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Cryptanalytic Techniques

 Differential and linear cryptanalysis are two major generic techniques for assessing the strength and 

vulnerabilities of block ciphers

 These techniques have various extensions which can improve their success in various cases

 Along with Davies’ attack, they are the best attacks against the Data Encryption Standard (DES)

 Today, I will show a new extension that reduces this complexity further

Technique Complexity

Differential Cryptanalysis 2𝟒𝟕

Linear Cryptanalysis 2𝟒𝟑

Improved Davies’ Attack 2𝟓𝟎

Conditional Linear Cryptanalysis ≤2𝟒𝟐



DES – Example of a Block Cipher

𝑃𝐶 − 2

𝐶 𝐷

𝑅𝑂𝐿2 𝑅𝑂𝐿2

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐼𝑃

𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 (64 𝑏𝑖𝑡𝑠)

𝐹𝑃

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 (64 𝑏𝑖𝑡𝑠)

𝑃𝐶 − 1

𝐾𝑒𝑦 (56 bits)

𝑅𝑂𝐿1 𝑅𝑂𝐿1
𝑃𝐶 − 2

𝑅𝑂𝐿1 𝑅𝑂𝐿1

𝑃𝐶 − 2

𝑅𝑂𝐿 𝑅𝑂𝐿
𝑃𝐶 − 2

𝑅𝑂𝐿2 𝑅𝑂𝐿2
𝑃𝐶 − 2

𝑅𝑂𝐿2 𝑅𝑂𝐿2
𝑃𝐶 − 2

𝑅𝑂𝐿2 𝑅𝑂𝐿2
𝑃𝐶 − 2

𝑅𝑂𝐿1 𝑅𝑂𝐿1
𝑃𝐶 − 2

𝐾1

𝐾2

𝐾3

𝐾𝑖

𝐾13

𝐾14

𝐾15

𝐾16



The F Function of DES
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The Best Non-Trivial Approximation of S5

 The best non-trivial approximation

 It approximates the second bit of input to S5 to the XOR of the four output bits of S5

 In 12 cases: 𝑃𝜆𝑃⨁𝐶𝜆𝐶⨁𝐾𝜆𝐾 = 0

 In 52 cases: 𝑃𝜆𝑃⨁𝐶𝜆𝐶⨁𝐾𝜆𝐾 = 1
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Linear Cryptanalysis

 Linear Cryptanalysis uses statistical approximations that approximate parity of subsets of bits of the 

plaintext, ciphertext, and the subkeys

 E.g., (second bit of the plaintext) XOR (fifth bit of ciphertext) XOR (keys bits) = 0

 Each approximation has a probability, 𝑝, to hold

 Which is the fraction of plaintexts whose encryption follow the approximation

 In random cases, the probability is expected to be ½, or close to ½

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃60 𝑃61 𝑃62 𝑃63 𝑃64

𝑃 𝐶 𝐾

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶60 𝐶61 𝐶62 𝐶63 𝐶64 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾60 𝐾61 𝐾62 𝐾63 𝐾64………



Linear Cryptanalysis

 The ability if distinguish whether an approximation holds highly depends on the distance of the 

probability from ½

 Let the bias be 𝜀 = 𝑝 −
1

2

 Range: -½ to +½ 

 The higher the (absolute value of the) bias, the easier to distinguish

 𝜀 = 0 means that the approximation is mostly useless



Linear Approximations

 A linear approximation is a tuple (𝜆𝑃,𝜆𝐶,𝜆𝐾)

 𝜆𝑃 is a subset of bits of the plaintext 

 𝜆𝐶 is a subset of bits of the ciphertext

 𝜆𝐾 is a subset of bits of the key (or the subkeys)

 The probability of the approximation is the probability that 𝑷𝝀𝑷⨁𝑪𝝀𝑪⨁𝑲𝝀𝑲 = 𝟎

0 0 0 1 1 …1 0 0 1 0

𝜆𝑃

0 1 0 1 1 …0 0 0 0 1

𝜆𝐶

0 1 1 1 1 …0 0 1 1 0

𝜆𝐾

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃60 𝑃61 𝑃62 𝑃63 𝑃64

𝑃 𝐶 𝐾
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Algorithm 1

 Given 𝜆=(𝜆𝑃,𝜆𝐶,𝜆𝐾), we know that 𝑃𝜆𝑃⨁𝐶𝜆𝐶⨁𝐾𝜆𝐾 = 0 holds with probability 𝑝 =
1

2
+ 𝜀

 Given plaintext and the corresponding ciphertext, we can calculate the value of 𝑃𝜆𝑃⨁𝐶𝜆𝐶



Algorithm 1

 Given 𝜆=(𝜆𝑃,𝜆𝐶,𝜆𝐾), 𝜀(𝜆), and 𝑁 plaintexts and their ciphertexts, the algorithm counts the 
number 𝑀 of plaintexts satisfying

𝑃𝜆𝑃⨁𝐶𝜆𝐶 = 0

 Recall that 𝑃𝜆𝑃⨁𝐶𝜆𝐶⨁𝐾𝜆𝐾 = 0 holds with probability 𝑝 =
1

2
+ 𝜀

 The algorithm guesses that the parity of the key bits 𝐾𝜆𝐾 is

 This algorithm finds only one parity bit of the key

 The success rate of the algorithm grows as the number of plaintexts N increases, and as the value 
of |𝜀| increases

 For a high probability of success, 𝑁 ≈
1

𝜀2
or higher

𝜀 > 0 𝜀 < 0

𝑀 >
𝑁

2
0 1

𝑀 <
𝑁

2
1 0



Matsui’s Best Approximation (14 rounds)
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Linear Cryptanalysis of the Full DES

 Matsui uses the best 14-round approximation with probability ≈
1

2
− 2−20.75

 The attack requires about 243 known plaintexts



Conditional Linear Cryptanalysis

 Using conditions to discard data that reduces that bias

 So the bias of the remaining data increase or decrease

 Conditions can be by any observable data available to the cryptanalyst

 Plaintexts, ciphertexts, and formulae on them

 Such as (e.g., in Feistel ciphers)

 Validity of other linear approximations

 Inputs of F in the first and last rounds

 XORs of the outputs of F in all even rounds (or all odd rounds)

 Etc.

 Conditions may be by a single (parity) bit of the above, or by several

 Including by a distribution of data by several bits, or

 selection of several cases from such a distribution



Conditional Linear Cryptanalysis

 We can condition on the XOR of plaintext and ciphertext bits

 even more than one bit at a time

 For example, on 𝑃𝐿⨁𝐶𝑅 = ⨁r 𝑖𝑠 𝑜𝑑𝑑𝑌
r

 which is the XOR of the output of F in all odd rounds

 Consider any one of these bits as a linear approximation

 E.g., 𝑃𝐿,17⨁𝐶𝑅,17=0

 Equivalent to 𝑌17
1 ⊕𝑌17

3 =0

 Such approximations are expected to have bias 0

 But they are very useful as conditions to other approximations

𝑃 = (𝑃𝐿 , 𝑃𝑅 )

𝐹
𝑌1

𝐹
𝑌2

𝐶 = (𝐶𝐿 , 𝐶𝑅)

𝐹
𝑌4

𝐹
𝑌3



A Case of Single Round

 The best non-trivial approximation

 It approximates the second bit of input to S5 to the XOR of the four output bits of S5

 Probability 
1

2
+

−20

64

 I.e., 12 cases with equality (parity 0 of the 5 bits), 52 cases with inequality (parity 1 of the 5 bits)

λ𝑃 = 21 04 00 80 00 00 00 00𝑥
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A Case of Single Round

 Conditioning on all the four output bits of S5 (16 cases) we get

 Consider a condition on the LSB of the four output bits of S5 (a single bit)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0 0 0 1 0 1 0 2 0 2 0 3 1 2 0

-0.5 -0.5 -0.5 -0.5 -0.25 -0.5 -0.25 -0.5 0 -0.5 0 -0.5 0.25 -0.25 0 -0.5

Bias𝐏𝛌𝐏⨁𝐂𝛌𝐂⨁𝐊𝛌𝐊 =Condition

10

-20/645212none

-5/32=-10/642111LSB=0

-15/32=-30/64311LSB=1



A Case of Single Round

 Scan from Adi Shamir's CRYPTO'85 paper

 He circled the values with an even parity of the four output bits

The 12 VS. the 52

  1 vs. 31 for LSB=1, and 11 vs. 21 for LSB=0

odd



A Four-Round Example

 Consider four successive rounds taken from Matsui's best linear approximation

 This approximation uses three active S boxes:

 S5 on the first and third rounds, and

 S1 on the fourth round

 Both odd rounds have the same active S box
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20 00 00 00𝑥

00 00 80 00𝑥

00



A Four-Round Example

 Conditioning on all the four XOR output bits of S5 (16 cases) we get

 Notice that this condition is based on the XOR of both odd rounds

 Not just on one of them

 For applying Matsui's Algorithm1 with our observation, we discard half of the known plaintexts, and 

use only the plaintexts in which the XOR of the LSB bits of S5 is zero

 Their average bias is 0.0115

 While the bias over all cases is 0.0057

 Using only these plaintexts increases the bias by a factor of two

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0.008 0 0.008 0 0.009 0 0.009 0 0.014 0 0.014 0 0.015 0 0.015 0



A Four-Round Example

 We need a quarter of the data

 Compared to a regular linear attack with the same approximation

 But this is after we discard half of the given data that fails the condition

 We need half of the original data

 We discard half of it, and get the required quarter

 Same factor of saving for an 8-round reduced DES

 Same factor of saving for a 12-round reduced DES

 Same factor of saving for a 16-round DES

 But this is not the best attack on 16-round DES



Conditional Linear Cryptanalysis of the Full DES
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Conditional Linear Cryptanalysis of the Full DES

 Conditioning 𝜆1 on all the four XOR output bits of S5 (16 cases) we get

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

−2−21.77 −2−20.16 −2−21.77 −2−20.16 −2−21.77 −2−20.16 −2−21.77 −2−20.16 −2−21.71 −2−20.16 −2−21.71 −2−20.16 −2−21.71 −2−20.16 −2−21.71 −2−20.16

BiasCondition

~ − 2−20.75none

~ − 2−21.74XOR LSB=0

~ − 2−20.16XOR LSB=1



Conditional Linear Cryptanalysis of the Full DES
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Conditional Linear Cryptanalysis of the Full DES

 Conditioning 𝜆1 on all the four XOR output bits of S5 (16 cases) we get

 Conditioning 𝜆2 on all the four XOR output bits of S5 (16 cases) we get

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

−2−21.77 −2−20.16 −2−21.77 −2−20.16 −2−21.77 −2−20.16 −2−21.77 −2−20.16 −2−21.71 −2−20.16 −2−21.71 −2−20.16 −2−21.71 −2−20.16 −2−21.71 −2−20.16

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

−2−20.26 2−23.13 −2−20.26 2−23.13 −2−20.26 2−23.13 −2−20.26 2−23.13 −2−20.26 2−23 −2−20.26 2−23 −2−20.26 2−23 −2−20.26 2−23

BiasCondition

𝛌𝟐𝛌𝟏

~ − 2−21.48~ − 2−20.75none

~ − 2−20.26~ − 2−21.74XOR LSB=0

~2−23.06~ − 2−20.16XOR LSB=1



Success Probability by Complexity (#Ps&Time)



Summary

 In this talk we showed that linear approximations are highly affected by conditioning them on other 

approximations

 And showed how to use such conditional approximations for attacks

 Leading to the best current attack against DES

 The simplest case is conditioning on the XOR of the outputs of the F function in all odd rounds

 The required data decreases linearly with the increase in the bias

 Since the data (after discarding by the condition) decreases quadratically with the bias

 We showed that even using a single conditional linear approximation we can save 12% over Matsui’s 

attack

 Using both conditional linear approximations leads to attack against DES with complexity 2𝟒𝟐

 We tested most techniques with our test programs



The End


