
2e

−
09

2e
−

09

(a) Approximations of 23 rounds of present.
The plot shows that the joint correlation distri-
bution for present is close to normal.

−1e−09 5e−10

−
1e

−
09

1e
−

09

−1e−09 5e−10 −1e−09 5e−10 −1e−09 5e−10

−
1e

−
09

1e
−

09
−

1e
−

09
1e

−
09

−
1e

−
09

1e
−

09

−1e−09 5e−10

−
1e

−
09

1e
−

09

(b) Approximations over 9 rounds of Fly. For
each pair of approximations we observe four
distinct clusters in the distributions.

−1e−09 0e+00 1e−09

−
1e

−
09

5e
−

10

−5e−10 5e−10 −1e−09 0e+00 1e−09−1e−09 5e−10

−
1e

−
09

5e
−

10
−

5e
−

10
1e

−
09

−
1e

−
09

5e
−

10

−1e−09 5e−10

−
1e

−
09

1e
−

09

(c) Approximations over 12 rounds of GIFT-64.
For each pair of approximations we observe
two distinct clusters in the distributions. This
indicates a dependence between the approxima-
tions.

−2e−09 1e−09

−
2e

−
09

2e
−

09

−2e−09 1e−09 −3e−09 0e+00 −3e−09 0e+00 3e−09

−
2e

−
09

2e
−

09
−

2e
−

09
2e

−
09

−
3e

−
09

1e
−

09

−3e−09 0e+00 3e−09 −
3e

−
09

2e
−

09

(d) Approximations over 14 rounds of RECT-
ANGLE. For each pair of approximations we
observe a significant deviation from normality,
manifested by very long tails of the distribu-
tions.

Figure 6: Shown in blue, the pairwise joint linear correlation distributions for four linear
approximations. The correlation distribution of an ideal cipher is shown in red.

5. Repeat for as many encryption keys as desired.

Clearly, this procedure only calculates a partial sum of Ck(α,β). To obtain a better
approximation of the actual value, we use the signal/noise decomposition technique
proposed in [BT13]. This technique is summarised the in the following lemma.

Lemma 1 ([BT13]). Let S be a set of strong linear trails for an approximation (α, β).
Then Ck(α,β) can be approximated by

Ck(α,β) =
(∑
U∈S

(−1)sU⊕〈U,k̄〉|CkU |

)
+N (0, 2−n),

where N (0, 2−n) denotes the normal distribution with mean 0 and variance 2−n.

7.2 Results
We have applied the above technique to some of the ciphers we investigated in Section 6.
That is, we calculated the partial sum of Ck(α,β) for 10 000 randomly chosen encryption
keys, and then added the noise distribution N (0, 2−n) to the resulting data sets. We

284 Generating Graphs Packed with Paths

note that when doing this for only a few approximations, the process takes at most a few
minutes, depending on the cipher. In light of the results of [BV17] we consider the joint
distributions of four different ciphers.

Figure 6a shows the pairwise joint distributions of four linear approximations over 23
rounds of present. As a reference, the correlation distribution of an ideal cipher is shown,
i.e. a bivariate normal distribution with marginals N (0, 2−n). In this case, the correlation
distributions appear to be close to normal and entirely independent, resulting in a joint
normal distribution. This matches the observations made in [BTV18].

Figure 6b shows the same picture but for 9 rounds of Fly. However, in this case, while
the marginal correlation distributions appear the be close to normal, when considering the
joint distributions, we can see that there are four clusters of observations for each pair
of approximations. A similar situation occurs over 12 rounds of GIFT-64, as shown in
Figure 6c, only here we only observe two clusters for each pair. As in [BV17], this would
indicate that there is a heavy overlap in the trails of the approximations, resulting in a
strong dependence between the signs of the correlations.

Finally, we consider approximations over 14 rounds of RECTANGLE in Figure 6d.
Here, we observe even stranger behaviour, as the marginal distributions do not even appear
to be normal. In fact, the distributions have much longer tails than expected, which would
indicate that there is a large percentage of weak keys for which a linear attack would work
better than expected.

The last three examples show that even if the ELP is close to the value expected from an
ideal block cipher, the actual correlation distributions might exhibit additional behaviour
which can be exploited in an attack. Attacks of this type warrant further investigation,
and hopefully the algorithm presented in this work will make this line of research easier.

8 Future Work
The algorithm presented in this work has much potential for further extensions and
improvements. First and foremost, it would be very useful to find improvements similar to
those of Section 5 that apply to other types of ciphers, in particular Feistel designs and
designs that are not based on S-boxes. This is closely related to the strategy for selecting
edges, discussed in Section 4.1. As also pointed out there, it would be interesting to use
the results of [BV14, KLT15] to develop an edge selection strategy for ARX and AND-RX
designs.

In more general terms, it would also be highly interesting to explore different heuristics
for the edge selection, as selecting the longest edges is not necessarily the best strategy.
This consideration has two aspects: First, we might obtain globally better results by
including very bad edges locally, and second, for all the ciphers we investigated, we end up
only using a very small subset of the single round approximations/differentials we initially
consider. As such, we waste much time and memory considering edges we are ultimately
not interested in. A better heuristic that can filter out (some) of these edges early would
potentially improve the algorithm.

Finally, we entertain the possibility that the general graph framework could be extended
to other types of cryptanalysis. Indeed, we could describe any property that propagates
through the round-function of a cipher as a path through a graph. As such, it might be
possible to apply the technique to search for e.g. division properties.

References
[AAA+15] Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda A. AlKhzaimi, Moham-

mad Reza Aref, Nasour Bagheri, and Praveen Gauravaram. Improved Linear

Mathias Hall-Andersen and Philip S. Vejre 285

Cryptanalysis of Reduced-Round SIMON-32 and SIMON-48. In Progress in
Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryp-
tology in India, Bangalore, India, December 6-9, 2015, Proceedings, pages
153–179, 2015.

[Abd12] Mohamed Ahmed Abdelraheem. Estimating the Probabilities of Low-Weight
Differential and Linear Approximations on PRESENT-Like Ciphers. In Infor-
mation Security and Cryptology - ICISC 2012 - 15th International Conference,
Seoul, Korea, November 28-30, 2012, Revised Selected Papers, pages 368–382,
2012.

[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,
Christof Paar, and Tolga Yalçin. Block Ciphers - Focus on the Linear Layer
(feat. PRIDE). In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part I, pages 57–76, 2014.

[AK18] Ralph Ankele and Stefan Kölbl. Mind the Gap - A Closer Look at the
Security of Block Ciphers against Differential Cryptanalysis. In Selected Areas
in Cryptography - SAC 2018, 2018.

[Ava17] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Matri-
ces Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics for
Low-Latency S-Boxes. IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In Advances in Cryptology - ASIACRYPT 2015
- 21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December
3, 2015, Proceedings, Part II, pages 411–436, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages
208–225, 2012.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, pages 123–153, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007.

286 Generating Graphs Packed with Paths

[BN16] Céline Blondeau and Kaisa Nyberg. Improved Parameter Estimates for
Correlation and Capacity Deviates in Linear Cryptanalysis. IACR Trans.
Symmetric Cryptol., 2016(2):162–191, 2016.

[BN17] Céline Blondeau and Kaisa Nyberg. Joint Data and Key Distribution of
Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic
and Its Impact to Data Complexity. Design, Codes and Cryptography, 82(1-
2):319–349, 2017.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 321–345, 2017.

[BR00] Paulo S.L.M. Barreto and Vincent Rijmen. The khazad legacy-level block
cipher. Primitive submitted to NESSIE, 97, 2000.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosys-
tems. In Advances in Cryptology - CRYPTO ’90, 10th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings, pages 2–21, 1990.

[BT13] Andrey Bogdanov and Elmar Tischhauser. On the Wrong Key Randomisation
and Key Equivalence Hypotheses in Matsui’s Algorithm 2. In Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, pages 19–38, 2013.

[BTV18] Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. Multivariate
Profiling of Hulls for Linear Cryptanalysis. IACR Trans. Symmetric Cryptol.,
2018(1):101–125, 2018.

[Bul13] Stanislav Bulygin. More on linear hulls of PRESENT-like ciphers and a
cryptanalysis of full-round EPCBC-96. IACR Cryptology ePrint Archive,
2013:28, 2013.

[BV14] Alex Biryukov and Vesselin Velichkov. Automatic Search for Differential
Trails in ARX Ciphers. In Topics in Cryptology - CT-RSA 2014 - The
Cryptographer’s Track at the RSA Conference 2014, San Francisco, CA, USA,
February 25-28, 2014. Proceedings, pages 227–250, 2014.

[BV17] Andrey Bogdanov and Philip S. Vejre. Linear Cryptanalysis of DES with
Asymmetries. In Advances in Cryptology - ASIACRYPT 2017 - 23rd In-
ternational Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, pages 187–216, 2017.

[CFG+14] Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and
Jean-René Reinhard. Multiple Differential Cryptanalysis of Round-Reduced
PRINCE. In Fast Software Encryption - 21st International Workshop, FSE
2014, London, UK, March 3-5, 2014. Revised Selected Papers, pages 591–610,
2014.

[CHW08] Huiju Cheng, Howard M. Heys, and Cheng Wang. PUFFIN: A Novel Compact
Block Cipher Targeted to Embedded Digital Systems. In 11th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, DSD
2008, Parma, Italy, September 3-5, 2008, pages 383–390, 2008.

Mathias Hall-Andersen and Philip S. Vejre 287

[CMST15a] Jiageng Chen, Atsuko Miyaji, Chunhua Su, and Jesen Teh. Accurate Esti-
mation of the Full Differential Distribution for General Feistel Structures. In
Information Security and Cryptology - 11th International Conference, Inscrypt
2015, Beijing, China, November 1-3, 2015, Revised Selected Papers, pages
108–124, 2015.

[CMST15b] Jiageng Chen, Atsuko Miyaji, Chunhua Su, and Jesen Teh. Improved Differen-
tial Characteristic Searching Methods. In IEEE 2nd International Conference
on Cyber Security and Cloud Computing, CSCloud 2015, New York, NY, USA,
November 3-5, 2015, pages 500–508, 2015.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic Tool for
Linear Cryptanalysis with Applications to CAESAR Candidates. In Advances
in Cryptology - ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, pages
490–509, 2015.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[DR07] Joan Daemen and Vincent Rijmen. Probability distributions of correlation
and differentials in block ciphers. J. Mathematical Cryptology, 1(3):221–242,
2007.

[FLN07] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Automatic
Search of Differential Path in MD4. IACR Cryptology ePrint Archive, 2007:206,
2007.

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-Based
Automatic Search Algorithms for Differential and Linear Trails for Speck. In
Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, pages 268–288, 2016.

[GNL11] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of
Lightweight Block Ciphers. In RFID. Security and Privacy - 7th International
Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011, Revised Selected
Papers, pages 1–18, 2011.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, pages 326–341, 2011.

[HVLN15] Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg. Capacity
and Data Complexity in Multidimensional Linear Attack. In Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 141–160,
2015.

[KG16] Pierre Karpman and Benjamin Grégoire. The LITTLUN S-box and the FLY
block cipher. In Lightweight Cryptography Workshop, pages 17–18, 2016.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
Block Cipher Family. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 161–185, 2015.

288 Generating Graphs Packed with Paths

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differen-
tial cryptanalysis. In Advances in Cryptology - EUROCRYPT ’91, Workshop
on the Theory and Application of of Cryptographic Techniques, Brighton, UK,
April 8-11, 1991, Proceedings, pages 17–38, 1991.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of
of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings,
pages 386–397, 1993.

[Mat94] Mitsuru Matsui. On Correlation Between the Order of S-boxes and the
Strength of DES. In Advances in Cryptology - EUROCRYPT ’94, Workshop
on the Theory and Application of Cryptographic Techniques, Perugia, Italy,
May 9-12, 1994, Proceedings, pages 366–375, 1994.

[MP13] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential Char-
acteristics for ARX: Application to Salsa20. IACR Cryptology ePrint Archive,
2013:328, 2013.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential
and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In
Information Security and Cryptology - 7th International Conference, Inscrypt
2011, Beijing, China, November 30 - December 3, 2011. Revised Selected
Papers, pages 57–76, 2011.

[Nyb94] Kaisa Nyberg. Linear approximation of block ciphers. In Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory and Application of
Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, pages
439–444, 1994.

[Ohk09] Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Crypt-
analysis. In Selected Areas in Cryptography, 16th Annual International Work-
shop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised
Selected Papers, pages 249–265, 2009.

[oST01] National Institute of Standards and Technology. 197: Advanced encryp-
tion standard (AES). Federal information processing standards publication,
197(441):0311, 2001.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-
Oriented Block Ciphers. In Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, pages 158–178, 2014.

[Ste13] Marc Stevens. New Collision Attacks on SHA-1 Based on Optimal Joint
Local-Collision Analysis. In Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
pages 245–261, 2013.

[YDG89] S. H. Yen, David Hung-Chang Du, and Subbarao Ghanta. Efficient Algorithms
for Extracting the K most Critical Paths in Timing Analysis. In Proceedings
of the 26th ACM/IEEE Design Automation Conference, Las Vegas, Nevada,
USA, June 25-29, 1989., pages 649–654, 1989.

Mathias Hall-Andersen and Philip S. Vejre 289

[YKPH11] Huihui Yap, Khoongming Khoo, Axel Poschmann, and Matt Henricksen.
EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption.
In Cryptology and Network Security - 10th International Conference, CANS
2011, Sanya, China, December 10-12, 2011. Proceedings, pages 76–97, 2011.

[YML+17] Jun Yin, Chuyan Ma, Lijun Lyu, Jian Song, Guang Zeng, Chuangui Ma, and
Fushan Wei. Improved Cryptanalysis of an ISO Standard Lightweight Block
Cipher with Refined MILP Modelling. In Information Security and Cryptology
- 13th International Conference, Inscrypt 2017, Xi’an, China, November 3-5,
2017, Revised Selected Papers, pages 404–426, 2017.

[ZBL+14] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: A Bit-slice Ultra-Lightweight Block
Cipher Suitable for Multiple Platforms. IACR Cryptology ePrint Archive,
2014:84, 2014.

[ZDY18] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. MILP-based Differential Attack
on Round-reduced GIFT. Cryptology ePrint Archive, Report 2018/390, 2018.
https://eprint.iacr.org/2018/390.

https://eprint.iacr.org/2018/390

	Introduction
	Previous Work
	Contributions

	Preliminaries
	Linear Cryptanalysis
	Differential Cryptanalysis
	Finding Approximations and Differentials

	Trail Search Viewed as a Graph Problem
	A New Algorithm for Trail Search
	Choosing a Subgraph
	Finding Linear Hulls and Differentials

	Improvements
	Vertex Generation
	Graph Compression and Pattern Elimination
	Vertex Anchoring
	Parallelisation

	Searching for Linear Approximations and Differentials
	Results for ELP and EDP
	Visualising Trail Graphs

	Correlation Distributions
	Finding Key-Dependent Distributions
	Results

	Future Work

