Cryptanalysis of Reduced round SKINNY Block Cipher

Sadeghi Sadeghi¹, Tahereh Mohammadi² and Nasour Bagheri^{2,3}

¹ Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran, S.Sadeghi.Khu@gmail.com

² Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran, {T.Mohammadi,Nabgheri}@sru.ac.ir

³ School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran, Na.bagheri@gmail.com

Outline

- A brief description of SKINNY
- Zero-Correlation Linear Cryptanalysis of SKINNY
- MILP model for SKINNY64 cipher
 - Using MILP in Impossible differential cryptanalysis
- Searching Related-tweakey Impossible Differential Characteristics of SKINNY
- The related-tweakey Impossible Differential attack of SKINNY
- Conclusion
 - Cryptanalytic Results

A brief description of SKINNY

- SKINNY was introduced in CRYPTO'16. The variants of SKINNY are denoted as SKINNY-n-t, $t \in \{n, 2n, 3n\}$ (or TK1, TK2 and TK3).
- Two main versions, SKINNY64 and SKINNY128, i.e., SKINNY-64-64/128/192 and SKINNY-128-128/256/384.
- Each state is represented by a 4 × 4 square array where each cell is either a nibble or a byte.
- Each round consists of 5 steps, i.e., SubCells(SC), AddConstants(AC), AddRoundTweakey(ART), ShiftRows(SR), MixColumns(MC)

A brief description of SKINNY

- The key is updated with a permutation and the tweak is updated with a LFSR transformation additionally
- Note that, no LFSR is used in TK-1 or single key case.

Cryptanalysis of Reduced round SKINNY Block Cipher

Outline

- A brief description of SKINNY
- Zero-Correlation Linear Cryptanalysis of SKINNY
- MILP model for SKINNY64 cipher
 - Using MILP in Impossible differential cryptanalysis
- Searching Related-tweakey Impossible Differential Characteristics of SKINNY
- The related-tweakey Impossible Differential attack of SKINNY
- Conclusion
 - Cryptanalytic Results

Zero-Correlation Linear Cryptanalysis of SKINNY

• For f-function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ with input variable $x \in \mathbb{F}_2^n$, if we call v and u as the input and output masks, respectively, the linear approximation is defined as follows:

$$x \mapsto v.x \oplus u.f(x)$$

• Its probability can be defined as:

$$p(v,u) = pr(v, x \oplus uf(x) = 0)$$

• The correlation is:

$$C_f(v,u) = 2p(v,u) - 1$$

- The correlation of an approximation will be equal to zero if the probability of approximation is $\frac{1}{2}$.
- In zero-correlation linear cryptanalysis, we look for a linear approximation with zero correlation for all keys.

9-round Zero-correlation linear distinguishers for SKINNY

• $\Gamma_{in}^i \nleftrightarrow \Gamma_{out}^j$ show that the correlation of linear approximation of *r*-round SKINNY with input mask Γ_{in}^i (*i*-th nibble of input) to output mask Γ_{out}^j (*j*-th nibble of output) is zero.

Zero-Correlation Linear Cryptanalysis of SKINNY

Zero-Correlation Linear Cryptanalysis of SKINNY

Cryptanalysis of Reduced round SKINNY Block Cipher

9 / 33

Summary of the main results of Zero-correlation attacks on SKINNY

Vers.	#Rounds	log ₂ (Time)	log ₂ (Data)	log ₂ (Memory)
64(64)	14	62	62.58	64
64(128)	18	126	62.68	64

Outline

- A brief description of SKINNY
- Zero-Correlation Linear Cryptanalysis of SKINNY
- MILP model for SKINNY64 cipher
 - Using MILP in Impossible differential cryptanalysis
- Searching Related-tweakey Impossible Differential Characteristics of SKINNY
- The related-tweakey Impossible Differential attack of SKINNY
- Conclusion
 - Cryptanalytic Results

Mouha et al. at Inscrypt 2011:

Problem of finding optimal differential (linear) trail

Optimization problem in MILP

Optimize objective function within the solution range satisfying all the constraints.

min
$$f = \sum_{i} c_{i} x_{i}$$

S.t $x \in S = \{ Ax \le b, x \ge 0 \}$
 $x \in \mathbb{Z}^{k} \times \mathbb{R}^{n-k} \subseteq \mathbb{R}^{n}$

Cryptanalysis of Reduced round SKINNY Block Cipher

MILP Model for SKINNY64 Cipher

To make the MILP model, define a binary variable $x_i \in \{0,1\}$ for each round; $x_i = 0$ denotes the bit has no difference.

 $x_i = 1$ denotes the bit has difference.

For the input of the S-boxes in the *i*-th round, we define 16×4 binary variables: $x_{i_0}, x_{i_1}, \dots, x_{i_{63}}$

For the output of the S-boxes in the *i*-th round, we define 16×4 binary variables : $y_{i_0}, y_{i_1}, \dots, y_{i_{63}}$

MILP Model for SKINNY64 Cipher

$$4-\text{bit} \qquad S_{j} \qquad 4-\text{bit} \qquad y_{i_{0}}, y_{i_{1}}, y_{i_{2}}, y_{i_{3}}$$

$$A_{j} = \begin{cases} 1 \quad \text{If } j\text{-th Sbox is active} \\ 0 \quad \text{If } j\text{-th Sbox is not active} \end{cases}$$

$$x_{i_{0}} + x_{i_{1}} + x_{1} + x_{i_{1}} - A_{j} \ge 0$$

$$A_{j} - x_{i_{0}} \ge 0$$

$$A_{j} - x_{i_{1}} \ge 0$$

$$A_{j} - x_{i_{2}} \ge 0$$

$$A_{j} - x_{i_{3}} \ge 0$$
Objective Function:
$$\min \sum_{j} A_{j}$$

14 / 33

MILP Model for SKINNY64 Cipher

Differential Distribution Table (DDT)

We compute the probability that Δx propagates to Δy for each (Δx , Δy).

Define $X = \{(\Delta x, \Delta y) | \Pr(\Delta x \to \Delta y) \neq 0\}$

15 / 33

 $a \oplus b = c$ can be modeled with 1 inequality by removing each impossible (a, b, c)

 $a + b + c = 2 \times d$ *a*, *b*, *c* and d are binary and d is a dumy variable.

$$a + b + c = 2 \times d \implies \begin{cases} (a, b, c) \neq (0, 0, 1) \\ (a, b, c) \neq (0, 1, 0) \\ (a, b, c) \neq (1, 0, 0) \\ (a, b, c) \neq (1, 1, 1) \end{cases}$$

Using MILP in Impossible differential cryptanalysis

- Cui et al. proposed a method for searching impossible differential characteristic and zero-correlation linear distinguisher based on Mixed-Integer Linear Programming (MILP).
- Sasaki et al. proposed a new impossible differential search tool from the design and cryptanalysis aspects in using MILP. They presented an approach for evaluating s-boxes, including 8×8 s-boxes, in impossible differential cryptanalysis which was missing in Cui et al.'s paper.

Technique is simple.

- □ Input and output differences are fixed to specific values.
- □ MILP search whether or not there are propagations from input to output differences.
- □ If MILP model is infeasible, the pair is impossible.

Outline

- A brief description of SKINNY
- Zero-Correlation Linear Cryptanalysis of SKINNY
- MILP model for SKINNY64 cipher
 - Using MILP in Impossible differential cryptanalysis
- Searching Related-tweakey Impossible Differential Characteristics of SKINNY
- The related-tweakey Impossible Differential attack of SKINNY
- Conclusion
 - Cryptanalytic Results

Searching Related-tweakey Impossible Differential Characteristics of SKINNY

Figure 2: r-round of SKINNY in (a): TK1 model (b):TK2 model.

Searching Related-tweakey ID Characteristics of SKINNY-n-n and SKINNY-n-2n

A summary of the known related-tweakey impossible differential characteristics for SKINNY in both TK-1 and TK-2 model.

Cipher	Model Differentials	# Rounds
	$(\Delta(input), \Delta(tk_1^1), \Delta(output))$	12
	$(\Delta(S_1), \Delta(tk_1^1), \Delta(output))$	13
SKINNY	$(\Delta(input),\Delta(tk_1^1),0)$	11
(In TK-1 model)	$\left(\Delta(S_1),\Delta(tk_1^1),0 ight)$	12
	$\left(0,\Delta(tk_1^1),\Delta(output) ight)$	12
	$\left(0,\Delta(tk_1^1),0 ight)$	11
	$(\Delta(input), \Delta(tk_1^1), \Delta(tk_2^1)\Delta(output))$	12
	$(\Lambda(S_{\star}) \Lambda(tk^{1}) \Lambda(tk^{1}) \Lambda(output))$	14
	$(\Delta(\mathcal{S}_1), \Delta(\mathfrak{i}\kappa_1), \Delta(\mathfrak{i}\kappa_2), \Delta(\mathfrak{output}))$	15
	$\left(\Delta(input),\Delta(tk_1^1),\Delta(tk_2^1),0\right)$	12
	$(\Delta(input), 0, \Delta(tk_2^1), \Delta(output))$	11
SKINNY	$(\Delta(S_1), 0, \Delta(tk_2^1), \Delta(output))$	12
(In TK-2 model)	$\left(\Delta(input),0,\Delta(tk_2^1),0 ight)$	11
	$\left(0,\Delta(tk_1^1),\Delta(tk_2^1),\Delta(output) ight)$	14
	$\left(0,0,\Delta(tk_2^1),\Delta(output) ight)$	11
	$\left(0,\Delta(tk_1^1),\Delta(tk_2^1),0 ight)$	13
	$ig(0,0,\Delta(tk_2^1),0ig)$	11

Based on the previous Table:

For SKINNY-n-n and SKINNY-n-2n, we construct 13 and 15-round relatedtweakey ID characteristics, respectively. These improve the previous longest 12 and 14-round related-tweakey ID characteristics of SKINNY-n-n and SKINNY-n-2n, respectively.

13-round Related-tweakey ID Characteristics of SKINNY-n-n

MC ART Contradiction For example, we have considered this 13-round characteristic for 19-round attack on SKINNY-n-n 5.R 5R Inactive Fixed difference Unknow

 $\begin{array}{c} \text{Related-tweakey impossible differential characteristic} \\ \left(\Delta^0_{\texttt{0xm}}(S_1), \Delta^0_{\texttt{0xm}}(tk^1_1), \Delta^8_{\texttt{0xm}}(output)\right) \text{ for 13-round SKINNY in TK-1 model.} \end{array}$

Cryptanalysis of Reduced round SKINNY Block Cipher

22 / 33

15-round Related-tweakey ID Characteristics of SKINNY-n-2n

The differential $\left(\Delta_{0xm}^{i}(S_{1}), \Delta_{0xn}^{i}(tk_{1}^{1}), \Delta_{0xp}^{i}(tk_{2}^{1}), \Delta_{0xq}^{l}(output)\right)$ is a 15-round related tweakey impossible differential characteristic for SKINNYn-2n when the following conditions are satisfied:

- Choose (*i*, *l*) from the sets {(1,8), (3,10), (5,11), (6,9)}.
- $m = n \oplus p$.
- LFSR(p) = n.
- $n \oplus LFSR^7(p) = q$.

For SKINNY64-128, the possible values of m, n, p, and q that satisfy above conditions are listed in the following Table. For SKINNY128-256 the table can be derived by the same approach.

The values of m, n, p, and q for 15-round RK-ID as $(\Delta_{0xm}^i(S_1), \Delta_{0xn}^i(tk_1^1), \Delta_{0xp}^i(tk_2^1), \Delta_{0xq}^l(output))$ in TK2 model.

	m	1	2	3	1	5	6	7	0	0	٨	P	C	D	F	F
	ш	1	2	0	4	0	0	'	0	9	A	D	C	D	E	г
п	n	E	C	2	8	6	4	Α	F	1	3	D	7	9	В	5
*	р	F	Ε	1	С	3	2	D	7	8	9	6	В	4	5	Α
	q	7	F	8	Е	9	1	6	В	С	4	3	5	2	Α	D

15-round Related-tweakey ID Characteristics of SKINNY-n-2n

24 / 33

Outline

- A brief description of SKINNY
- Zero-Correlation Linear Cryptanalysis of SKINNY
- MILP model for SKINNY64 cipher
 - Using MILP in Impossible differential cryptanalysis
- Searching Related-tweakey Impossible Differential Characteristics of SKINNY
- The related-tweakey Impossible Differential attack of SKINNY
- Conclusion
 - Cryptanalytic Results

□ Impossible Differential Distinguisher, i.e.,

 $Pr(\Delta_X \rightarrow \Delta_Y) = 0$, where related tweakey differences are added to cancel state differences.

□ Key Recovery.

- $C_{in}(C_{out})$: bit conditions need to be verifed in the $r_b(r_f)$ rounds to ensure $\Delta_{in} \rightarrow \Delta_X(\Delta_{out} \rightarrow \Delta_Y)$.
- k_{in} , k_{out} : subkey bits involved in the extended rounds.
- $\Pr(\Delta_{in} \rightarrow \Delta_X) = 2^{-C_{in}}$
- $\Pr(\Delta_{out} \rightarrow \Delta_Y) = 2^{-C_{out}}$
- $2^{|k_{in} \cup k_{out}|(1-2^{-(C_{in}+C_{out})})^{N}}$: the number of key candidates left in the key space after N trials where N is the number of message pairs of input and output difference $(\Delta_{in}, \Delta_{out})$.

23-Round Related-Tweakey Impossible Differential Attack of SKINNYn-2n

0x8 0x1 0x9 0x2 0xA 0x3 0xB 0xC 0x4 0xD 0x5 0xE 0x6 0xF 0x7

Cryptanalysis of Reduced round SKINNY Block Cipher

23-Round Related-Tweakey Impossible Differential Attack of SKINNYn-2n

Cryptanalysis of Reduced round SKINNY Block Cipher

Outline

- A brief description of SKINNY
- Zero-Correlation Linear Cryptanalysis of SKINNY
- MILP model for SKINNY64 cipher
 - Using MILP in Impossible differential cryptanalysis
- Searching Related-tweakey Impossible Differential Characteristics of SKINNY
- The related-tweakey Impossible Differential attack of SKINNY
- Conclusion
 - Cryptanalytic Results

Cryptanalytic Results

Summary of the main results of attacks on SKINNY, where ID, RK-ID, and ZC denote impossible differential, related-key(tweakey) impossible differential, and zero correlation cryptanalysis, respectively.

Vers.	\boldsymbol{n}	Attack	# Rounds	$\log_2(\text{Time})$	$\log_2(\text{Data})$	$\log_2(Memory)$	Ref.
n-2n	64	ID	20	121.08	47.69	74.69	[TAY17]
		RK-ID	23	79^{\dagger}	-	-	$[ABC^+17]$
		RK-ID	23	125.91	62.47	124	[LGS17]
		RK-ID	23	124	62.47	77.47	this paper
		ZC	18	126	62.68	64	this paper
	128	ID	20	245.72	92.1	147.1	[TAY17]
		RK-ID	23	251.47	124.47	248	[LGS17]
		RK-ID	23	243.41	124.41	155.41	this paper
n-n	64	ID	18	57.1	47.52	58.52	[TAY17]
		RK-ID	19	63.03	61.47	56	[LGS17]
		RK-ID	19	62.83	61.30	48.30	this paper
		ZC	14	62	62.58	64	this paper
	128	ID	18	116.94	92.42	115.42	[TAY17]
		RK-ID	19	124.60	122.47	112	[LGS17]
		RK-ID	19	124.43	122.47	97.47	this paper

† : In this attack, 48 bits of the tweakey are considered publicly as tweak. So the upper bound for exhaustive search is 80 bits.

Thanks for your attention !

Cryptanalysis of Reduced round SKINNY Block Cipher

31 / 33