Conditional Linear

 CryptanalysisStav Perle
Joint work with Eli Biham
Technion - Israel Institute of Technology

Cryptanalytic Techniques

- Differential and linear cryptanalysis are two major generic techniques for assessing the strength and vulnerabilities of block ciphers
- These techniques have various extensions which can improve their success in various cases
- Along with Davies' attack, they are the best attacks against the Data Encryption Standard (DES)

Technique	Complexity
Differential Cryptanalysis	2^{47}
Linear Cryptanalysis	2^{43}
Improved Davies' Attack	2^{50}

- Today, I will show a new extension that reduces this complexity further

Conditional Linear Cryptanalysis	$\leq 2^{42}$

DES - Example of a Block Cipher

The F Function of DES

The Best Non-Trivial Approximation of S5

- The best non-trivial approximation

- It approximates the second bit of input to S 5 to the XOR of the four output bits of S5
- In 12 cases: $P \lambda_{P} \oplus C \lambda_{C} \oplus K \lambda_{K}=0$
- In 52 cases: $P \lambda_{P} \oplus C \lambda_{C} \oplus K \lambda_{K}=1$
- $\frac{1}{2}+\varepsilon=\frac{12}{64}$

म $\varepsilon=\frac{-20}{64}$

Linear Cryptanalysis

- Linear Cryptanalysis uses statistical approximations that approximate parity of subsets of bits of the plaintext, ciphertext, and the subkeys
- E.g., (second bit of the plaintext) XOR (fifth bit of ciphertext) XOR (keys bits) $=0$
$P_{1} P_{2} P_{3} P_{4} P_{5} \quad \ldots P_{60} P_{61} P_{62} P_{63} P_{64}$ P
$\begin{array}{llllllllllllll}C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & \ldots & C_{60} & C_{61} & C_{62} & C_{63} & C_{64}\end{array}$ C
$\left.K_{1}\left(K_{2}\right) K_{3} K_{4}\right) K_{E_{5}}^{\ldots} . K_{60} K_{61}\left(K_{62}\right) K_{63} K_{64}$
K
- Each approximation has a probability, p, to hold
- Which is the fraction of plaintexts whose encryption follow the approximation
- In random cases, the probability is expected to be $1 / 2$, or close to $1 / 2$

Linear Cryptanalysis

- The ability if distinguish whether an approximation holds highly depends on the distance of the probability from $1 / 2$
- Let the bias be $\varepsilon=p-\frac{1}{2}$
- Range: $-1 / 2$ to $+1 / 2$
- The higher the (absolute value of the) bias, the easier to distinguish
- $\varepsilon=0$ means that the approximation is mostly useless

Linear Approximations

- A linear approximation is a tuple ($\lambda_{P}, \lambda_{C}, \lambda_{K}$)
- λ_{P} is a subset of bits of the plaintext
- λ_{C} is a subset of bits of the ciphertext
- λ_{K} is a subset of bits of the key (or the subkeys)

$01111 \ldots 00110$

λ_{K}

P

- The probability of the approximation is the probability that $P \lambda_{P} \oplus C \lambda_{C} \oplus K \lambda_{K}=0$

Algorithm 1

> Given $\lambda=\left(\lambda_{P}, \lambda_{C}, \lambda_{K}\right)$, we know that $P \lambda_{P} \oplus C \lambda_{C} \oplus K \lambda_{K}=0$ holds with probability $p=\frac{1}{2}+\varepsilon$

- Given plaintext and the corresponding ciphertext, we can calculate the value of $P \lambda_{P} \oplus C \lambda_{C}$

Algorithm 1

\Rightarrow Given $\lambda=\left(\lambda_{P}, \lambda_{C}, \lambda_{K}\right), \varepsilon(\lambda)$, and N plaintexts and their ciphertexts, the algorithm counts the number M of plaintexts satisfying

$$
P \lambda_{P} \oplus C \lambda_{C}=0
$$

- Recall that $P \lambda_{P} \oplus C \lambda_{C} \oplus K \lambda_{K}=0$ holds with probability $p=\frac{1}{2}+\varepsilon$
- The algorithm guesses that the parity of the key bits $K \lambda_{K}$ is

	$\varepsilon>0$	$\varepsilon<0$
$M>\frac{N}{2}$	0	1
$M<\frac{N}{2}$	1	0

- This algorithm finds only one parity bit of the key
- The success rate of the algorithm grows as the number of plaintexts N increases, and as the value of $|\varepsilon|$ increases
- For a high probability of success, $N \approx \frac{1}{\varepsilon^{2}}$ or higher

Matsui's Best Approximation (14 rounds)

Linear Cryptanalysis of the Full DES

- Matsui uses the best 14 -round approximation with probability $\approx \frac{1}{2}-2^{-20.75}$
- The attack requires about 2^{43} known plaintexts

Conditional Linear Cryptanalysis

- Using conditions to discard data that reduces that bias
- So the bias of the remaining data increase or decrease
- Conditions can be by any observable data available to the cryptanalyst
- Plaintexts, ciphertexts, and formulae on them
- Such as (e.g., in Feistel ciphers)
- Validity of other linear approximations
- Inputs of F in the first and last rounds
- XORs of the outputs of F in all even rounds (or all odd rounds)
- Etc.
- Conditions may be by a single (parity) bit of the above, or by several
- Including by a distribution of data by several bits, or
- selection of several cases from such a distribution

Conditional Linear Cryptanalysis

- We can condition on the XOR of plaintext and ciphertext bits
- even more than one bit at a time
- For example, on $P_{L} \oplus C_{R}=\oplus_{\mathrm{r}}$ is odd Y^{r}
- which is the XOR of the output of F in all odd rounds
- Consider any one of these bits as a linear approximation
\Rightarrow E.g., $P_{L, 17} \oplus C_{R, 17}=0$

- Equivalent to $Y_{17}^{1} \oplus Y_{17}^{3}=0$
- Such approximations are expected to have bias 0
- But they are very useful as conditions to other approximations

A Case of Single Round

- The best non-trivial approximation

- It approximates the second bit of input to S 5 to the XOR of the four output bits of S 5
- Probability $\frac{1}{2}+\frac{-20}{64}$
- I.e., 12 cases with equality (parity 0 of the 5 bits), 52 cases with inequality (parity 1 of the 5 bits)

A Case of Single Round

- Conditioning on all the four output bits of S 5 (16 cases) we get

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	11110	1111
0	0	0	0	1	0	1	0	2	0	2	0	3	1	2	0
-0.5	-0.5	-0.5	-0.5	-0.25	-0.5	-0.25	-0.5	0	-0.5	0	-0.5	0.25	-0.25	0	-0.5

- Consider a condition on the LSB of the four output bits of S5 (a single bit)

Condition	0	Bias	
	12		
none	11	52	$-20 / 64$
$\mathrm{LSB}=0$	1	21	$-5 / 32=-10 / 64$
$\mathrm{LSB}=1$	31	$-15 / 32=-30 / 64$	

A Case of Single Round

odd

- Scan from Adi Shamir's CRYPTO'85 paper
- He circled the values with an even parity of the four output bits

The 12 VS. the 52

$\Rightarrow \quad \rightarrow 1$ vs. 31 for $L S B=1$, and 11 vs. 21 for $L S B=0$

A Four-Round Example

- Consider four successive rounds taken from Matsui's best linear approximation
- This approximation uses three active S boxes:
- S5 on the first and third rounds, and

- S 1 on the fourth round
- Both odd rounds have the same active S box

A Four-Round Example

- Conditioning on all the four XOR output bits of S5 (16 cases) we get

0000	0001	0010	0011	0100	0101	0110	0111	1000	1.001	1.010	1011	11.00	1,101	1110
0.008	0	0.008	0	0.009	0	0.009	0	0.014	0	0.014	0	0.015	0	0.015

- Notice that this condition is based on the XOR of both odd rounds
- Not just on one of them
- For applying Matsui's Algorithm1 with our observation, we discard half of the known plaintexts, and use only the plaintexts in which the XOR of the LSB bits of S5 is zero
- Their average bias is 0.0115
- While the bias over all cases is 0.0057
- Using only these plaintexts increases the bias by a factor of two

A Four-Round Example

- We need a quarter of the data
- Compared to a regular linear attack with the same approximation
- But this is after we discard half of the given data that fails the condition
- We need half of the original data
- We discard half of it, and get the required quarter
- Same factor of saving for an 8 -round reduced DES
- Same factor of saving for a 12 -round reduced DES
- Same factor of saving for a 16-round DES
- But this is not the best attack on 16 -round DES

Conditional Linear Cryptanalysis of the Full DES

Conditional Linear Cryptanalysis of the Full DES

- Conditioning λ_{1} on all the four XOR output bits of S5 (16 cases) we get

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1.010	1011	11.00	11.01	111.0
$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.71}$	$-2^{-20.16}$	$-2^{-21.71}$	$-2^{-20.16}$	$-2^{-21.71}$	$-2^{-20.16}$	$-2^{-21.71}$

Condition	Bias
none	$\sim-2^{-20.75}$
XOR LSB=0	$\sim-2^{-21.74}$
XOR LSB $=1$	$\sim-2^{-20.16}$

Conditional Linear Cryptanalysis of the Full DES

Conditional Linear Cryptanalysis of the Full DES

- Conditioning λ_{1} on all the four XOR output bits of S5 (16 cases) we get

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1.010	1011	11.00	1.101	111.0
$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.77}$	$-2^{-20.16}$	$-2^{-21.71}$	$-2^{-20.16}$	$-2^{-21.71}$	$-2^{-20.16}$	$-2^{-21.71}$	$-2^{-20.16}$	$-2^{-21.71}$

- Conditioning λ_{2} on all the four XOR output bits of S5 (16 cases) we get

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1.100	1.101	1110
$-2^{-20.26}$	$2^{-23.13}$	$-2^{-20.26}$	$2^{-23.13}$	$-2^{-20.26}$	$2^{-23.13}$	$-2^{-20.26}$	$2^{-23.13}$	$-2^{-20.26}$	2^{-23}	$-2^{-20.26}$	2^{-23}	$-2^{-20.26}$	2^{-23}	$-2^{-20.26}$

Condition	Bias	
	λ_{1}	λ_{2}
none	$\sim-2^{-20.75}$	$\sim-2^{-21.48}$
XOR LSB=0	$\sim-2^{-21.74}$	$\sim-2^{-20.26}$
XOR LSB=1	$\sim-2^{-20.16}$	$\sim 2^{-23.06}$

Success Probability by Complexity (\#Ps\&Time)

Summary

- In this talk we showed that linear approximations are highly affected by conditioning them on other approximations
- And showed how to use such conditional approximations for attacks
- Leading to the best current attack against DES
- The simplest case is conditioning on the XOR of the outputs of the F function in all odd rounds
- The required data decreases linearly with the increase in the bias
- Since the data (after discarding by the condition) decreases quadratically with the bias
- We showed that even using a single conditional linear approximation we can save 12% over Matsui's attack
- Using both conditional linear approximations leads to attack against DES with complexity 2^{42}
- We tested most techniques with our test programs

The End

