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Abstract. In this paper we introduce a new extension of linear cryptanalysis that
may reduce the complexity of attacks by conditioning linear approximations on other
linear approximations. We show that the bias of some linear approximations may
increase under such conditions, so that after discarding the known plaintexts that do
not satisfy the conditions, the bias of the remaining known plaintexts increases. We
show that this extension can lead to improvements of attacks, which may require fewer
known plaintexts and time of analysis. We present several types of such conditions,
including one that is especially useful for the analysis of Feistel ciphers. We exemplify
the usage of such conditions for attacks by a careful application of our extension to
Matsui’s attack on the full 16-round DES, which succeeds to reduce the complexity
of the best attack on DES to less than 242. We programmed a test implementation
of our attack and verified our claimed results with a large number of runs. We also
introduce a new type of approximations, to which we call scattered approximations,
and discuss its applications.
Keywords: new cryptanalytic techniques · linear cryptanalysis · DES · conditional
approximations · scattered approximations

1 Introduction
In this paper we present a new extension of linear cryptanalysis that uses conditions to
discard some of the data, and increase the biases of the remaining data. This technique
works best on Feistel ciphers [MvOV01, Definition 7.81]. We exemplify our technique by
implementing it against DES, which is the most well known and most widely analyzed
cipher of this kind. We also present other extensions and applications of our techniques.

Linear cryptanalysis was introduced by Mitsuru Matsui, who first applied the technique
to FEAL [SM87, MY92], and later generalized it to an attack against DES [Nat77] using
243 known plaintexts [Mat93, Mat94]. It statistically analyzes linear relations between
plaintexts bits, ciphertexts bits and key bits, which in turn are used to predict the parity
of a subset of key bits. Auxiliary analysis techniques can find additional key bits, and
complete the attack to find the full key.

1.1 The Data Encryption Standard
The Data Encryption Standard (DES) [Nat77] was developed in the early 1970’s by
IBM, and adopted by the U.S. National Bureau of Standards as the standard encryption
algorithm for commercial and sensitive but unclassified data in 1977.

DES consists of 16 rounds of permutations and arithmetic operations. The block size
of DES is 64 bits, and the key size is 56 bits. The main part of the round function is the
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Figure 1: Outline of The Data Encryption Standard

F function, which mixes the right half of the data and a 48-bit round subkey. The F
function expands the input to 48 bits, XORs them with the subkey, and transforms the
result by eight 6-bit to 4-bit S boxes. Then, the order of the resulting 32 bits is permuted
to become the 32 output bits of the F function. This output is then XORed with the left
half of the data, and the two halves are swapped before the next round. Outlines of DES
and its F function are given in Figure 1 and Figure 2. For more details on DES see [BS93]
or [Nat77].

1.2 Linear Cryptanalysis
Linear cryptanalysis [Mat93, Mat94] uses statistical approximations that approximate
parity of subsets of bits of the plaintext, ciphertext, and the subkeys. In an ideal cipher,
any linear equation involving plaintext bits, ciphertext bits and key bits would hold
with probability 1/2 when considering all the plaintexts in the plaintext space, and their
corresponding ciphertexts.

Linear cryptanalysis takes advantage of the fact that some linear approximations have
probabilities different than 1/2. Each approximation has a probability p to hold, which
is the fraction of plaintexts whose encryption satisfies the approximation. The ability
to distinguish whether an approximation holds highly depends on the distance of the
probability from 1/2. We call this distance the bias of the approximation. The bias ε of
linear approximation with probability p is ε = p− 1/2.
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Figure 2: The F function

In DES, since the S boxes are the only non-linear component, the attack is based on
statistical linear relations of the S boxes. For each S box, these relations are determined
by choosing a subset of the input bits, a subset of the output bits, and by calculating the
parity of these bits for each of the possible inputs of the S box. The probability of such an
approximation is the fraction of inputs whose subset’s parity is equal to 0.

1.3 Other Related Prior Work
Differential cryptanalysis [BS93] analyzes how differences evolve during encryption, and
how differences of plaintext pairs evolve to differences of the resultant ciphertext pairs.
Their study allows to assign probabilities to the possible keys and to locate the most
probable key. This method usually works on many pairs of plaintexts with the same
particular difference. Differential cryptanalysis was introduced by Eli Biham and Adi
Shamir in the late 1980’s. They published a number of attacks against various block ciphers
and hash functions, including DES. The most well known attack of this kind can break
the full 16-round DES in 237 time complexity given 247 chosen plaintexts. Although on
the detailed level this method is quite different from linear cryptanalysis, on the structural
level they are very similar [Bih94].

Differential and linear cryptanalysis are two major generic techniques for assessing the
strength and vulnerabilities of block ciphers. These techniques have various extensions
which can improve their success in various cases. Along with the Improved Davies’
attack [BB94], they form all the known shortcut techniques against the Data Encryption
Standard.

Other newer publications propose extensions to these shortcut techniques. Chosen
plaintext linear cryptanalysis was proposed in [KM00]. The time complexity and the number
of required known plaintexts for finding 12 key bits is 242. A series of papers extended linear
cryptanalysis using many linear approximations, with various techniques. For example,
multiple linear cryptanalysis [BCQ04] which considers statistically independent linear
approximations, and multidimensional linear cryptanalysis [HCN09] which analyze the
distribution of events spanned by dependent linear approximations.
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A statistical extension of linear cryptanalysis was proposed in [Vau96] which showed
how to improve the attack of Matsui by a small factor of ≈ 20.07. An improved algorithm
which is based on quadratic relations of S boxes was proposed in [SK98]. This algorithm is
a combination of a non-linear approximation method and multiple approximation method.
This improvement can reduce the number of required known plaintexts to 242.55.

Finally, a recent paper [BV17] improves over linear cryptanalysis with multiple ap-
proximations using a large number of approximations with a more thorough analysis.
Their actual attack against DES has complexity 238.86 with 242.78 known plaintexts or
alternatively 249.76 with 241 known plaintexts. Unfortunately, their paper does not contain
enough information to apply their actual attack and to directly compare it with our results,
or even to merge their ideas with ours to gain an even better attack.

Several papers partitioned the data into several sets based on some function of the
plaintext and potentially some guessed key bits, or even were able to potentially improve
the probability of differential characteristics or the bias of linear approximations based on
partition of the unknown keys to several sets (without knowing in advance to which set
the unknown key belongs). In [BC14] Biham and Carmeli used a partition on data gained
during the analysis. In terms of the particular rounds where the partition is computed,
they took the plaintexts and partially encrypted them by two rounds under guessed key
bits in order to get the bit by which they partitioned. Ben Aroya and Biham [BB93]
showed that the probability of differential characteristics may depend on unknown key
bits and used this fact to improve attacks. Biham and Shamir [BS93, Section 4.4.5, Table
4.8] described a similar case.

In addition to cryptanalytic extensions, some papers suggested algorithmic improve-
ments that make the analysis more efficient. The most important one of this kind (which
is highly useful for our results) is [CSQ07], which shows how to optimize the counting
scheme and key recovery in linear attacks using FFT.

1.4 Our Results
In this paper, we develop an extension of linear cryptanalysis that conditions linear
approximations on other linear approximations. Under such conditions, the bias of some
linear approximations may increase or decrease. We call such a bias a conditional bias.

We show that our new extension can reduce the time complexity of the attack against
the Data Encryption Standard further below any previously known attack. We use
conditions to discard some of the data (or skip computing based on some data depending
on partial encryption or decryption during our computation), so the bias of the remaining
data increases or decreases. Conditions can be defined by any observable information
available: plaintext bits, ciphertext bits, partially encrypted or decrypted data, and any
formulae on them. Examples for conditions include 1) the XOR of the outputs of the F
function in all odd rounds (or all even rounds), which are computable from the plaintexts
and ciphertexts, 2) inputs of the F function in the first and last rounds, or 3) validity of
other linear approximations. Conditions may be by a single parity bit of the observable
information, or by several, including by a distribution of data consisting of several bits, or
selections of several cases from such a distribution.

Using this extension we succeed to improve the bias of many linear approximations,
including of 13-round, 14-round and 16-round linear approximations. For applying the
attack against the full 16-round DES we use two conditional linear approximations and an
improved algorithm of analysis. This results with the best current attack against DES,
with complexity 241.9 known plaintexts and time of analysis. See Table 1 and Table 2
for comparison of our results with previously published attacks. Table 1 considers the
standard model where the time of analysis is smaller or equal to the time of generating the
known plaintexts. Table 2 assumes a model with a larger time of analysis, which we fixed
at 250, and optimizes the number of known plaintexts to even lower numbers. This latter
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Table 1: Complexity of Attacks Against DES: Time of Analysis ≤ # Known Plaintexts

Attack Complexity Success Attack
Data Time Prob. Scenario

Differential Cryptanalysis [BS93] 247.00 237.00 58% Chosen Plaintext
Linear Cryptanalysis [Mat94] 243.00 243.00 85% Known Plaintext
Linear Cryptanalysis [Mat94, Jun01] 243.00 239.00 50% Known Plaintext
Improved Davies’ Attack [BB94] 250.00 250.00 51% Known Plaintext
Statistical Cryptanalysis [Vau96] 242.93 242.86 ?∗1 Known Plaintext
Quadratic Relations [SK98] 242.55 242.55 84%∗2 Known Plaintext
Multiple Linear Cryptanalysis [BV17] 242.78 238.86 85% Known Plaintext
Conditional Linear Cryptanalysis 243.00 238.00 100% Known Plaintext
(this paper)∗3 242.00 242.00 90%∗4 Known Plaintext

241.90 241.90 85% Known Plaintext
∗1 The success rate is not mentioned in the paper.
∗2 Interpolated from Table 2 of [SK98].
∗3 Each success probability is based on several thousands of runs of an implementation

of our attack (based on 8-round reductions).
∗4 Also verified experimentally on the full DES.

Table 2: Complexity of Attacks Against DES: Time of Analysis ≤ 250

Attack Complexity Success Attack
Data Time Prob. Scenario

Linear Cryptanalysis [Mat94] 238.00 250.00 10% Known Plaintext
Statistical Cryptanalysis [Vau96] 242.00 248.00 ?∗1 Known Plaintext
CP Linear Cryptanalysis [KM00] 242.00 244.00 86%∗2 Chosen Plaintext
Multiple Linear Cryptanalysis [BCQ04] 241.00∗3 243.00 ?∗1 Known Plaintext
Multiple Linear Cryptanalysis [BV17] 241.00 249.76 85% Known Plaintext
Conditional Linear Cryptanalysis 242.00 250.00 100%∗5 Known Plaintext
(this paper)∗4 241.00 250.00 92% Known Plaintext

240.00 250.00 64% Known Plaintext
239.00 250.00 36%∗5 Known Plaintext
238.00 250.00 17% Known Plaintext
237.00 250.00 12%∗6 Known Plaintext

∗1 The success rate is not mentioned in the paper.
∗2 242 time complexity to find 12 key bits as in [KM00], and then finding the rest of the

key in 244 time complexity.
∗3 Conjectured in [BCQ04].
∗4 Each success probability is based on several thousands of runs of an implementation

of our attack (based on 8-round reductions).
∗5 Also verified experimentally on the full DES.
∗6 The time complexity per found key is about 253.
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model is addressing the fact that the known plaintext generation phase on the victim’s
machine is practically more difficult than a computation of the same complexity on the
attacker’s own machines. It is therefore, that our attack is still attractive for finding DES
keys even with as low as 237 known plaintexts. We verified our results experimentally with
our test programs.

We use the FFT method [CSQ07] in our attack to speed-up computations, and thus
for being able to increase the number of guessed key bits during the attack. We extend
the FFT method, and duplicate plaintext and ciphertext bits that are XORed with two
different key bits during encryption. In addition, our extension allows us to guess key
bits in the second round, in addition to the first and last rounds, although these bits are
non-linear in the plaintext and the ciphertext. We also find it necessary to introduce new
“virtual” key bits to the cipher to allow us to represent the condition of the approximation
with the FFT representation.

We also discuss the applicability of the conditioning technique to differential cryptanal-
ysis, and how conditional approximations can be constructed. In an appendix we introduce
a new kind of approximations that contain intermediate bits in the parity subsets, to
which we call scattered approximations, and a particularly interesting scattered conditional
approximations in which a short approximation is conditioned on a longer containing
approximation. We discuss the application of scattered approximations for constructing
new approximations and for attacks.

1.5 Structure of the Paper

This paper is organized as follows: Section 2 introduces the notion of conditional linear
approximations and conditional biases, introduces how conditional linear attacks are
structured, and introduces the notations used throughout this paper. Section 3 presents
examples of conditional linear approximations of round-reduced DES, and some simple
attacks. Section 4 describes our full attack on 16-round DES as well as our computer
implementation, practical experiments, and success rates. Section 5 discusses strategies for
finding good conditional linear approximations. Section 6 discusses the applications of our
ideas to differential cryptanalysis. Section 7 discuss the relation between conditional linear
cryptanalysis, linear cryptanalysis with multiple approximations, and multidimensional
linear cryptanalysis. Finally, Section 8 summarizes this paper. Appendix A presents
scattered approximations and discuss their applications. The proof of the conditional
biases piling up lemma is given in Appendix B.

2 Introduction to Conditional Linear Cryptanalysis of Feis-
tel Ciphers

In this section we introduce conditional linear cryptanalysis, and the related notions of
conditional linear approximations and conditional biases. We also describe the most useful
linear approximations, used throughout this paper to exemplify our methods. But note
that we do not describe here the most general kind of conditional linear approximations,
and indeed a different kind of conditional linear approximations is described in Section A.1.
In this section we show that the bias of certain linear approximations may grow (or reduce)
depending on some XOR bits whose values we know for certain. It is, therefore, advanta-
geous to take these extended linear approximations into consideration when designing a
linear attack.
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Figure 3: The XOR of the Odd Rounds in DES Reduced to Four Rounds, And its Equality
to PL ⊕ CR

2.1 The Most Useful Conditional Linear Approximations
We observe that in Feistel ciphers [MvOV01, Definition 7.81] we can compute various
linear combinations of internal bits directly from the plaintext and ciphertext by applying
the XOR operation on subsets of bits of the plaintext and the ciphertext. Notice that such
a subset may be viewed as another linear approximation. Our main observation is that the
bias of a linear approximation may be dependent on another linear approximation (e.g.,
computed by these XOR bits). In the case of Feistel ciphers we found a specific type of
conditions that is highly based on their specific structure. In particular, we refer to bits
that are the XOR of the outputs of the F function of the odd rounds (or similarly of the
even rounds). Figure 3 outlines the XOR of the odd rounds in DES reduced to four rounds,
and its equality to the XOR of the plaintext and ciphertext halves, i.e., PL⊕CR = Y 1⊕Y 3.
It is important to emphasize that this information on the XOR values is not probabilistic,
unlike the situation in general linear approximations, i.e., these XOR values are certainly
correct. We can consider any one of the XOR bits in PL ⊕ CR as a linear approximation.
Such XOR bits, when viewed as linear approximations, typically have bias 0, or close to 0,
but they are very useful as conditions to other approximations.

We start with an example of such a linear dependency with a single active S box.
Consider the S box S5 of DES. The best linear approximation of S5: 10x → Fx (where
10x and Fx are the masks of the subsets of bits in the input and output of S5) is outlined
in Figure 4. We denote this linear approximation by λ1. It approximates the second bit
of input to the XOR of the four output bits. The bias of this linear approximation is
−20/64 = 12/64− 1/2, as in 12 cases of the 64 possible inputs the results are the same,
while in 52 they are different.

We observe the following important and unexpected observation: only one of the 12
“same” cases satisfies LSB=1, while the other 11 satisfy LSB=0. Consider only encryptions
in which the least significant output bit of the S box is 1. In this case we use only about
half of the data, i.e., the data in which the LSB is 1. In this half of the data the bias grows
from −20/64 to −15/32 = −30/64 (this bias represents a single case with parity 0, and 31
with parity 1), while the bias of the rest of the data (the discarded data whose LSB is 0)
reduces to −5/32 = −10/64.

We explain our observation using Figure 5 that presents a scan from Adi Shamir’s
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Figure 4: The Best Single-Round Linear Approximation of DES with Bias −20/64 (λ1).
The subsets of bits participating in the parities are denoted as bit masks.

Figure 5: The 12 vs. 52 in S5 — Scan from Adi Shamir’s CRYPTO’85 Paper

CRYPTO’85 paper [Sha85] that presented the correlation between the second input bit
and the parity of the output bits for the first time. On the left side of the vertical line
appear all the outputs whose second bit of input is 0, and on the right side of the line all
the outputs whose second bit of input is 1. Shamir circled the values with an even parity
of the four output bits. Therefore, in the left side he circled the outputs which satisfy our
conditional parity approximation, and in the right side he circled the outputs which do
not satisfy our conditional parity approximation. Notice that there are 32 outputs with
LSB 1. As we can see, in the left side all the odd numbers (outputs with LSB 1) are not
circled, and in the right side all the odd numbers, except one, are circled. This means
that in case the LSB is 1, only one out of the 32 cases satisfies the parity approximation.
Table 3 shows the effect of this condition on the LSB of the output of S5.

When applying this observation to linear approximations with more than one round,
we cannot condition on an output bit of S5 in a single round, because we cannot know
such a value. Instead, we condition the approximation on the XOR of the LSB of the
output of S5 in all the odd rounds (or similarly even rounds). We can gain increased
biases even in such a case. A detailed example will be given. As we show later, the bias
may grow by a factor of about two (or even more) in some cases. Table 4 presents the
biases and conditional biases of various conditional linear approximations that we discuss
in this paper, along with the factor of improvement.

Table 3: Condition on the LSB of the Four Output Bits of S5

Condition λ1 holds λ1 fails Bias
none (not conditioned) 12 52 − 20

64

LSB=0 11 21 − 5
32 = − 10

64

LSB=1 1 31 − 15
32 = − 30

64
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Table 4: Comparisons Between the Bias of Linear Approximations and Conditional Linear
Approximations

Number of Rounds Approximation Bias Conditional Bias Factor
1 λ1 (Figure 4) –2−1.67 –2−1.09 1.5
4 λ2 (Figure 7) 2−7.35 2−6.35 2
8 λ3 (Figure 8) 2−13.71 2−12.71 2
13 λ4 (Figure 9) 2−20.06 2−19.06 2
14 λ5 (Figure 10) –2−20.75 –2−20.16 1.54
14 λ6 (Figure 10) –2−21.48 –2−20.26 2.28
2 λ7 (Figure 11) 0 2−5.50 ∞

2.2 A General Description of the Attack

Suppose for example that a regular linear attack that uses some linear approximation
with bias ε requires about n known plaintexts, and suppose that a conditional linear
approximation in which this linear approximation is conditioned on another has a higher
bias ε∗. Lets also assume that ε∗ = 2ε. We claim that our new version of the attack
requires n/2 known plaintexts. The attack starts by discarding about half of the data that
fails to satisfy the condition, leaving only the encryptions that satisfy the condition. We
then apply the original attack on the remainder of the data.

This smaller number of known plaintexts suffices, as given n/2 known plaintexts, the
attack discards about half of them, and remains with about n/4 plaintexts. Since attacks
with twice the bias require about a quarter of the known plaintexts, these n/4 plaintexts
suffice to find the key using the original attack algorithm. In general, when ε∗ >

√
2ε, the

gain is expected to be by a factor of about (ε∗/ε)2/2.

2.3 Notations

Throughout this paper we omit the initial permutation IP and the final permutation
IP−1, and use the following notations:

PL is the 32 leftmost bits of the plaintext.
PR is the 32 rightmost bits of the plaintext.
CL is the 32 leftmost bits of the ciphertext.
CR is the 32 rightmost bits of the ciphertext.
Y i is the 32 output bits of the F function in the ith round (1 ≤ i ≤ 16).
Xj is the jth bit of X, for any variable X (1 ≤ j ≤ |X|, starting from the left of X).

Notice that under this notations:

PL ⊕ CR =
⊕

k is odd

Y k

PR ⊕ CL =
⊕

k is even

Y k. (1)

Given an r-round linear approximation λ, we can treat λ as r concatenated one-round
approximations:
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λi is the approximation of round i.
Ii ∈ {0, 1}. Ii = 0 indicates that round i satisfies the parity

approximation of λi.
λi,j is the (j − i+ 1)-round approximation derived from λ from the ith

round to the jth round.
λodd is an extended approximation composed of all the odd rounds of all

λi with odd i’s.
λeven is an extended approximation composed of all the even rounds of all

λi with even i’s.
1
2 + ε(λodd) is the probability of λodd, i.e., the probability that

⊕
k is odd I

k = 0.
ε(λodd) is the bias of λodd.
1
2 + ε(λeven) is the probability of λeven, i.e., the probability that

⊕
k is even I

k = 0.
ε(λeven) is the bias of λeven.

Given an iterative linear approximation λ:

λ⊗r is the iteration of λ to r rounds.

Notice that although λodd and λeven are approximations of non-consecutive rounds
(i.e., only odd or only even rounds), still the computations of their biases follow the regular
computation of biases in linear cryptanalysis, e.g., piling up lemma. It is therefore that
“concatenation” of λodd and λeven results with the original λ, whose bias satisfies the usual
formula ε(λ) = 2ε(λodd)ε(λeven).

As mentioned earlier, we expect to be able to improve the bias ε(λodd) of λodd (or the
bias ε(λeven) of λeven) by conditioning on other linear approximations, in which case we
also improve the bias of the full λ under the same conditions.

For an r-round linear approximation which has at most one active S box in each round:1

yλ
i is the four output bits of the active S box in the i-th round.

δλ,odd
∆=

⊕
k is odd y

λk .
δλ,even

∆=
⊕

k is even y
λk .

We observe that in a linear approximation in which all the odd rounds have the same
active S box, the value of δλ,odd is known given the plaintext and the ciphertext.

For any linear approximation λ in which every odd round has the same active S box,
and any V ∈ {0, 1}4:

1
2 + ε(λodd|V ) is the conditional probability that

⊕
k is odd I

k = 0, given δλ,odd = V .
ε(λodd|V ) is the conditional bias of λodd, given δλ,odd = V .

We stress that we use the bit numbering of DES as in the standard [Nat77].2

2.4 Conditional Biases Piling Up Lemma
Matsui showed that by concatenating a linear approximation with bias ε1 with a linear
approximation with bias ε2, the bias of the concatenated approximation is ε = 2ε1ε2. A
similar, but more complex piling up lemma is available also in our case. Let X and Y be
binary random variables.

1For simplicity of the discussion and notations, throughout this paper we assume that we have at most
one active S box in each round. This assumption is correct for the most useful linear approximations.
Whenever we discuss approximations with two or more active S boxes in a round, it will clearly be deduced
from the context.

2Unlike some other papers, e.g., [Mat94] that invented their own numbering system.
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ε(X) is the bias of X, i.e.: ε(X) = Pr(X = 0)− 1
2 ,

ε(X|Y = t) is the conditional bias of X under the event that Y = t,
i.e.: ε(X|Y = t) = Pr(X = 0|Y = t)− 1

2 .

Let X1, X2, Y1, Y2 be binary random variables such that X1 and Y1 are independent of
X2 and Y2. Denote:

p1 = Pr(Y1 = 0)
p2 = Pr(Y2 = 0)
α1 = ε(X1|Y1 = 0)
α2 = ε(X2|Y2 = 0)
β1 = ε(X1|Y1 = 1)
β2 = ε(X2|Y2 = 1)

Lemma 1.

ε(X1 ⊕X2|Y1 ⊕ Y2 = 0) = 2p1p2α1α2 + 2(1− p1)(1− p2)β1β2

p1p2 + (1− p1)(1− p2) .

Lemma 2.

ε(X1 ⊕X2|Y1 ⊕ Y2 = 1) = 2(1− p1)p2β1α2 + 2p1(1− p2)α1β2

(1− p1)p2 + p1(1− p2) .

Conclusion 1. If both α1 = α2 = 0 or both β1 = β2 = 0 then

ε(X1 ⊕X2|Y1 ⊕ Y2 = 1) = 0.

The proofs are given in Appendix B.

2.5 Computing Conditional Biases in DES
We can calculate conditional biases of conditional approximation, assuming that the DES
subkeys are independent, and that this bias is a good approximation for the bias of a
random DES key processed through the DES key schedule.

For any linear approximation λ in which every odd round has the same active S box,
the calculation is as follows: Given an r-round linear approximation λ, and V ∈ {0, 1}4,
we can calculate the value of ε(λodd|V ) recursively. For r ≤ 2 the calculation is trivial.
For r > 2, we can treat λ as two concatenated approximations, λ1,2 and λ3,r, such that
λ1,2 consists of the first two rounds of λ, and λ3,r consists of the last r − 2 rounds of λ.
Given V ∈ {0, 1}4 we can calculate the value of ε(λodd|V ) in terms of λ1,2 and λ3,r. Notice
that for any V ∈ {0, 1}4, there exist 24 = 16 pairs of vectors X,Y ∈ {0, 1}4, such that
X ⊕ Y = V . Therefore,

ε(λodd|V ) = 1
16

∑
X|X∈{0,1}4

2ε(λ1,2,odd|X)ε(λ3,r,odd|Y ). (2)

3 Examples of Conditional Linear Approximations and Sim-
ple Attacks

In this section we present examples for conditional linear approximations, and discuss
some of the attacks based on them.
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Table 5: The Biases of Single-Round Conditional Linear Approximation

δλ1,odd ε(λ1|δλ1,odd) δλ1,odd ε(λ1|δλ1,odd)
0000 –0.5 1000 0
0001 –0.5 1001 –0.5
0010 –0.5 1010 0
0011 –0.5 1011 –0.5
0100 –0.25 1100 0.25
0101 –0.5 1101 –0.25
0110 –0.25 1110 0
0111 –0.5 1111 –0.5

3.1 A Single-Round Conditional Linear Approximation
Consider the best one-round linear approximation λ1 from Figure 4. It has one active S
box, S5: 10x → Fx. Every S box has four output bits, therefore we can condition ε(λ1) on
each of the 16 possible values of the four output bits of S5. In Table 5 we show the bias
of λ1 conditioned on each of these 16 possible values. We can filter the data according
to any subset of the 16 possible values of the output of S5 in order to increase the bias.
Notice that conditions can be made on more than one bit, or several multi-bit values, e.g.,
discarding all data with outputs in the set {1000, 1010, 1110} or {0100, 0110, 1000, 1010,
1100, 1101, 1110}.

3.1.1 Algorithm for Simple Attack

Linear cryptanalysis of DES reduced to three rounds is based on a single-round linear
approximation. We set λ1 in the second round, and the analysis guesses key bits related to
the first and third rounds. Given a condition on the output of S5 in λ1, our attack starts
by discarding the data that fails to satisfy the condition, leaving only the data that do
satisfy the condition. We then apply the original attack on the remaining data.

We apply the following algorithm:

1. Given n known plaintexts and their corresponding ciphertexts Ci = DESK(Pi),
where K is the unknown secret key.

2. For each plaintext Pi and the corresponding ciphertext Ci:

(a) Compute the value v of the four output bits of S5 in the second round using Pi
and Ci.

(b) If v fails to satisfy the condition, discard Pi and Ci.

3. Apply the original attack on the remaining data.

Notice that in Step 2a, the output of the F function in Round 2 is PiR ⊕ CiR, and v
consists from bits of this value.

3.1.2 Attack Based on Several Multi-Bit Conditions

In Table 5 we can see that 9 out of the 16 conditional biases are −1/2. Therefore, we can
condition λ1 on these 9 values in order to filter the data. Due to this filtering, we discard
about 7/16 of the data in which the output of S5 is in {0100, 0110, 1000, 1010, 1100, 1101,
1110}. Then, the bias of the remaining data increases from −20/64 to −1/2 by a factor of
about 1.6. Therefore, the resultant attack requires a total of about 16

9 · n/1.6
2 ≈ 0.695n

known plaintexts, where n is the number of known plaintexts required by the original
attack. The detailed attack follows the steps of the algorithm of Section 3.1.1.



Eli Biham and Stav Perle 227

Figure 6: λ1 Conditioned on the LSB of the Four Output Bits of S5 (λ1|θ1)

Figure 7: Four Rounds of Matsui’s Linear Approximation (λ2)

3.1.3 Attack Based on Single-Bit Conditions

In half of the data (in which the LSB is 1) the bias grows from −20/64 to −15/32 = −30/64,
and in the other half (in which the LSB is 0) the bias reduces to −5/32 = −10/64.
Therefore, we can condition λ1 on the LSB in order to increase the bias. This condition
can be presented as a linear approximation S5: 0x → 1x (denoted by θ1) with bias 0.
Figure 6 presents λ1 conditioned on the LSB of the output of S5, where the conditioned
approximation λ1 is in black on top of the condition θ1 that is marked in gray. The
corresponding attack starts by discarding about half of the data, and using only the
data in which the LSB is 1. In this half of the data the bias grows from −20/64 to
−15/32 = −30/64. The detailed attack follows the steps of the algorithm of Section 3.1.1.

3.2 A Four-Round Conditional Linear Approximation
Consider four consecutive rounds of Matsui’s linear approximation as outlined in Figure 7,
and denote this four-round linear approximation by λ2. This linear approximation has
three active S boxes: S5 in the first and third rounds, and S1 in the second round. We
notice that in λ2 every odd round has the same active S box, and therefore we can calculate
the value of δλ2,odd directly from the plaintext and ciphertext. We use this XOR values to
filter the data. In Table 6 we show ε(λodd2 ) for each of the 16 possible values of δλ2,odd



228 Conditional Linear Cryptanalysis

Table 6: Conditioning ε(λ2
odd) on Each of the 16 Values of δλ2,odd

δλ2,odd ε(λodd2 |δλ2,odd) δλ2,odd ε(λodd2 |δλ2,odd)
0000 –0.14 1000 –0.23
0001 0 1001 0
0010 –0.14 1010 –0.23
0011 0 1011 0
0100 –0.15 1100 –0.25
0101 0 1101 0
0110 –0.15 1110 –0.25
0111 0 1111 0

(calculated by Equation 2). We see in the table that 8 of the 16 entries have zero biases,
and that the other 8 are distributed in the range −0.14 to −0.25. The condition to choose
between these two cases is by the LSB of the output bits of S5, and the average bias when
the condition holds is −0.1925. Alternatively, it is possible to consider only the 4 values
with the highest biases. In this case the condition is by two bits (the LSB and the MSB of
the output), and the average bias is −0.24. Though the bias increases in this latter case
compared to the former one, in order to get this bias we need to discard more data, which
leaves us with half of the data that remains in the former case.

3.2.1 Attack on Four Rounds

For applying Matsui’s Algorithm 1 with our observation, we discard about half of the
known plaintexts, and use only the plaintexts with δλ2,odd

4 = 0. Using only these plaintexts,
the bias ε(λodd2 ) is increased by a factor of about two. We request the same type of data
as Matsui would for such a 4-round attack, and discard encryptions which do not follow
our relation. We then apply the original algorithm of Matsui on the remaining data. Due
to our filtering, the bias ε increases by a factor of about two. As the number of required
data is quadratic in ε−1, it reduces the number of known plaintexts by a factor of about
four. On the other hand, since we discard about half of the data, we need twice this
reduced number of known plaintexts. I.e., the resultant attack requires a total of about
half the known plaintexts than the original attack, discards about half of them, and uses
the remaining quarter to find the key.

3.3 An Eight-Round Conditional Linear Approximation
Consider eight consecutive rounds of Matsui’s iterative linear approximation as outlined
in Figure 8. We denote this linear approximation by λ3, where λ1,4

3 equals to λ2 (the
four-round approximation described in Section 3.2). The odd rounds of λ5,8

3 are the same
odd rounds as of λ1,4

3 (in a different order), therefore Table 6 also shows the calculation
of ε(λ5,8

3
odd) for each of the 16 possible values of δλ

5,8
3 ,odd. In about half of the cases,

δ
λ1,4

3 ,odd
4 = 0, and in the other half δλ

1,4
3 ,odd

4 = 1. Similarly, in about half of the cases
δ
λ5,8

3 ,odd
4 = 0, and in the other half δλ

5,8
3 ,odd

4 = 1. Thus, we have four cases for the possible
values of δλ

1,4
3 ,odd

4 and δλ
5,8
3 ,odd

4 , as outlined in Table 7. We can learn from the table
that even in this case using only the half of the data in which the full 8-round condition
δλ3,odd
4 = 0 holds (i.e., the main diagonal in the table) the bias ε(λodd3 |δ

λ3,odd
4 = 0) is

increased by a factor of about two.
Alternatively, can also calculate ε(λodd3 |δ

λ3,odd
4 = 1) = ε(λ1,4

3
odd
⊕ λ5,8

3
odd
|δλ

1,4
3 ,odd

4 ⊕
δ
λ5,8

3 ,odd
4 = 1) by substituting the “shorter” biases and probabilities in the conditional biases
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Figure 8: Matsui’s Eight-Round Iterative Linear Approximation (λ3)

Table 7: Four Cases for the Possible Values of δλ
1,4
3 ,odd

4 and δλ
5,8
3 ,odd

4

δ
λ1,4

3 ,odd
4 = 0 δ

λ1,4
3 ,odd

4 = 1

δ
λ5,8

3 ,odd
4 = 0 δλ3,odd

4 = 0 δλ3,odd
4 = 1

ε(λ3) > 0 ε(λ3) = 0

δ
λ5,8

3 ,odd
4 = 1 δλ3,odd

4 = 1 δλ3,odd
4 = 0

ε(λ3) = 0 ε(λ3) = 0
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Table 8: The Bias of λ4 Conditioned on δλ4,even
4

Condition ε(λ4)
none 2−20.06

δλ4,even
4 = 0 2−19.06

δλ4,even
4 = 1 0

Table 9: Conditioning ε(λ5
odd) on Each of the 16 Values of δλ5,odd

δλ5,odd ε(λodd5 |δλ5,odd) δλ5,odd ε(λodd5 |δλ5,odd)
0000 0.0011 1000 0.0011
0001 0.0034 1001 0.0034
0010 0.0011 1010 0.0011
0011 0.0034 1011 0.0034
0100 0.0011 1100 0.0011
0101 0.0034 1101 0.0034
0110 0.0011 1110 0.0011
0111 0.0034 1111 0.0034

piling up lemma. As β1 = ε(λ1,4
3

odd
|δλ

1,4
3 ,odd

4 = 1) = β2 = ε(λ5,8
3

odd
|δλ

5,8
3 ,odd

4 = 1) = 0 then
by Conclusion 1 we get ε(λodd3 |δ

λ3,odd
4 = 1) = 0.

3.4 A 13-Round Conditional Linear Approximation
Consider 13 consecutive rounds of Matsui’s iterative linear approximation as outlined in
Figure 9, and denote this 13-round linear approximation by λ4. Table 8 shows the
bias of λ4 conditioned on δλ4,even

4 . Using only the data in which δλ4,even
4 = 0 the bias is

increased by a factor of about two, while the bias of the data in which δλ4,even
4 = 1 reduces

to 0. A second approximation with the same condition and biases is based on λ4 while
flipping its order of rounds from the last to the first. We call it flipped λ4. We later use
both of these 13-round conditional linear approximations for our main attack on 16-round
DES.

3.5 A 14-Round Conditional Linear Approximations
We present here two 14-round linear approximations and show their transformation into
conditional linear approximations. The first presented linear approximation, denoted by
λ5, is the best 14-round linear approximation, same as Matsui uses in his attacks on the full
16-round DES. The second linear approximation, denoted by λ6, differs from λ5 in the first
round. The bias of λ6 is more than twice worse than the bias of λ5. However, as we will
soon see, it is attractive for our attacks because it has a higher increase in the bias when
conditioning it, so it’s conditional bias is very close to the conditional bias of λ5. Both
linear approximations are shown together in Figure 10 due to their similarity. The first
round of λ5 is demonstrated on the upper left, and the first round of λ6 is demonstrated
on the upper right. The rest of the rounds are the same in both linear approximations.

In Table 9 we calculate ε(λodd5 |δλ5,odd) conditioned on each of the 16 possible values
of δλ5,odd, and in Table 10 we calculate a similar table for ε(λ5|δλ5,odd), which is the
bias of the full λ5 conditioned on each of the 16 possible values of δλ5,odd.

Similarly, in Table 11 we calculate ε(λodd6 |δλ6,odd) conditioned on each of the 16
possible values of δλ6,odd, and in Table 12 we calculate a similar table for ε(λ6|δλ6,odd),
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Figure 9: 13 Rounds of Matsui’s Linear Approximation (λ4)
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Figure 10: λ5 and λ6. The Figure shows 6 rounds of 14 where the broken lines represent
an inclusion of additional 8 rounds of the iterative approximation λ3 of Figure 8. The first
round of λ5 is demonstrated on the upper left, and the first round of λ6 is demonstrated
on the upper right. The rest of the rounds are the same in both.

Table 10: Conditioning ε(λ5) on Each of the 16 Possible Values of δλ5,odd

δλ5,odd ε(λ5|δλ5,odd) δλ5,odd ε(λ5|δλ5,odd)
0000 –2−21.77 1000 –2−21.71

0001 –2−20.16 1001 –2−20.16

0010 –2−21.77 1010 –2−21.71

0011 –2−20.16 1011 –2−20.16

0100 –2−21.77 1100 –2−21.77

0101 –2−20.16 1101 –2−20.16

0110 –2−21.77 1110 –2−21.71

0111 –2−20.16 1111 –2−20.16
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Table 11: Conditioning ε(λ6
odd) on Each of the 16 Values of δλ6,odd

δλ6,odd ε(λodd6 |δλ6,odd) δλ6,odd ε(λodd6 |δλ6,odd)
0000 0.0032 1000 0.0032
0001 –0.0004 1001 –0.0004
0010 0.0032 1010 0.0032
0011 –0.0004 1011 –0.0004
0100 0.0032 1100 0.0032
0101 –0.0004 1101 –0.0004
0110 0.0032 1110 0.0032
0111 –0.0004 1111 –0.0004

Table 12: Conditioning ε(λ6) on Each of the 16 Possible Values of δλ6,odd

δλ6,odd ε(λ6|δλ6,odd) δλ6,odd ε(λ6|δλ6,odd)
0000 –2−20.26 0100 –2−20.26

1000 2−23.13 1100 2−23.00

0001 –2−20.26 0101 –2−20.26

1001 2−23.13 1101 2−23.00

0010 –2−20.26 0110 –2−20.26

1010 2−23.13 1110 2−23.00

0011 –2−20.26 0111 –2−20.26

1011 2−23.13 1111 2−23.00

the full λ6 conditioned on each of the 16 possible values of δλ6,odd.
We can learn from the tables that in case we use only encryptions in which δλ6,odd

4 = 0,
the absolute bias |ε(λodd6 )| of λ6 grows from 0.0014 to 0.0032 by a factor of about 2.28.
Similarly, in case we use only encryptions in which δλ5,odd

4 = 1, the absolute bias |ε(λodd5 )|
of λ5 grows from 0.0022 to 0.0034 by a factor of about 1.54.

Table 13 summarizes the biases of λ5 and λ6, as well as their conditional biases
conditioned on each possible value of δλ5,odd

4 .

3.5.1 Attack Using a Single Conditional Linear Approximation

In order to attack the full 16-round DES, Matsui uses λ5, which is the best 14-round
approximation with probability 1

2 − 2−20.75. We use it’s corresponding conditional linear
approximation with probability 1

2 − 2−20.16. Our attack is very similar to Matsui’s original
attack on this cipher. In order to apply Matsui’s Algorithm 2 with our conditional linear
approximation, we discard about half of the known plaintexts, and use only the plaintexts
with δλ5,odd

4 = 1. Using only these plaintexts the bias ε(λodd5 ) is increased by a factor of
about −2−20.16

−2−20.75 ≈ 1.505. As the number of required data is quadratic in ε−1, it reduces

Table 13: The Bias of λ5 and λ6 Conditioned on δλ5,odd
4

Condition ε(λ5) ε(λ6)
none –2−20.75 –2−21.48

δλ5,odd
4 = 0 –2−21.74 –2−20.26

δλ5,odd
4 = 1 –2−20.16 2−23.06
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the number of known plaintexts by a factor of about 1.5052 ≈ 2.266. On the other hand,
since we discard about half of the data, we need two times this reduced number of known
plaintexts. Therefore, the resultant attack requires a total of about 2n/2.266 = 0.88n
known plaintexts, where n is the number of known plaintexts required by the original
attack. We conclude that even using only this single conditional linear approximation, we
already save 12% over Matsui’s attack.

To be more precise, in this attack we follow all the details of Matsui’s attack. For
example, Matsui uses his best approximation along with it’s flipped version, and for each
he considers the highest 100 values. Our improved attack follows his steps using our smaller
amount of filtered data, instead of using all the data.

3.5.2 Attack Using Both Conditional Linear Approximations

Using both conditional linear approximations (along with both flipped versions) we can
save even more. One of them, λ5, suggests 12 key bits, combining 6 key bits related to
S5 in the last round and 6 key bits related to S1 in the first round. The other linear
approximation, λ6, suggests the same 6 key bits in the last round, but 12 key bits in the
first round, which related to S3 and S4. In principle, we can recover 13 bits of the key of
the full 16-round DES using λ5 by setting the 14-round linear approximation from Round
2 to Round 15, if we have sufficient amount of known plaintexts. Similarly, in principle we
can recover 19 bits of the key of the full 16-rounds DES using λ6 by setting the 14-round
linear approximation from Round 2 to Round 15 (6 of these 19 bits are shared with λ5).
The flipped versions suggest a similar number of additional key bits, which add a total of
14 key bits over the ones suggested by the original non-flipped approximations. Due to the
additional conditional linear approximations, this attack requires fewer known plaintexts
and a shorter time of analysis than the previous one. We skip the full details of this attack,
as we will later elaborate on a more efficient attack on the same cipher.

3.5.3 Analysis

Notice that if we only had 0.88 · 243 known plaintexts, as in Section 3.5.1, the right value
of the 12 corresponding key bits should have been included in the best 100 values.3 But as
we are interested in fewer known plaintexts, it is not ensured that the right value of the
key bits is included in the top 100 values. Therefore, a more sophisticated analysis that
involves all four linear approximations together is required. Notice that the key bits that
corresponds to S1, S3 and S4 are all part of the C register of the key schedule [Nat77] and
include together only 26 bits, so together they contain duplication that can be checked for
redundancy. Along with the 12 bits corresponding to S5 of register D, we get a total of 38
key bits. In our algorithm we test all these 238 cases for validity against the 26 + 12 known
bits. This step can be performed efficiently, but notice that even inefficiently it is efficient
enough for our purposes. Each of these cases is checked against the known duplications
of these 10 bits. We take the ones with the highest product of the biases derived from
the four conditional linear approximations, and test each by exhaustively searching for
the remaining 14 = 56− 38− 4 key bits (where the 4 stands for the 4 parity bits received
from the four linear approximations). Assuming that the correct 42-bit guess is withing
the 228 highest in the list, the complexity of this step has less then 242. Given 242 known
plaintexts it is still expected that the correct value is well within the above range (as was
also shown in our experiments), so that the complexity of analysis is much less than 242.

3Matsui limited his attack to the 100 best values, as higher numbers would increase his analysis
complexity over 243. Clearly, if he had used more values, and could somehow reduce their time of analysis,
his probability of success would have been increased.
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Figure 11: Two-Round Iterative Linear Approximation (λ7)

3.6 A Zero Bias Approximation Conditioned to Non-Zero Bias
In [Bih94] Biham shows that there exist single-round linear approximations with an empty
input set of the F function, but a non empty output set. These approximations are then
extended to become two-round iterative linear approximations, where the other round
contains the trivial one-round linear approximation with bias 1/2. In these approximations
there are (at least) two active S boxes in the active round, where the parity bit of the
approximation involves bits from the outputs of both S boxes.

In the case of conditional approximations we can present similar two-round linear
approximations with two active S boxes in the active round, but in which the parity
involves bits from the output of only one of the active S boxes. In the example below we
will actually show that only one active bit in the output of the F function is possible.

There is no prior example of any kind of approximations in which there is no active
bit in the output of an active S box. In fact, such approximations (featuring only input
bits without output bits in their approximated subsets) must have bias 0. However, in our
case, we have the extra power to condition on the output bits of both S boxes, and we use
it in a way that increases the bias of the active S box due to the condition. As such, the
condition on the output bits substitutes the active bits in the output.

Such an approximation, to which we call λ7, is outlined in Figure 11. It is a two-round
iterative approximation, with a single mask bit at the output of S1 in the first round, and
no masked bit anywhere else in F . Clearly, its bias is 0.

We observe that when it is conditioned on the parity of the bits masked 9x in the
output of S1 and the bits masked Ex in the output of S2 (a parity of a total of five bits),
the bias changes dramatically. Moreover, this conditional bias depends on the parity of
the four key bits which are mixed with the shared input bits of S1 and S2. This condition
can be presented as a linear approximation (denoted by θ2), as outlined in Figure 12. For
example, when λ7 is conditioned on the parity of the five bits in the output of S1 and S2
being 0, and on the parity of the four key bits being 0, the bias becomes 0.022 ≈ 2−5.50,
and when it is conditioned on the parity of the five bits in the output of S1 and S2 being 1,
and on the parity of the four key bits being 0, the bias becomes −0.025 ≈ −2−5.32.

When iterated, the conditional biases (as computed by the conditional piling up lemma)
remain non zero. They are reported in Table 14. Later in this paper the 8-round
iteration of λ7 (λ⊗8

7 ) is named λ8. Notice that when looking at the masks of the parities
of the inputs and outputs in the active round of λ7, it might look like S2 is not an active
S box because it has no active bits in its output, and there are no active bits at all in the
input of the F function. However, by carefully analyzing the situation we see that two
of its input bits are active. The reason that the input of the F function has no active
input bits is because the two active input bits of S1 share the same bits in the input of
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Figure 12: λ7 Conditioned on θ2 (λ7|θ2)

Table 14: The Conditional Biases of Iterated λ7

Number of Rounds (r) ε(λ⊗r7 ) ε(λ⊗r7 |θ
⊗r
2 = 0) ε(λ⊗r7 |θ

⊗r
2 = 1)

2 λ7 0 2−5.50 –2−5.32

4 0 2−9.83 –2−9.82

8 λ8 0 2−18.66 –2−18.66

16 0 2−36.23 –2−36.23

the F function with those of S2, so the active bits of S1 and of S2 cancel each others’
activity in the input of the F function. As we already explained, on the output side of
S2 there are no active bits because the input is unbalanced due to the condition, which
makes it possible to approximate input bits even without active output bits. Notice that
both ε(λ7|θ2 = 0) and ε(λ7|θ2 = 1) have non-zero biases, so in actual applications we may
prefer to use both partitions of the data (with the condition being 0 and being 1), without
discarding any data.

4 Our Best Conditional Linear Cryptanalysis of the Full
16-Round DES

This section applies our extension on the full 16-round DES. The attack in this section is
based on two 13-round linear approximations: λ4 from Section 3.4 and Figure 9, along
with its flipped version. Each of λ4 and the flipped λ4 provide candidates for 27 key bits
and one additional parity bit. Table 15 lists the 27 key bits provided by λ4 and the
27 key bits provided by the flipped λ4. The underlined key bits in the table mark the 10
common bits provided by both.

The attack assumes that λ4 is set in Rounds 3–15, and the analysis guesses key bits
related to Rounds 1, 2 and 16. Figure 13 outlines this setting.4 In addition, the attack
applies an inverted version of this setting for use with the flipped version of λ4, where
the flipped λ4 is set in Rounds 2–14, and the analysis guesses key bits related to Rounds
1, 15 and 16. This latter setting applies the same search algorithm as the former one,
while exchanging the use of the plaintexts and the ciphertext in the computation. In the
following description, we only describe the algorithm of the former setting with λ4. The

4The 16 rounds are represented by 8, where the broken lines represent an inclusion of additional 8
rounds of the iterative approximation λ3 of Figure 8.
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Table 15: The Key Bits Involved in the Two Conditional Linear Approximations Used in
the Attack (the underlined bits are common to both approximations)

Linear Approx. Subkey S box Key Bits
λ4 K1 S1 10, 51, 34, 60, 49, 17

K1 S3 3, 35, 26, 25, 44, 58
K1 S4 59, 1, 36, 27, 18, 41
K2 S5 14, 20, 29
K16 S5 30, 5, 47, 62, 45, 12
Parity [55, 33, 23, 54, 42, 30, 61, 43, 29]

Flipped λ4 K1 S5 22, 28, 39, 54, 37, 4
K15 S5 38, 13, 53
K16 S1 18, 59, 42, 3, 57, 25
K16 S3 11, 43, 34, 33, 52, 1
K16 S4 2, 9, 44, 35, 26, 49
Parity [4, 49, 39, 7, 50, 46, 14, 59, 45]

Figure 13: Outline of the 16-Round Attack (Using λ4)
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Table 16: Conditioning ε(λ1) on Each of the 8 Values of the 3 Selected Input Bits of S5

000 001 010 011 100 101 110 111
λ1 holds 0 4 4 0 2 0 0 2
λ1 fails 8 4 4 8 6 8 8 6
Bias –0.5 0 0 –0.5 –0.25 –0.5 –0.5 –0.25

reader can easily deduce the latter algorithm from the former by exchanging the roles of
the plaintext and the ciphertext and the order of subkeys in the same algorithm.

The attack algorithm using λ4 applies analysis on the second round based on a special
linear approximation of S5: 10x → Fx (which we called earlier λ1) conditioned on the
LSB of the output and on 3 input bits. In addition, key bits of the first round and last
round are guessed in the standard way. Our complexity is gained by a combination of the
improved bias of the conditional linear approximation, and the best known algorithms for
analysis, including using FFT [CSQ07].

4.1 Our Special Conditional Linear Approximation of Round 2
In this attack we perform a special analysis of the S box S5 in Round 2. The full analysis
that requires the full knowledge of it’s six input bits and guessing six key bits for it as
well as six bits for each of six S boxes in the first round is too inefficient for our attack.
Instead, we consider only three input bits, and keep the other three inconclusive. This
setting allows us to guess fewer key bits in Round 2, and moreover, guess key bits of fewer
S boxes in Round 1, leading to guess of 3 · 6 + 3 = 21 bits instead of 6 · 6 + 6 = 42 bits. On
the other hand, the parity of the output of S5 cannot be directly computed by this setting.

We observe that we can approximate the parity of the four output bits given the values
of these selected three input bits of S5, where in some cases the parity may be completely
known, and in some it may only be statically correlated. The three selected input bits are
the first input bit, the second input bit and the fifth input bit of S5, whose values depend
on the outputs of S1, S3 and S4 in the first round. Table 16 shows the number of times
λ1 holds (or fails) for each value of these three input bits. Notice that the computation of
these values is similar to the computation of linear approximation tables, counting the
number of times the parity is 0 given the exact value of these three bits over the set of all
the eight possibilities of the other three input bits. It is therefore that the notion of biases
is relevant also in this case, and it can be computed for each of these eight input values.
These biases are also given in Table 16.

Together with our condition on the LSB of the output of S5, we get the biases as
listed in Table 17. Notice that the columns of Table 17 correspond to the columns of
Table 16, where the content is divided to the case the where LSB is 0, and to the case
where the LSB is 1. In each column of Table 16 we have a total of 8 counts, and thus
in each column of Table 17 we have a total of 8 counts distributed over the two possible
values of the condition. In most cases 4 are counted for each value (either 0 or 1) of the
condition, while in others it may be distributed as 5 + 3 or 6 + 2. The conditional biases
are then computed over the 4, or over the 5, or 3 (etc.) cases of the corresponding entry.
Notice that 14 out of the 16 conditional biases are ±0.5.

We use these biases by summing biases up in our attack. In cases where the biases
are only ±0.5 this summing is equivalent to counting suggesting plaintexts, as is usually
performed by Algorithm 2, where Algorithm 2 increments the counter for values corre-
sponding to bias +0.5, and does not increments for bias −0.5. In our case we also sum
biases which are between −0.5 and +0.5, thus extending Algorithm 2 with a more general
counting scheme, using floating point counters.
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Table 17: Conditioning ε(λ1) on Each of the 16 Values of the LSB of the Output and the
Three Selected Input Bits of S5

0000 0001 0010 0011 0100 0101 0110 0111
λ1 holds 0 4 3 0 2 0 0 2
λ1 fails 5 0 0 4 2 4 6 0
Bias –0.5 0.5 0.5 –0.5 0 –0.5 –0.5 0.5

1000 1001 1010 1011 1100 1101 1110 1111
λ1 holds 0 0 1 0 0 0 0 0
λ1 fails 3 4 4 4 4 4 2 6
Bias –0.5 –0.5 –0.3 –0.5 –0.5 –0.5 –0.5 –0.5

Table 18: Four Cases for the Possible Values of δλ1,odd
4 and δλ4,even

4

δλ1,odd
4 = 0 δλ1,odd

4 = 1
δλ4,even
4 = 0 condition bit = 0 condition bit = 1

ε(λ4) > 0 ε(λ4) > 0

δλ4,even
4 = 1 condition bit = 1 condition bit = 0

ε(λ4) = 0 ε(λ4) = 0

4.2 The Condition Bit
By guessing the 6 key bits related to S5 in Round 16, and partially decrypting S5, we get
an estimated value for the LSB of the output of S5 in Round 16. From this estimated
value and from the plaintext, we can calculate the estimated value of the XOR of the LSB
of the output of S5 of all the even rounds between Rounds 2–15. We call this value the
condition bit.

Let the single-round approximation λ1 be set in the second round, and let the 13-round
linear approximation λ4 be set in Rounds 3–15. Then δλ1,odd

4 is the LSB of the output of
S5 in the second round, and δλ4,even

4 is the XOR of the LSB of the outputs of S5 of all
the even rounds between Rounds 3–15. Under this notations, the condition bit is equal
to δλ1,odd

4 ⊕ δλ4,even
4 . We have four cases for the possible values of δλ1,odd

4 and δλ4,even
4 ,

as outlined in Table 18. We can learn from the table that only in the case that
the value of δλ1,odd

4 is equal to the value of the condition bit, the bias of λ4 is greater
than 0. Therefore our attack takes into consideration only this case, and forces δλ1,odd

4
in Round 2 to be equal to the condition bit. This technique does not discard half of the
data, and instead use the condition information to calculate the value of δλ1,odd

4 in Round
2 accordingly. This is equivalent to discarding data as otherwise we would have to try the
two possible cases of δλ1,odd

4 in Round 2, each would inherit a value for δλ4,even
4 in Rounds

3–15, and only then we would discard half of these cases, leading to the same remaining
values as in our method.

4.3 A Simplified Version of the Attack
We start by showing a pedagogical (but highly inefficient) simplified version of our attack,
and later we show how to optimize it into an efficient equivalent version that has the exact
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same outputs. We apply a variant of Algorithm 2 as follows:

1. Given n known plaintexts and their corresponding ciphertexts Ci = DESK(Pi),
where K is the unknown secret key.

2. Initialize two arrays of floating point counters by zero:

(a) 227 floating point counters A[k] (0 ≤ k < 227) that correspond to the 227 values
of the 27 key bits deduced from λ4 in Step 3.

(b) 227 floating point counters B[l] (0 ≤ l < 227) that correspond to the 227 values
of the 27 key bits deduced from the flipped λ4 in Step 4.

The exact corresponding bits are listed in Table 15. These counters sum the biases of
Round 2, rather than the usual version where they count the number of suggesting
plaintexts, because in some cases we use fractional counters.

3. For each plaintext Pi and the corresponding ciphertext Ci:

(a) Try all the 227 possible key candidates k (of which 18 bits correspond to the
first round, 6 bits to the last round, and 3 bits to the second round, as listed in
Table 15). For each value of k perform:
i. Partially decrypt S5 in the last round by it’s 6 corresponding key bits.
ii. Partially encrypt S1, S3 and S4 in the first round by their 18 corresponding

key bits.
iii. Compute the value of the 3 input bits entering to S5 in the second round

using the outputs of Step 3(a)ii.
iv. Compute the value of the condition bit c, using Pi, Ci and the output of

Step 3(a)i.
v. According to the value of the 3 input bits and the condition bit, fetch the

conditional bias of the second round from Table 17, and call it b. The sign
of b represents the parity of the 3 input bits and the output bit of Round 2.

vi. Calculate the partial parity p = PiR[3, 8, 14, 25]⊕PiL[17]⊕F1(PiR,K1)[17]⊕
CiL[8, 14, 25]⊕F16(CiR,K16)[8, 14, 25] from Pi and Ci and from the values
computed in Step 3(a)i and Step 3(a)ii.

vii. Add the conditional bias to the counter A[k] by A[k]+ = (−1)p · b.

4. Repeat Step 3 to compute the counters of B[ ] using the flipped version of λ4, while
exchanging the roles of Pi and Ci (and reverse order of the subkeys).

5. Use the counters A[ ] and B[ ] to find the secret unknown key K:

(a) Extract the parity bit for each of the 227 cases deduced from λ4 by the signs of
A[k]. Positive values correspond to parity 0, and negative to parity 1.

(b) Similarly extract the parity bit for each of the 227 cases deduced from the
flipped λ4 by the signs of B[l].

(c) Join A[ ] and B[ ] together by the value of the 10 common bits into an array
of 244 = 227 · 227 · 2−10 entries, each corresponds to a single value of the
44 = 27 + 27− 10 key bits. The value in each entry is the absolute value of the
product of the values in A[ ] and B[ ] that correspond to this entry.

(d) Sort the 244 values in descending order, while keeping the 46 key bits (the 44-bit
index and the 2 parity bits) along with the sorted values.
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(e) For each of the 244 cases in the sorted list try all the 210 options of the
10 = 56− 44− 2 remaining unknown key bits, therefore computing 56-bit trial
keys. For each trial key, perform a trial encryption. If it succeeds, try a second
plaintext, and if it also succeeds, announce that the found key is the unknown
secret key K, and stop.

6. (optional) If all the 244 · 210 trial encryptions failed, perform an exhaustive search of
the 3 · 254 remaining untested keys.

The sums of biases in A[ ] and B[ ] correspond to the counters usually used in Algorithm 2.
The highest the absolute value of the bias, the more probable that the corresponding key
is correct. Since we use two linear approximations, we multiply their biases, and start
trying the values with the highest product of both biases. Each such value is computed
with all the 210 options of the 10 extra bits and trial encryptions are performed on the
resultant full keys. Also, since our (optimized) analysis is relatively cheap, we can afford
trying more keys than earlier attacks did, and use them to improve our success rate.

4.4 Optimization of Steps 2–4
We optimize Steps 2–4 separately from optimizing Step 5. In principle we could apply
any one of these two optimization independently, as in between Step 4 and Step 5 of the
optimized algorithm we get exactly the same values of A[ ] and B[ ] as in the original
algorithm. We use the FFT method [CSQ07] in our attack, which allows us to increase
the number of guessed key bits during the attack without falling into a huge complexity of
analysis.

In addition, we extend the FFT method to guess key bits in the second round in
addition to the first and last rounds, although these bits are non-linear in the plaintext
and the ciphertext, as well as to address condition bits via “virtual” key bits. To handle
the fact that some of the plaintext bits are XORed with two different key bits during the
encryption, we duplicate these plaintext bits. Therefore, we consider 27 effective text bits
of λ4, and 27 effective text bits of the flipped λ4. In order to condition the approximation
on the condition bit, we used a virtual key bit increasing the number of effective key
bits to 28. We also show that we can compact two computations related to two linear
approximations in one FFT computation as long as the circulant matrix is the same, by
placing one in the real part and the other in the imaginary part.

The optimized algorithm creates a new preprocessing Step 0’, and replaces Steps 2–4
by new Steps 2’–4’:

0’. Preprocessing Step: Compute the first row of the circulant matrix:

(a) Let F be a vector of size 228 complex values initialized by zeroes.

(b) For all 28-bit key values v:

i. Partially encrypt and decrypt P0 and C0, the zero plaintext/ciphertext pair
(where both are considered zero) by the key bits v.

ii. Fetch the conditional bias b of the second round from Table 17, according
to the value of the 3 input bits and the condition bit (see the original
algorithm for details). Notice that the condition bit is first XORed with
the 28th “virtual” key bit.

iii. Calculate the partial parity p = F1(P0R,K1)[17]⊕F16(C0R,K16)[8, 14, 25].
iv. Set F [v] = (−1)p · b.

(c) Compute FFFT [ ] = FFT (F [ ]).
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This preprocessing step takes less than 10 seconds to compute on a modern single core.
Due to this speed, the implementor of a practical attack may wish to compute it as part
of Step 4’.

2’. Initialize an array C[ ] of 228 complex counters by zero:

(a) The real part corresponds to the values of the 27 effective text bits of λ4 plus
the condition bit of λ4.

(b) The imaginary part corresponds to the values of the 27 effective text bits of λ4
plus the condition bit of the flipped λ4.

3’. For each plaintext Pi and the corresponding ciphertext Ci:

(a) Compute u1, a 28-bit value consisting of the value of the 27 effective text bits
of λ4 plus the parity of the bits related to the condition bit of λ4.

(b) Compute u2, a 28-bit value consisting of the value of the 27 effective text bits
of the flipped λ4 plus the parity of the bits related to the condition bit of the
flipped λ4.

(c) Increment C[u1] by 1, and C[u2] by
√
−1 (i.e., increment the imaginary part

by 1).

4’. Apply a 28-dimensional FFT method:

(a) Compute CFFT [ ] = FFT (C[ ]).
(b) Compute GFFT [ ] = CFFT [ ] ◦ FFFT [ ] (where ◦ is the Hadamard product, i.e.,

entrywise product).
(c) Compute G[ ] = FFT−1(GFFT [ ])/228.
(d) Split G[ ] into A[ ] and B[ ], where A[ ] consists of the real parts of the first 227

elements of G[ ], and B[ ] consists of the imaginary parts of the same elements
of G[ ] (i.e., G[j] = A[j] +

√
−1B[j] (0 ≤ j < 227).

Let us address some issues regarding the implementation of the FFT technique:

1. The FFT technique requires that the number of analyzed key bits is equal to the
number of bits of plaintext and ciphertext (or parities thereof) that affect the
computation. One of them is the number of rows and the other the number of
columns in the (square) circulant matrix. Moreover, each such key bit is directly
related to a plaintext or ciphertext bit or a parity bit of some subset of them.
Therefore, whenever the same plaintext bit is duplicated and then XORed with a
different key bit, the plaintext bit must also be duplicated, though it is clear that
it’s two copies are always equal. On the other hand, when a parity of some subset of
plaintext and ciphertext bits does not have a corresponding key bit, such a bit must
virtually be created. This latter case occurs with the condition bit of our attack, and
thus we create a virtual key bit, virtually XORed to the data during computation of
the condition bit, whose real value is known to be 0, but for sake of computing the
circulant matrix we must consider it to be 1 as well.
At the end of the attack, when we extract candidate keys based on the corresponding
values in the A[ ] and B[ ] arrays, there is no further need for the virtual key bit, and
we fix it back to zero.

2. Also note that the FFT technique as presented in [CSQ07] assumes that all key bits
are related to the first and last rounds. We on the other hand also consider such bits
in the second round, though the inputs related to them there are not linear in the
plaintext bits.
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3. As the FFT array related to λ4 and it’s counterpart related to the flipped λ4 are the
same, we compute only one of them. The counters of the corresponding plaintexts
or ciphertexts that we count in the C[ ] array are different for λ4 and the flipped λ4.
But as the counters are real (not complex), we can keep the two sets of counters
in a single array. The real part corresponds to the counters related to λ4 and the
imaginary part corresponds to the counters related to the flipped λ4. The output
of Step 4’ is therefore holding the two sets of biases. The real part corresponds to
the biases related to λ4, and the imaginary part to those related to the flipped λ4.
Notice that as the output of the FFT method requires normalization, we divide all
entries of the output by 228 in Step 4’c.

4. The FFT technique as presented in Step 0’ and 4’ requires six complex arrays of
size 228. In practice it is possible to use only three such arrays by merging F [ ], C[ ]
and G[ ] into the same memory space, and merging CFFT and GFFT into the same
memory space. As a complex variable is represented as two 64-bit reals, the total
amount of memory required is 3 · 228 · 2 · 8 = 12GB, which is commonly available in
today’s computers.

5. The resulting counters in A[ ] and B[ ] are exactly the same as after Step 4 of the
simplified algorithm.

4.5 Optimization of Step 5
Replace Step 5 by the following Step 5’:

5’. Use the counters A[ ] and B[ ] to find the secret unknown key K:

(a) Extract the parity bit for each of the 227 cases deduced from λ4 by the signs of
A[k]. Positive values correspond to parity 0, and negative to parity 1.

(b) Similarly, extract the parity bit for each of the 227 cases deduced from the
flipped λ4 by the signs of B[l].

(c) Split A[ ] into 210 arrays Am[ ] of size 217 whose indices Am[s] (0 ≤ m < 210,
0 ≤ s < 217) are partitioned between the common and non-common bits: m is
the value of the 10 common bits, s is the value of the 17 non-common bits, and
Am[s] is a structure containing the absolute value of the counter corresponding
to these 27 bits, the parity bit, and the 17 non-common bits.

(d) Similarly, split B[ ] into 210 arrays Bm[ ] of size 217 whose indices Bm[t] (0 ≤
m < 210, 0 ≤ t < 217) are partitioned between the common and non-common
bits: m is the value of the 10 common bits, t is the value of the 17 non-common
bits, and Bm[t] is a structure containing the absolute value of the counter
corresponding to these 27 bits, the parity bit, and the 17 non-common bits.

(e) Sort the 217 entries in each of the arrays Am[ ] and Bm[ ] in descending order of
the absolute counter.

(f) Initialize an empty max heap (see [CLRS01, Chapter 6]) of size 227, whose
nodes (m, s, t, v) will contain a value v and three indices: m, s and t. The max
heap pop operation will extract the node with the highest value v, and output
the indices (m, s, t) to the caller.

(g) Create and insert to the max heap all the 227 nodes whose t = 0, i.e., of the
form (m, s, 0, Am[s] ·Bm[0]). Notice that t = 0 in all of them.

(h) Repeat as long as the heap is not empty and the key is not found:
i. Pop the maximal node from the heap: (m, s, t).
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ii. Try all the 210 options of the 10 = 56 − 44 − 2 remaining unknown key
bits (not included in m, Am[s] and Bm[t]), therefore computing 56-bit trial
keys. For each trial key, perform a trial encryption. If it succeeds, try a
second plaintext, and if it also succeeds, announce that the found key is
the unknown secret key K, and stop.

iii. If t < 217 − 1, create a new node (m, s, t+ 1, Am[s] ·Bm[t+ 1]) and insert
to the heap.

This step joins the arrays A[ ] and B[ ] by their 10 common bits: we first divide each
of them to 210 buckets by these 10 common bits, and then prepare the cartesian product
of each of the buckets in A[ ] by the corresponding bucket in B[ ]. Each such cartesian
product is of size 217 · 217, but at every moment in time only the yet unprocessed entry
with the highest value of every column is kept in memory.

Since the columns are sorted by decreasing order, the next highest value in the column
is the one selected to replace a processed entry. And since the highest unprocessed value
in each column is in the heap, the highest value that is not yes processed is at the top of
the heap. Therefore, the entries are processed by a decreasing order of the absolute value
of the product of their biases in A[ ] and B[ ].

4.6 Complexity of the Attack
The complexity of the optimized attack is as follows:

Step 0’ partially encrypts four S boxes in the first and last rounds, and accesses Table 17
for S5 in Round 2. Together Step 0’ performs 5 · 228 table lookups, which is equivalent to
about 5 · 228/128 ≈ 223 DES operations. Then Step 0’ computes a 28-dimensional FFT,
whose time is about 28 · 228 operations. The total time of Step 0’ on our computer is less
than 10 seconds on a single core.

Step 2’ initializes an array of 228 complex numbers by zeros, which takes about one
second. Step 3’ performs two counter increments for each of the given known plaintexts. For
242 known plaintexts this means about 243 increments which is faster than 243/128 = 236

DES operations. Step 4’ performs two FFT computations, along with 228 multiplications,
which take together less than 20 seconds on a single core.

Step 5’ is more complicated to analyze, as it’s time depends on the success of the
attack. Steps 5’a–5’d are fixed-time steps taking about one second of computation. The
sorting in Step 5’e performs 211 sort of 217 values each, thus costs about 211 · 17 · 217 ≈ 232

operations, which are equivalent to less than 232/128 = 225 DES operations. Step 5’f is
instantaneous. Step 5’g performs 227 multiplications and 227 insert operations to the heap.

Step 5’h is the key search itself. It find the unknown key if the parity bits were predicted
correctly. It’s time is exactly the number of keys tried till the unknown key is found.
Notice that the overhead of the heap pop and insert operations is negligible, as one pop
and one insert operations are performed for every 210 DES operations. Assuming that
the pop and insert operations take together about 100 CPU clock cycles, and a single
DES trial encryption takes about 500 cycles, the overhead of the heap operations is about
100/(500 · 1024) ≈ 0.0002 = 0.02%.

We expect that in most cases Step 6 will not be reached. However, in cases where
Step 5’ does not find the key, the additional complexity of Step 6 is about 3 · 253 on
average. We see that if Step 5’ finds the unknown key, the complexity of Steps 0’–4’ is
small compared to the computation of Step 5’, and Step 6 is not performed.

4.7 The Computer Experiment
We created a special version of the attack that implements all the above steps, except
for the replacement of Steps 5’ and 6 by a faster version that counts the number of keys
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Figure 14: Comparison of the Success Probability by Complexity of the Attack (The
marked points were experimentally verified on 79 runs of our attack on the full 16-round
DES).

tried before the correct unknown key is found (instead of the slower search for the key).
The complexity of the altered steps is about 228, and the whole program takes less than
one minute on a single core, using 12 GB of RAM. Based on Matsui technique for basing
the complexity claims for 16 rounds on the results on 8-round DES we ran our program
on a slightly modified 8-round version of DES. Matsui needed 1.49 · 217 ≈195,000 known
plaintexts for his 8-round DES, from which he deduced the need for 243 plaintexts on
16-round DES. We use a similar number of known plaintexts for our 243 results, and a
relative adjusted fraction for the other results. To avoid any difference from the case of
16-round DES, we use a slightly modified version of 8-round DES whose key schedule is
partly modified so that the subkeys K7 and K8 are replaced by K15 and K16.5

The complexity of our attack as found by our test programs is given in Table 1 and
Figure 14. Both also compare our results to previously published results.6 We also present
Table 2 and Figure 15 in which we let the computation time be increased to 250 in order
to reduce the number of known plaintexts. In this figure we also compare our results to
two previously published attacks that quoted complexities for this case.

Figure 16 presents several curves of the success probability of conditional linear crypt-
analysis by time of analysis, where each curve is computed for a different amount of
known plaintexts. For comparison, Figure 17 presents a similar graph for standard linear
cryptanalysis.

5The common bits of K7 and K8 with K1 and K2 are different than the common bits of K15 and
K16 with K1 and K2. Moreover, even the number of the common bits is different. Unlike in Matsui’s
case, this difference matters to our attack, as in our case some of these bits are the bits common to the
analysis using λ4 and using the flipped λ4.

6It is interesting to note that at low amounts of data differential cryptanalysis is the best attack. As
can be seen in Figure 14 it surpasses the success rate of linear cryptanalysis below 241, and surpasses the
success rate of conditional linear cryptanalysis below 239.
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Figure 17: Success Probability of Linear Cryptanalysis by Known Plaintexts and Time of
Analysis

4.7.1 Direct Implementation on the Full DES

We have adapted our implementation to work on the full DES directly, but due to longer
computation times we were running only several dozens of experiments. The data collection
phase takes a few hours when running in parallel on six computers in our lab with a total
of 48 threads. Then, the phase that finds the actual time of key recovery takes about
a minute on a single thread. The application of the full key recovery step to find the
key would take a few more hours on the labs’ computers. We had run 79 instances of
this attack on our lab computers. The actual results fit to the prediction of Table 1 and
Figures 14, 15 and 16.

5 Search for Conditional Approximations

There are several strategies to find the best conditional linear approximations. We searched
for the best of the “intuitive” types, and types similar to the best regular ones. Most
approximations shown in this paper were found manually based on heuristics, either
similar to known (non-conditional) linear approximation or based on good conditional
properties. For some kinds of conditional approximations (e.g., those used in Section 3
and in Section 4) it is possible to search automatically by a search program similar to
Matsui’s search algorithm for best approximations with adoptions to conditional cases.
The algorithm is more complex, as it requires to consider two approximations at the same
time. On the other hand, the computation time of this algorithm is highly dependent
on the approximations used as it’s starting point. In our case, known non-conditional
approximations may serve as a good starting point for the search, which will save a lot of
computation time.
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Figure 18: The Iterative Differential Characteristic of DES (Ω1)

6 Application to Differential Cryptanalysis
The idea of conditioning approximation on other approximations can be extended to
differential cryptanalysis by conditioning characteristics (or differentials) on approximations.
The improvement in complexity in this case is relatively small (only second-order saving),
because (unlike in the case of linear cryptanalysis) the increase in probability is linearly
correlated to the decrease in the number of required data. So the same order of data may
be required before discarding the ones that fail the conditions. But some second-order
saving may still be possible.

Notice also that conditioning characteristic on their corresponding differentials is a
standard (unnamed) practice, that is the base for example for 0R-attacks (which expect
for the internal differences with a very high probability after filtering out wrong external
differences).

In addition, conditioning characteristics on key bits (or parities of key bits) was also
shown in the past (e.g., in [BB93]), but in that case the usage is not for filtering out
wrong external differences but for making a better prediction of the probability of the
characteristic.

6.1 Saving Data Using Conditions
Another interesting application of our conditioning technique to differential cryptanalysis
may allow us to discard some of the wrong pairs in advance before making any analysis of
the differences, or even when we receive the first member of the pair while the other member
is not yet known. In this latter case, the attacker can save the request for encrypting the
second member of the pair, if he knows for sure (or having a good statistical evidence)
that the pair cannot be (or is unlikely to be) a right pair.

For example, we concentrate on the two-round iterative characteristic (Ω1) of DES,
which is outlined in Figure 18. Table 19 shows the probabilities of Ω1 conditioned on
each of the 16 values of δodd{S2}, where δodd{S2} in this case is the output of S2 in the
first round (which can be directly computed from the plaintext and the ciphertext). In
case of a two-round reduced DES, when we condition this characteristic on the 16 values
of the output of S2, the right output difference comes with only four possible outputs:
1x, 7x, Ax or Ex. Therefore, it suffices to check only one member of the pair in order to
discard some of the wrong pairs.

When extending this observation to longer instances of the iterative characteristic the
number of possible values may grow and the relative probability of the possible values may
increase or decrease. In the case of a 16-round characteristic (that iterates Ω1 eight times)
the number of the possible values grow to 8, and the number of impossible values reduces
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Table 19: Conditioning the Probability of Ω1 on Each of the 16 Possible Values of δodd{S2}

δodd{S2} Prob δodd{S2} Prob
0000 0 1000 0
0001 2−5.87 1001 0
0010 0 1010 2−5.87

0011 0 1011 0
0100 0 1100 0
0101 0 1101 0
0110 0 1110 2−5.87

0111 2−5.87 1111 0

Table 20: Conditioning the Probability of the 16-Round Iterative Characteristic on Each
of the 16 Possible Values of δodd{S2}

δodd{S2} Prob δodd{S2} Prob
0000 2−61.97 1000 0
0001 0 1001 2−61.97

0010 2−61.97 1010 0
0011 0 1011 2−61.97

0100 2−61.97 1100 0
0101 0 1101 2−61.97

0110 2−61.97 1110 0
0111 0 1111 2−61.97

to 8. Table 20 shows the probabilities of this 16-round iterative characteristic conditioned
on each of the 16 values of δodd{S2}, where δodd{S2} is the XOR of the outputs of S2 in
the odd rounds (which can be directly computed from the plaintext and the ciphertext).
Note that a similar conditioning by the four bits related to S1 (or S3), does not provide
impossible cases, but instead affects the probabilities of the 16 cases by an order of up
to ±10%.

From Table 20 it is also easy to see that the eight possible values are those whose LSB
and MSB of δodd{S2} are equal. So the test for these cases is simply checking whether the
XOR of the two corresponding plaintext bits is equal to the XOR of the two corresponding
ciphertext bits.

Such information can be used to reduce the number of chosen plaintexts in several
ways. The first and the simplest is that given an evidence, deduced from one member of
the pair, that the pair cannot be a right pair, the attacker will not request the second
member of the pair, and continue directly to request the next pair. This test can also
be incorporated in the data collection phase, whenever possible. In such a case it saves
transmission of both members of the pair to the attacker. In some other cases, the evidence
may only be probabilistic, meaning the probability that a pair is expected to be a right
pair may increase or decrease by the new evidence. Clearly, in such a case it may be more
advantageous to start the analysis with the pairs with the higher probabilities if the order
of analysis may affect the complexity, or to analyze only pairs with high probabilities (thus
requiring fewer analyzed pairs), if the number of analyzed pairs affect the complexity.
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Table 21: The Distribution of the Four Possible Events, in Case θ and λ Are Independent

θ holds θ fails
λ holds 1

2 · (
1
2 + ε) 1

2 · (
1
2 + ε)

λ fails 1
2 · (

1
2 − ε)

1
2 · (

1
2 − ε)

Table 22: An Example of a Dependent Distribution

θ holds θ fails
λ holds 1

2 · (
1
2 + 2ε) 1

2 ·
1
2

λ fails 1
2 · (

1
2 − 2ε) 1

2 ·
1
2

7 Relation to Linear Cryptanalysis with Multiple Approxi-
mations and to Multidimensional Linear Cryptanalysis

Prior studies of linear cryptanalysis with multiple approximations [BCQ04] considers statis-
tically independent linear approximations. Multidimensional linear cryptanalysis [HCN09],
on the other hand, can also handle the case of dependent linear approximations by consid-
ering the full distribution of 2k events spanned by k linear approximations. Our extension
considers highly dependent approximations, and discards many of the 2k events by discard-
ing their data, leading to a better ability of distinguishing between the remaining events.
We can reduce the number of degrees of freedom and make the statistics more conclusive.

We demonstrate the difference between the approaches by the following example:
consider two linear approximations, θ with probability 1/2, and λ with probability 1/2 + ε.
According to Bayes’ theorem,

Pr(λ, θ) = Pr(θ) · Pr(λ|θ).

In case θ and λ are independent, Pr(λ|θ) = Pr(λ). Table 21 shows the distribution of
the 22 = 4 possible events in case that θ and λ are independent.

We show that in some cases, the bias of λ may increase by a factor of about 2, when
we restrict ourselves to cases when θ holds. Table 22 shows an example distribution of
the same 22 = 4 possible events in case where θ and λ are dependent. Notice that the bias
of λ when θ holds is twice the original bias of λ. On the other hand, the events where θ
fails show only zero bias, and is useless for linear cryptanalysis. Our extension discards
these useless events by disregarding the data where θ fails. We keep the data with the
bias that is twice the original bias of λ. In other examples we can even show even a larger
increase in the conditional bias.

8 Summary
In this paper we showed that linear approximations are highly affected by conditioning
them on other approximations. The simplest case is conditioning an approximation on
a containing, longer, approximation, but it is also possible to condition on other, same
length approximations, and even on approximations with bias 0. Furthermore, such
conditional approximations can be combined in new ways to create unexpected conditional
approximations. We showed how to use such conditional approximations for attacks, and
that such conditions are especially effective in case of Feistel ciphers. We implemented
our attack on the most widely studied Feistel cipher the Data Encryption Standard (DES)
which lead to the best current attack against DES with complexity about 241.9.
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A Scattered Linear Approximations
Traditionally, linear cryptanalysis assumes that linear approximations are built using a
sequential process, in which there is a plaintext mask that is then approximated by a
mask of the intermediate data after the first round through a linear approximation of the
first round. The parity of the masked bits after the first round is expected to be equal
to the parity of the masked bits of the plaintexts with the probability of the one-round
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approximation. Then, the latter mask is approximated by a similar procedure by a mask
of the intermediate data after the second round through a linear approximation of the
second round. The probability of the two-round construction is computed by the piling up
lemma from the probabilities of the two one-round approximations, where instead of using
the probabilities directly, it is convenient to use biases, which are the probabilities minus
half. Then the process repeats itself one more round at a time, till the full approximation
is created.7

We propose here a different kind of linear approximations, which does not follow these
steps, and cannot be outlined in the standard way we draw linear approximations. In
particular, they have no corresponding plaintext and ciphertext masks that predict the
parities of the corresponding plaintext and ciphertexts subsets of bits to be same (with
the probability of the approximation).

We call this new approximations scattered linear approximations (and also scat-
tered conditional linear approximations). Rather than predicting the parity of three subsets
of bits (from the plaintext, ciphertext and subkeys) they predict the parity of subsets
of four subsets, adding a new subset of intermediate data bits. For example, such an
scattered approximation may predict the parity of the subset consisting of the 13th bit
of the input of the F function in Round 4, the 17th bit in the output of F in Round 5,
and the 17th bit in the output of F in Round 9 along with a few bits of the plaintext,
ciphertext, and subkeys. Such predictions are impossible under the current formulation
of linear cryptanalysis, and may even seem unuseful for attacking the cipher with the
currently known attack algorithms, but clearly such predictions give us information that
is available without them. Their importance will be decided by the ability to find such
scattered approximations, whether their biases are large enough, and whether we can
construct attack algorithms that use them.

A simple particular example of such scattered approximations follows from the condi-
tions that we used earlier in the paper, i.e., the XOR of the output of the F function in
all even rounds equals the right half of the plaintext XOR the left half of the ciphertext
(
⊕

k is even Y
k = PR ⊕ CL, see Equation 1 in Section 2.3). This equation predicts 32

parities of subsets of intermediate bits, where each of them predicts the parity of a subset
of eight intermediate bits, one from each output of F in the even rounds. Clearly, the
probability of this scattered approximation is 1 (bias 1/2). Though this approximation has
so high probability, there is no way to write or draw it in the standard formalism of linear
cryptanalysis, and there are no plaintext and ciphertext subsets whose bits are predicted
to have equal parities.

In the next subsections we present examples of scattered approximations, how they can
be concatenated, their applications. Since this paper is focused on conditional linear crypt-
analysis, we mainly focus here on scattered approximations in the framework of conditional
linear cryptanalysis, i.e., construct and use scattered conditional approximations.

A.1 A Short Approximation Conditioned by a Longer One
In this section we show that the bias of a short linear approximation can be improved
by conditioning it on the parity of a longer linear approximation. For example, we show
that the bias of the first eight rounds of Matsui’s linear approximation conditioned on the
parity of full 16 rounds of that approximation is about twice higher than the original bias
of the same eight rounds.

A simple case of a linear approximation conditioned on a longer containing one, with
same bias of the contained approximation and of the rest of the containing approximation,
is described here-forth.8 Consider an r-round containing linear approximation λ, which is

7There are shortcuts to this process that allow to concatenate longer approximations, but they are
equivalent in structure to concatenating a single round at a time.

8The same phenomenon can be applied to cases with different biases, but the factor reduces below two.
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Table 23: The Four Possible Cases of λ1,m and λm+1,r

λ1,m holds λ1,m fails
p = ( 1

2 + ε) p = ( 1
2 − ε)

λm+1,r holds λ holds λ fails → data discarded
p = ( 1

2 + ε) p = ( 1
2 + ε)2 p = ( 1

2 + ε)( 1
2 − ε)

λm+1,r fails λ fails → data discarded λ holds
p = ( 1

2 − ε) p = ( 1
2 − ε)(

1
2 + ε) p = ( 1

2 − ε)
2

a concatenation of two linear approximations λ1,m and λm+1,r (with m rounds and r −m
rounds, respectively), where the bias of λ1,m equals to the bias of λm+1,r. We denote this
bias by ε. The condition that discards data in this case is based on the satisfaction of
the (long) approximation λ. All the plaintexts/ciphertext pairs for which λ holds remain,
while all others are discarded.

We observe that the bias of λ1,m in the remaining data is about twice the original
biases. The simplest way to show it is by considering the four cases outlined in Table 23.
In this table the primary diagonal corresponds to the remaining data, while the secondary
diagonal corresponds to the discarded data. As can be seen there, the two discarded cases
have exactly the same probability, where in one λ1,m holds, and in the other λ1,m fails.
Therefore, the total bias of λ1,m in the discarded data is exactly 0. Since the original bias
is the weighted average of the remaining and discarded cases, the conditional bias is higher
than the original bias. In cases where ε is very small, the fraction of discarded data is
almost exactly half, and thus the conditional bias becomes about twice larger than the
original. Accurate calculations of the biases are presented at the end of this appendix.

Notice that the shorter approximation λ1,m has the standard form of a linear approx-
imation, but also notice that once it is conditioned on the longer approximation λ, the
analyzed cipher becomes longer than the number of rounds of λ1,m, so λ1,m no longer
spreads on all the rounds of the cipher. Moreover, the former mask at the ciphertext side
becomes a mask on an intermediate data. It thus becomes a simple case of an scattered
approximation.

A conditional piling up lemma is available also in this case. Let X1, Y1, Y2 be binary
random variables such that X1 and Y1 are independent of Y2. Denote:

p1 = Pr(Y1 = 0)
p2 = Pr(Y2 = 0)
α1 = ε(X1|Y1 = 0)
β1 = ε(X1|Y1 = 1)

Lemma 3.
ε(X1|Y1 ⊕ Y2 = 0) = p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2) .

The proofs is given in Appendix B.

A.1.1 Three-Round Examples

Consider a three-round cipher, and let λ9 be the best three-round linear approximation,
outlined in Figure 19. We can treat λ9 as two concatenated approximations: λ1,2

9 and λ3
9,

where λ1,2
9 consists of the first two rounds of λ9, and λ3

9 consists of the last round of λ9.
For simplicity of discussion, assume (without loss of generality) that the key bit involved
in λ1,2

9 and the one involved in λ3
9 are equal in value. Thus, the bias of λ1,2

9 is equal to the
bias of λ3

9, and the biases equal ε = −0.31. The bias of the full λ9 is 2ε2 = 0.19. Using
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Figure 19: The Best Three-Round Linear Approximation (λ9)

Figure 20: Another Three-Round Linear Approximation (λ10)

the formulae of Appendix A.5, we can compute the bias of λ1,2
9 given the fact that the

data satisfies the approximation λ9 to be ε(λ1,2
9 |λ9 = 0) = ε∗ = −0.45. Since in this case

the bias ε is relatively large, the factor of increase of the conditional bias, ε∗/ε is only
ε∗/ε = 0.45/0.31 ≈ 1.45 (rather than 2).

Another example is λ10, a three-round linear approximation outlined in Figure 20. The
bias of λ1,2

10 is equal to the bias of λ3
10, both biases equal ε = − 2

64 = −0.03125. The bias of
the full λ10 is 2ε2 = 2( 2

64 )2 = 0.00195. The bias of λ1,2
10 given the fact that the data satisfies

the approximation λ10 is ε∗ = ε(λ1,2
10 |λ10 = 0) = ( 1

2 −
2
64 )2

/ 1
2 + 2( 2

64 )2 − 1
2 = −0.06225.

And ε∗/ε = −0.06225/− 0.03125 ≈ 2.

A.1.2 A 16-Round Example

Consider Matsui’s eight-round iterative linear approximation as outlined in Figure 8, and
denote its iteration to 16 rounds (λ⊗16

3 ) by λ11. The biases of these approximations are
2−13.7 and 2 · (2−13.7)2 = 2−26.4, respectively. Assuming that the cipher is the full DES, it
is easy to divide the data into two sets based on the parity of λ11, where in one set λ11
holds on all data, and in the other fails on all data.

In this case, the conditional bias of the eight-round approximation λ1,8
11 when condition
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on the longer 16-round approximation λ11 is almost doubled to

ε(λ1,8
11 |λ11 = 0) =

( 1
2 + 2−13.7)2

1
2 + 2 · (2−13.7)2 −

1
2 ≈ 2−12.7 = 2 · ε(λ1,8

11 )

in one of the sets, and becomes

ε(λ1,8
11 |λ11 = 1) =

( 1
2 + 2−13.7) · ( 1

2 − 2−13.7)
1
2 − 2 · (2−13.7)2 − 1

2 = 0

in the other.

A.2 Non-consecutive Active Rounds
Consider λ7 from Section 3.6, and consider λ8, which is its iteration to 8 rounds (λ⊗8

7 )
conditioned as in Section 3.6. The biases of λ7 and λ8 are 0 but as mentioned in Section 3.6
the conditional biases are non zero. We start with a 8-round approximation, and condition
it on θ⊗16

2 .
We can calculate ε(λ8|θ⊗16

2 = 0) by applying the conditional biases piling up lemma:

ε(λ8|θ⊗16
2 = 0) = ε(λ8|θ⊗8

2 ⊕ θ⊗8
2 = 0).

In this case

p1 = Pr(θ⊗8
2 = 0) = 0.5000076

p2 = Pr(θ⊗8
2 = 0) = 0.5000076

α1 = 2−18.6

β1 = −2−18.6

and then substitute them in the equation of Lemma 3

ε(λ8|θ⊗16
2 = 0) = ε(λ8|θ⊗8

2 ⊕ θ⊗8
2 = 0) =

= p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2) =

= (0.5000076)2 · 2−18.6 + (1− 0.5000076)2 · −2−18.6

(0.5000076)2 + (1− 0.5000076)2 = 2−34.66.

This improved bias holds even in the more general scattered case where the shorter
approximation is selected to have any (not necessarily consecutive) sets of rounds that
fulfill the other criteria, e.g., rounds 3, 7, 11 and 15 (whose index is 3 modulo 4), instead
of 1, 3, 5 and 7. We get a scattered conditional linear approximation with four active
rounds distanced from each other by four rounds. Call it λ12. It is outlined in Figure 21.
It is a four-round iterative scattered conditional linear approximation. The intermediate
bit that participates in the parity is marked in bold.

A.3 Conversion to Input-Bit Based Scattered Approximation
Due to the properties of a Feistel cipher the bit in the output of Round 3 of λ12 (marked
in bold in Figure 21) equals the XOR of the input bits in the same location in Round 2
and Round 4. Similarly, the bit in Round 7 is the XOR of the corresponding input bits
in rounds 6 and 8, and so on. Therefore, this parity bit of the output of the four rounds
equals to the parity of the XOR of the corresponding input bits in all the even rounds.
The resulting approximation is again a four-round iterative scattered conditional linear
approximation. Call it λ13. It is outlined in Figure 22. The intermediate approximated
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Figure 21: The Scattered Conditional Approximation λ12 (4 Rounds of 16)

Figure 22: The Scattered Conditional Approximation λ13 (4 Rounds of 16)
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bits are marked in bold. We emphasize that the bits of the parity approximation of λ13
correspond only to bits of the inputs of the F functions without any non-empty output
mask. However since it is a scattered approximation it is not easy to use it directly for an
attack.

A.4 Concatenating Scattered Approximations
It remains to discuss the concatenation of scattered approximations. In traditional
approximations the approximation building process can be viewed as sequential, by setting
a one-round approximation in the first round, and then concatenating to it another one-
round approximation (that must satisfy the required concatenation relations), and so on
till the full approximation is finished.

In scattered approximations the situation is not so structured. The trivial case is that
any traditional approximation can be set anywhere through the cipher, and the result
becomes a scattered approximation that approximates the parity of the intermediate bits
where the original plaintext and ciphertext subsets are located.

Moreover, any two or more traditional approximations can be set anywhere (cov-
ering distinct rounds), and approximate the parity of the intermediate bit of all these
approximations.9

In the more interesting case of concatenation, two scattered approximations that have
no common active S boxes are concatenated together by combining each of their rounds
with the corresponding round of the other, where the active S boxes take preference over
inactive ones. The result is a scattered approximation which approximates the XOR of
the parity formulae of both original scattered approximations, i.e., each intermediate (or
plaintext, ciphertext or key) bit that belonged only to one of the two approximated parities
remains in the approximated subset, while any bit that does not belong to any, or that
belongs to both is not in the approximated subset.

In all these cases, the bias computation of the concatenated approximation follows
the regular piling up lemma (or the conditional piling up lemma in case of conditional
approximations).10

A.4.1 A Simple Example

Consider the scattered approximation where λ1 is set in all the even rounds. Call it λ14 as
outlined in Figure 23 (with approximated parity bits marked in bold). Since λ1 is a non
conditional approximation, so is λ14. The bias of λ14 is (−20/64)8 · 27 = 2−6.4. The XOR
of all the active bits in the output of its F functions can be linearly computed from the
plaintexts and ciphertexts. The active bits in the inputs of F are therefore the intermediate
bits that cause this approximation to be scattered, while the scattered approximation
approximates the parity of these eight input bits, four plaintext bits and four ciphertext
bits.

A.4.2 Concatenating Two Scattered Approximations into a Non-Scattered Approxi-
mation

Consider two different scattered approximations that can be concatenated (i.e., have no
common active S boxes). If all the intermediate bits in their predicted parity subsets are
equal, then the concatenated approximation becomes non-scattered. The external subsets
of bits are XORed (as subsets), resulting with a new subset that contains only the external
bits that occurred only in one of the two concatenated approximations.

9We ignore the case of common active S boxes as in that case the joint bias may need different analysis,
and as the predicted bits may not be predicted any more in the combined case.

10As long as the conditions are concatenatable to a single one, as required by our presented form the
piling up lemma.
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Figure 23: The Scattered approximation λ14 (4 Rounds of 16)

As a side note we refer the reader to a fact (that he had probably already observed) that
λ13 and λ14 follow these requirements, having the same intermediate subset, but different
external subsets. Therefore, they can be concatenated to a non-scattered approximation,
which is outlined in Figure 24. The bias of this approximation is 2 · ε(λ13) · ε(λ14) =
2 · 2−6.4 · 2−34.66 = 2−40.08.

A.5 An Accurate Calculation of the Conditional Biases
Consider an r-round containing linear approximation λ, which is a concatenation of two
linear approximations λ1,m and λm+1,r (with m rounds and r −m rounds, respectively),
where the probability of λ1,m equals to the probability of λm+1,r. We denote this probability
by 1

2 + ε.

A.5.1 The Exact Calculation

Notice that

• The probability that λ satisfies the parity approximation is ( 1
2 +ε)2+( 1

2−ε)
2 = 1

2 +2ε2.

• The probability that both λ1,m and λm+1,r satisfy the parity approximations is
( 1

2 + ε)2 = 1
4 + ε+ ε2.

Given that λ satisfies the parity approximation, the probability that λ1,m (or λm+1,r)
satisfies the parity approximation can be improved. Let ε∗ = ε(λ1,m|λ = 0). Therefore,

1
2 + ε∗ =

1
4 + ε+ ε2

1
2 + 2ε2 =

1
4 + ε2

1
2 + 2ε2 + ε

1
2 + 2ε2 = 1

2 + ε
1
2 + 2ε2 .

The denominator in the above equation is the fraction of un-discarded plaintexts, i.e.,
those plaintexts in which both sub-approximations either both follow the approximation
or both not follow the approximation. The nominator consists of only the plaintexts
that follow the approximation in both sub-approximations, i.e., all cases that the first
sub-approximation follows the approximation in the un-discarded data. Then,

ε∗ = ε
1
2 + 2ε2 ,
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Figure 24: Four-Round Iterative Conditional Linear Approximation (the Concatenation
of λ13 and λ14)

from which it is easy to deduce the fraction ε∗/ε

ε∗

ε
= 1

1
2 + 2ε2 .

In most cases ε� 1, from which we can deduce that

ε∗ ≈ 2ε.

A.5.2 An Alternate Exact Calculation

We can alternatively calculate ε∗ = ε(λ1,m|λ = 0) by applying the conditional biases piling
up lemma:

ε∗ = ε(λ1,m|λ = 0) = ε(λ1,m|λ1,m ⊕ λm+1,r = 0).

In this case we let

p1 = Pr(λ1,m = 0) = 1
2 + ε

p2 = Pr(λm+1,r = 0) = 1
2 + ε

α1 = ε(λ1,m|λ1,m = 0) = 1
2

β1 = ε(λ1,m|λ1,m = 1) = − 1
2

and then substitute them in the equation of Lemma 3

ε∗ = ε(λ1,m|λ1,m ⊕ λm+1,r) =

= p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2) =
( 1

2 + ε) · ( 1
2 + ε) · 1

2 + ( 1
2 − ε) · (

1
2 − ε) · −

1
2

( 1
2 + ε) · ( 1

2 + ε) + ( 1
2 − ε) · (

1
2 − ε)

=

=
1
2 (( 1

2 + ε)2 − ( 1
2 − ε)

2)
( 1

2 + ε)2 + ( 1
2 − ε)2 =

= ε
1
2 + 2ε2 .
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A.5.3 The Bias of the Discarded Data

The complementing case ε(λ1,m|λ = 1) also deserve to be accurately calculated. Notice
that in this case

• The probability that λ does not satisfy the parity approximation is 2·( 1
2 +ε)·( 1

2−ε) =
1
2 − 2ε2.

• The probability that λ1,m satisfies the parity approximation but λm+1,r does not
satisfy the parity approximation is ( 1

2 + ε) · ( 1
2 − ε) = 1

4 − ε
2.

Given that λ does not satisfy the parity approximation, the probability that λ1,m (or
λm+1,r) satisfies the parity approximation is

Pr(λ1,m|λ = 1) = (
1
4 − ε

2

1
2 − 2ε2 ) = 1

2 .

Thus the bias is exactly zero:

ε(λ1,m|λ = 1) = Pr(λ1,m|λ = 1)− 1
2 = 0.

B Conditional Biases Piling Up Lemma

Let X and Y be binary random variables.

ε(X) is the bias of X, i.e.: ε(X) = Pr(X = 0)− 1
2 ,

ε(X|Y = t) is the conditional bias of X under the event that Y = t,
i.e.: ε(X|Y = t) = Pr(X = 0|Y = t)− 1

2 .

Let X1, X2, Y1, Y2 be binary random variables such that X1 and Y1 are independent of
X2 and Y2. Denote:

p1 = Pr(Y1 = 0)
p2 = Pr(Y2 = 0)
α1 = ε(X1|Y1 = 0)
α2 = ε(X2|Y2 = 0)
β1 = ε(X1|Y1 = 1)
β2 = ε(X2|Y2 = 1)

Lemma 1.

ε(X1 ⊕X2|Y1 ⊕ Y2 = 0) = 2p1p2α1α2 + 2(1− p1)(1− p2)β1β2

p1p2 + (1− p1)(1− p2) .
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Proof.

Pr(Y1 ⊕ Y2 = 0) = p1p2 + (1− p1)(1− p2)
Pr(X1 ⊕X2 = 0, Y1 ⊕ Y2 = 0) = Pr(X1 = X2 = 0, Y1 = Y2 = 0)

+ Pr(X1 = X2 = 1, Y1 = Y2 = 0)
+ Pr(X1 = X2 = 0, Y1 = Y2 = 1)
+ Pr(X1 = X2 = 1, Y1 = Y2 = 1) =
= Pr(X1 = 0, Y1 = 0)Pr(X2 = 0, Y2 = 0)
+ Pr(X1 = 1, Y1 = 0)Pr(X2 = 1, Y2 = 0)
+ Pr(X1 = 0, Y1 = 1)Pr(X2 = 0, Y2 = 1)
+ Pr(X1 = 1, Y1 = 1)Pr(X2 = 1, Y2 = 1) =

= p1(1
2 + α1)p2(1

2 + α2) + p1(1
2 − α1)p2(1

2 − α2)

+ (1− p1)(1
2 + β1)(1− p2)(1

2 + β2)

+ (1− p1)(1
2 − β1)(1− p2)(1

2 − β2) =

= p1p2((1
2 + α1)(1

2 + α2) + (1
2 − α1)(1

2 − α2))

+ (1− p1)(1− p2)((1
2 + β1)(1

2 + β2)

+ (1
2 − β1)(1

2 − β2)) =

= p1p2(1
2 + 2α1α2) + (1− p1)(1− p2)(1

2 + 2β1β2)

Therefore,

Pr(X1 ⊕X2|Y1 ⊕ Y2 = 0) = Pr(X1 ⊕X2 = 0, Y1 ⊕ Y2 = 0)
Pr(Y1 ⊕ Y2 = 0) =

=
p1p2( 1

2 + 2α1α2) + (1− p1)(1− p2)( 1
2 + 2β1β2)

p1p2 + (1− p1)(1− p2) =

=
1
2 (p1p2 + (1− p1)(1− p2))
p1p2 + (1− p1)(1− p2)

+ 2p1p2α1α2 + 2(1− p1)(1− p2)β1β2

p1p2 + (1− p1)(1− p2) =

= 1
2 + 2p1p2α1α2 + 2(1− p1)(1− p2)β1β2

p1p2 + (1− p1)(1− p2)

Notice that Matsui’s (non-conditional) piling up lemma is a special case when Y1, Y2
are constants (for example Y1 = Y2 = 0 and P1 = P2 = 1):

ε(X1 ⊕X2) = ε(X1 ⊕X2|Y1 ⊕ Y2 = 0) = 2 · 1 · 1 · α1 · α2 + 2 · 0 · 0 · β1 · β2

1 · 1 + 0 · 0 = 2α1α2

Lemma 2.

ε(X1 ⊕X2|Y1 ⊕ Y2 = 1) = 2(1− p1)p2β1α2 + 2p1(1− p2)α1β2

(1− p1)p2 + p1(1− p2) .
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Proof.

Let’s write p1, α1 and β1 in the following form:

p1 = Pr(Y1 = 0) = Pr(Y1 ⊕ 1 = 1)
α1 = ε(X1|Y1 = 0) = ε(X1|Y1 ⊕ 1 = 1)
β1 = ε(X1|Y1 = 1) = ε(X1|Y1 ⊕ 1 = 0)

Then ε(X1 ⊕X2|Y1 ⊕ Y2 = 1) can be written as:

ε(X1 ⊕X2|Y1 ⊕ Y2 = 1) = ε(X1 ⊕X2|((Y1 ⊕ 1)⊕ Y2 = 0)

By substituting Y1 ⊕ 1 as Y1 in Lemma 1 (and therefore also swapping between p

and 1− p) we get:

ε(X1 ⊕X2|((Y1 ⊕ 1)⊕ Y2 = 0) = 2(1− p1)p2β1α2 + 2p1(1− p2)α1β2

(1− p1)p2 + p1(1− p2)

Lemma 3.
ε(X1|Y1 ⊕ Y2 = 0) = p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2) .

Proof.

Pr(Y1 ⊕ Y2 = 0) = p1p2 + (1− p1)(1− p2)
Pr(X1 = 0, Y1 ⊕ Y2 = 0) = Pr(X1 = 0, Y1 = Y2 = 0)

+ Pr(X1 = 0, Y1 = Y2 = 1)
= Pr(X1 = 0, Y1 = 0)Pr(Y2 = 0)
+ Pr(X1 = 0, Y1 = 1)Pr(Y2 = 1)

= p1(1
2 + α1)p2 + (1− p1)(1

2 + β1)(1− p2)

= p1p2(1
2 + α1) + (1− p1)(1− p2)(1

2 + β1)

Therefore,

Pr(X1|Y1 ⊕ Y2 = 0) = Pr(X1 = 0, Y1 ⊕ Y2 = 0)
Pr(Y1 ⊕ Y2 = 0) =

=
p1p2( 1

2 + α1) + (1− p1)(1− p2)( 1
2 + β1)

p1p2 + (1− p1)(1− p2) =

=
1
2 (p1p2 + (1− p1)(1− p2))
p1p2 + (1− p1)(1− p2)

+ p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2) =

= 1
2 + p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2)
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Notice that this is a special case of Lemma 1 when X2 = 0 (in which case α2 = β2 = 0.5):

ε(X1|Y1 ⊕ Y2 = 0) = ε(X1 ⊕ 0|Y1 ⊕ Y2 = 0) = 2 · p1 · p2 · α1 · 0.5 + 2 · (1− p1) · (1− p2) · β1 · 0.5
p1p2 + (1− p1)(1− p2) =

= p1p2α1 + (1− p1)(1− p2)β1

p1p2 + (1− p1)(1− p2)
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