Cube-Attack-Like Cryptanalysis of Round-Reduced KECCAK Using MILP

Ling Song, Jian Guo

FSE 2019 @ Paris, France

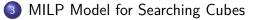
Song, Guo

Cube-Attack-Like Cryptanalysis of Round-Reduced KECCAK Using MILP FSE 2019 1 / 27

Outlines

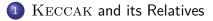
 $\rm Kecca\kappa$ and its Relatives

2 Cube-Attack-Like Crytanalysis



4 Main Results

Outline



Cube-Attack-Like Crytanalysis

3 MILP Model for Searching Cubes

4 Main Results

Keccak

- Permutation-based primitive
 - Designed by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
 - Selected as SHA-3 standard
 - Underlying permutation: KECCAK-p[1600, 24]
- KECCAK under keyed modes: KMAC, KECCAK-MAC
- Its relatives
 - Authenticated encrytion: KEYAK, KETJE
 - Pseudorandom function: KRAVATTE

Motivation

Cube attacks on Keyed KECCAK:

- Cube-attak-like cryptanalysis (Dinur et al., EC'15)
- Conditional cube attacks (Huang et al., EC'17)

Mixed Integer Linear Programming (MILP) models greatly improved conditional cube attacks on keyed $\rm Kecca\kappa$

- Li et al., AC'17
- Song et al., AC'18

How about cube-attack-like cryptanalysis using MILP?

Our Work

- Propose an MILP model for cube-attack-like cryptanalysis of keyed KECCAK
- Apply the model to KETJE, KECCAK-MAC and XOODOO

Target	K	Rounds	Т	М	Source
	96	5/13	2 ⁵⁶	2 ³⁸	[DLWQ17]
Ketje Jr V1	96	5/13	2 ^{36.86}	2 ¹⁸	this
	72	6/13	2 ^{68.04}	2 ³⁴	this
	96	5/13	2 ^{50.32}	2^{32} 2^{15}	[DLWQ17]
Ketje Jr V2	96	5/13			this
	80	6/13	2 ^{59.17}	2 ²⁵	this
Ketje Sr V2	128	7/13	$2^{113.58}$	2 ⁴⁸	[DLWQ17]
ITELIE JI VZ	128	7/13	2 ⁹⁹	2 ³³	this
Xoodoo *	128	6/-	2 ⁸⁹	2 ⁵⁵	this
Keccak-MAC-512	128	7/24	2 ¹¹¹	2 ⁴⁶	this

* In the KETJE mode.

Song, Guo

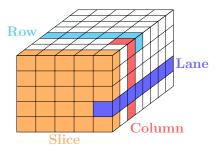
Cube-Attack-Like Cryptanalysis of Round-Reduced KECCAK Using MILP

KECCAK- $p[b, n_r]$ Permutation

- *b* bits: seen as a 5×5 array of $\frac{b}{25}$ -bit lanes, A[x, y]
- *n_r* rounds
- each round *R* consists of five steps:

 $R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$

- χ : S-box on each row
- π, ρ: change the position of state bits



http://www.iacr.org/authors/tikz/

KECCAK-*p* Round Function

Internal state A: a 5 \times 5 array of lanes

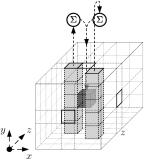
$$\begin{array}{l} \theta \ \text{step} \ C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4] \\ D[x] = C[x-1] \oplus (C[x+1] \lll 1) \\ A[x,y] = A[x,y] \oplus D[x] \\ \rho \ \text{step} \ A[x,y] = A[x,y] \ll r[x,y] \\ - \text{The constants } r[x,y] \ \text{are the rotation offsets.} \\ \pi \ \text{step} \ A[y,2*x+3*y] = A[x,y] \oplus ((A[x+1,y])\&A[x+2,y]) \\ \iota \ \text{step} \ A[0,0] = A[0,0] \oplus RC[i] \\ - RC[i] \ \text{are the round constants.} \end{array}$$

The only non-linear operation is χ step.

KECCAK-*p* Round Function: θ

 θ step: adding two columns to the current bit

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus$$
$$A[x, 3] \oplus A[x, 4]$$
$$D[x] = C[x - 1] \oplus (C[x + 1] \lll 1)$$
$$A[x, y] = A[x, y] \oplus D[x]$$



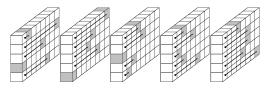
http://keccak.noekeon.org/

• The Column Parity kernel

• If $C[x] = 0, 0 \le x < 5$, then the state A is in the CP kernel.

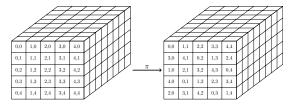
KECCAK-p Round Function: ρ, π

 ρ step: lane level rotations, $A[x, y] = A[x, y] \lll r[x, y]$



http://keccak.noekeon.org/

 π step: permutation on lanes, A[y,2*x+3*y]=A[x,y]



Keccak-p Round Function: χ

 χ step: 5-bit S-boxes, nonlinear operation on rows

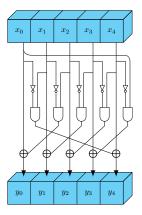
$$y_0 = x_0 + (x_1 + 1) \cdot x_2,$$

$$y_1 = x_1 + (x_2 + 1) \cdot x_3,$$

$$y_2 = x_2 + (x_3 + 1) \cdot x_4,$$

$$y_3 = x_3 + (x_4 + 1) \cdot x_0,$$

$$y_4 = x_4 + (x_0 + 1) \cdot x_1.$$



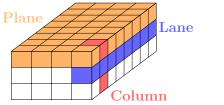
• Nonlinear term: product of two adjacent bits in a row.

XOODOO Permutation

- Sister of KECCAK-p
- 384 bits: $4 \times 3 \times 32$
- Round function R:

$$R = \rho_{east} \circ \chi \circ \iota \circ \rho_{west} \circ \theta$$

- χ : S-box on each column
- ρ_{west}, ρ_{east}: change the position of bits in a plane



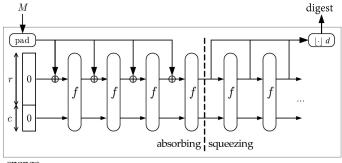
XOODOO Round Function

Internal state A: a 3 \times 4 array of 32-bit lanes

$$\begin{array}{l} \theta \ \text{step} \ \ C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \\ D[x] = (C[x-1] \lll 5) \oplus (C[x+1] \lll 14) \\ B[x,y] = A[x,y] \oplus D[x] \\ \rho_{west} \ \text{step} \ \ A[x,0] = B[x,0], A[x,1] = B[x-1,1], A[x,2] = \\ B[x,2] \lll 11 \\ \iota \ \text{step} \ \ A[0,0] = A[0,0] \oplus RC[i] \\ \chi \ \text{step} \ \ B[x,y] = A[x,y] \oplus ((A[x,y+1])\&A[x,y+2]) \\ \rho_{east} \ \text{step} \ \ A[x,0] = B[x,0], A[x,1] = B[x,1] \lll 1, A[x,2] = \\ B[x-2,2] \lll 8 \end{array}$$

The only non-linear operation is χ step.

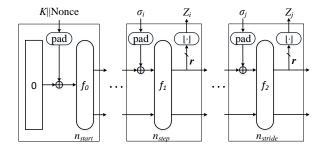
Keccak: Keccak-p[1600, 24] + Sponge



sponge

- Sponge construction [BDPV11]
 - *b*-bit permutation *f*
 - Two parameters: bitrate r, capacity c, and b = r + c.
- Keccak-MAC
 - Take *K*||*M* as input

KETJE: KECCAK- p^* + MonkeyDuplex



• Keccak- $p^{\star}[b, n_r] = \pi \circ \text{Keccak} - p[b, n_r] \circ \pi^{-1}$

•
$$\textit{n}_{\textit{start}} = 12$$
, $\textit{n}_{\textit{step}} = 1$, $\textit{n}_{\textit{stride}} = 6$

4 variants

Jr:
$$b = 200$$
 $r = 16$, Minor: $b = 800$ $r = 128$
Sr: $b = 400$ $r = 32$, Major: $b = 1600$ $r = 256$

• XOODOO can be an alternative permutation.

Outline

4 Main Results

Cube Attacks [DS09] (Higher Order Differential Cryptanalysis)

• Given a Boolean polynomial $f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$ and a monomial $t_l = \wedge_{i_r \in I} v_{i_r}$, $l = (i_1, ..., i_d)$, f can be written as

 $f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}) = t_I \cdot p_{S_I} + q(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$

- q contains terms that are not divisible by t_I
- p_{S_l} is called the superpoly of *l* in *f*
- $v_{i_1}, ..., v_{i_d}$ are called cube variables. *d* is the dimension.
- The the cube sum is exactly

$$\sum_{(v_{i_1},...,v_{i_d})\in C_I} f(k_0,...,k_{n-1},v_0,...,v_{m-1}) = p_{S_I}$$

- Cube attacks: $p_{S_l} = L(k_0, ..., k_{n-1})$ is a linear polynomial.
- Solve a set of linear equations and recover the key.

Cube-Attack-Like Cryptanalysis [DMP+15]

Cube attack: $p_{S_l} = L(k_0, ..., k_{n-1})$ Cube-attack-like: using n_a aux. vars, $p'_{S_l} = L'(k_{i_1}, ..., k_{i_{n_i}})$, $n_i < n$

Offline phase Build a lookup table. $T = 2^{n_i+d}, M = 2^{n_i}$.

$k_{i_1}\ldots k_{i_{n_i}}$	Cube sum
0000	01011
0001	11010
1111	10110

Online phase $T = 2^{n_a+d}$

- **1** Set the value of n_a aux. vars.
- Query the cipher to obtain the cube sum.
- **③** Look up the table to recover the n_i key bits

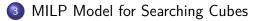
Task of the MILP Model

The algebraic degree of n rounds is 2^n . The first round can be linearized by avoiding adjacent cube variables.

- Find 2ⁿ⁻¹-dimensional cubes where n is as large as possible; (attack more rounds).
- Find balanced attacks where n_i and n_a are close and as small as possible. (low complexity).

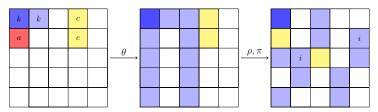
Outline

Cube-Attack-Like Crytanalysis



4) Main Results

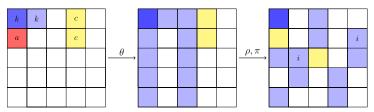
An Example



$$d = 64, \; n_a = 64, \; n_i = 64,$$

the cube sum of up to 7 rounds depends on only 64 key bits

An Example



$$d = 64, n_a = 64, n_i = 64,$$

the cube sum of up to 7 rounds depends on only 64 key bits

Core of the Model

- **(1)** Propagation of cube variables and the dimension d (through θ)
- **2** Propagation of key bits and n_a (through θ)
- Interaction of key bits and cube variables, and n_i (before χ)

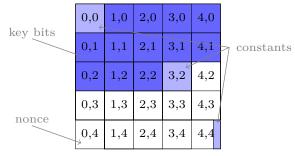
Mixed Integer Linear Programming

• An MILP problem is of the form

Solvers

- Gurobi, CPLEX, SCIP, ...
- Application to cryptanalysis since Mouha et al.'s pioneering work [MWGP11]

Model of KETJE as an Example



Initial state of Ketje Jr V1

Notations

- State: $a \xrightarrow{\theta} b \xrightarrow{\pi \circ \rho} c$ Activeness: $A \xrightarrow{\theta} B \xrightarrow{\pi \circ \rho} C$

A[x][y][z] = 1 if bit (x, y, z) is a cube variable.

Propagation of Cube Variables and d

	Cube vars $(A[x][y])$					a[x][y]				
	0	0	0	0	0					
	0	0	0	0	0					
	0	0	0	0	?					
	?	?	?	?	?	v_0				
	?	?	?	?	? 0	v_1				
Activeness of column sums: $G[x]$?	?	?	?	?	1				
Consumption of DF: $D[x]$?	?	?	?	?	0				

 C_{i} = C_{i

- [-1[-1

Example: (1) $a[x][3][z] = v_0$, $a[x][4][z] = v_0$, then A[x][3][z] = A[x][4][z] = 1, G[x][z] = 0, D[x][z] = 1(2) $a[x][3][z] = v_1$, $a[x][4][z] = v_2$, then A[x][3][z] = A[x][4][z] = 1, G[x][z] = 1, D[x][z] = 0

Dimension d $d = \sum A[x][y][z] - \sum D[x][z]$

Propagation of Cube Variables and d

• Relation of D, G and A

$A[x][y_0][z]$	$A[x][y_1][z]$	G[x][z]	D[x][z]	Inequalities
0	0	0	0	
0	1	1	0	$A[x][y_0][z] + A[x][y_1][z] - G[x][z] - 2D[x][z] \ge 0,$
1	0	1	0	
1	1	1	0	$-A[x][y_1][z] + G[x][z] + D[x][z] \ge 0,$
1	1	0	1	$-A[x][y_0][z] + G[x][z] + D[x][z] \ge 0.$

Propagation of Cube Variables and d

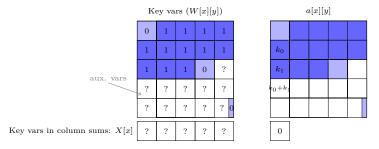
Activness of b
$$\begin{split} B[x][y][z] &= 1 \text{ if any of } A[x][y][z], \ G[x-1][z] \text{ or } G[x+1][z-1] \text{ is } 1. \\ B[x][y][z] - A[x][y][z] \geq 0, \\ B[x][y][z] - G[x+1][z-1] \geq 0, \\ B[x][y][z] - G[x-1][z] \geq 0, \\ A[x][y][z] + G[x-1][z] + G[x+1][z-1] - B[x][y][z] \geq 0. \end{split}$$

Activeness of c

$$C = \pi \circ \rho(B)$$

Cube-Attack-Like Cryptanalysis of Round-Reduced KECCAK Using MILP FSE 2019 23 / 27

Propagation of Key Bits and n_a



Example: $a[x][1][z] = k_0, a[x][2][z] = k_1, a[x][3][z] = k_0 + k_1, \text{then } W[x][3][z] = 1, X[x][z] = 0$ Constraint: X[x][z] + W[x][3][z] + W[x][4][z] = 1. $n_a: \qquad n_a = \sum_{x,z,3 \le y < 5} W[x][y][z] + \sum_z W[4][2][z].$

Interaction of Key Bits and Cube Variables, and n_i

$$W \xrightarrow{\theta} Y \xrightarrow{\pi \circ \rho} Z$$
$$A \xrightarrow{\theta} B \xrightarrow{\pi \circ \rho} C$$

Collect key bits which are adjacent to cube vars. $n_i = \#$ bits (x, y, z) where

 $Z[x][y][z] = 1 \land (C[x-1][y][z] = 1 \lor C[x+1][y][z])$

Outline

2 Cube-Attack-Like Crytanalysis

Main Results

Target	K	Rounds	Т	М	Source	
	96	5/13	2 ⁵⁶	2 ³⁸	[DLWQ17]	
Ketje Jr V1	96	5/13	2 ^{36.86}	2 ¹⁸	this	
	72	6/13	2 ^{68.04}	2 ³⁴	this	
Ketje Jr V2	96	5/13	2 ^{50.32}	2 ³²	[DLWQ17]	
	96	5/13	2 ^{34.91}	2 ¹⁵	this	
	80	6/13	2 ^{59.17}	2 ²⁵	this	
Ketje Sr V2	128	7/13	2 ^{113.58}	2 ⁴⁸	[DLWQ17]	
	128	• / = = =		2 ³³	this	
Xoodoo *	128	6/-	2 ⁸⁹	2 ⁵⁵	this	
Keccak-MAC-512	128	7/24	2 ¹¹¹	2 ⁴⁶	this	

* In the Ketje mode.

In conclusion:

Cube-attack-like cryptanalysis with (vs. without) MILP

- better attacks
- easier to find cubes
- This work does not threaten the security of any keyed KECCAK construction.

In conclusion:

Cube-attack-like cryptanalysis with (vs. without) MILP

- better attacks
- easier to find cubes

This work does not threaten the security of any keyed KECCAK construction.

Thank you for your attention!

Song, Guo

Cube-Attack-Like Cryptanalysis of Round-Reduced KECCAK Using MILP FSE 2019 27 / 27