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Abstract. SKINNY is a family of lightweight tweakable block ciphers designed to
have the smallest hardware footprint. In this paper, we present zero-correlation linear
approximations and the related-tweakey impossible differential characteristics for
different versions of SKINNY .We utilize Mixed Integer Linear Programming (MILP)
to search all zero-correlation linear distinguishers for all variants of SKINNY, where
the longest distinguisher found reaches 10 rounds. Using a 9-round characteristic, we
present 14 and 18-round zero correlation attacks on SKINNY-64-64 and SKINNY-
64-128, respectively. Also, for SKINNY-n-n and SKINNY-n-2n, we construct 13 and
15-round related-tweakey impossible differential characteristics, respectively. Utilizing
these characteristics, we propose 23-round related-tweakey impossible differential
cryptanalysis by applying the key recovery attack for SKINNY-n-2n and 19-round
attack for SKINNY-n-n. To the best of our knowledge, the presented zero-correlation
characteristics in this paper are the first attempt to investigate the security of SKINNY
against this attack and the results on the related-tweakey impossible differential attack
are the best reported ones.
Keywords: SKINNY · Zero-correlation linear cryptanalysis · Related-tweakey impos-
sible differential cryptanalysis · MILP

1 Introduction
Because of the growing use of small computing devices such as RFID tags, the new challenge
in the past few years has been the application of conventional cryptographic standards to
small devices. Several lightweight block ciphers have been proposed to provide security
for resource-constrained hardware environment. We can name PRESENT [BKL+07],
SIMECK [YZS+15] SIMON, and SPECK [BTCS+15] as some of the lightweight block
cipher designs.

The SKINNY [BJK+16] lightweight tweakable block cipher is introduced to compete
with NSA recent design SIMON [BTCS+15] in terms of hardware/software performances.
Designers of this block cipher have investigated its security against the well known attacks in
such contexts as linear and differential cryptanalysis [Mat93, BS91], impossible differential
cryptanalysis [BBS99, Knu98], integral attack [DKR97, KW02], and etc. In this paper,
we search for zero-correlation distinguishers [BR14] and the related-tweakey impossible
differential characteristics [JD03] which have been missing in the security analysis presented
by the designers so far.
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The impossible differential attack which was independently proposed by Biham et al.
[BBS99] and Knudsen [Knu98] is one of the most popular cryptanalytic tools for block
ciphers. Impossible differential cryptanalysis starts with finding an input difference which
results in an output difference with probability 0. Related-tweakey attacks [Bih94] give
a cryptanalyst the possibility to choose an appropriate relation between tweakeys and
then predict the encryptions under these tweakeys. Indeed, related-tweakey impossible
differential attack [JD03] is a combination of the two aforesaid attacks.

Zero-correlation linear cryptanalysis is a novel cryptanalytic approach proposed by
Bogdanov and Rijmen [BR14] in 2012. In contrast to conventional linear cryptanalysis
which uses linear approximations with high correlation, zero-correlation linear cryptanalysis
is based on linear approximations with a correlation exactly equal to zero for all keys. The
main trouble in the original proposal is the data complexity of cryptanalysis, in which almost
the whole codebook is required. In a follow-up work, Bogdanov et al. proposed a novel
framework to reduce the data needed using multiple independent linear approximations
with a correlation of zero simultaneously [BW12]. To remove the independence assumption,
a theoretical model was proposed based on the multidimensional linear distinguisher
[BLNW12].

Mixed Integer Linear Programming was first introduced by Mouha et al [MWGP11]
who used it to minimize the number of active s-boxes in a differential or linear characteristic.
After that, Sun et al in [SHW+14a, SHW+14b] extended Mouha et al’s work from byte
oriented ciphers to bit oriented ciphers. They presented a method for constructing a model
that finds the actual linear/differential trail with the specified number of active S-boxes.
In their method, when a solution is found, the MILP model is updated in a way that a new
constraint is added and the currently found solution is discarded in the next iteration. A
binary variable xi is defined for every input or output bit mask/difference and is set to 0 if
the corresponding bit mask/difference is zero and 1 otherwise. At each round, a new binary
variable Aj is defined for each S-box and is set to 0 if the input mask/difference of the
corresponding S-box is zero and 1 otherwise. Hence, the activity of S-box is demonstrated
by Aj . Now, the objective function of the MILP model is set so as to minimize the number
of active S-boxes (i.e. f =

∑
j Aj). In order to find the minimum number of active S-boxes

in a linear or differential trail, only the binary values representing the activity of S-boxes
concern us. Therefore, we need to restrict these variables to be binary and can let the
others to be any real number, to speed up solving the problem. However, if we aim to find
the exact values of all bit-level inputs and outputs, we must restrict all state variables to
be binary, which makes the model an integer programming model that is harder to solve
than a mixed integer programming model. MILP has been widely used for cryptanalysis of
block ciphers recently so that [FWG+16, XZBL16, AAA+15, SBA17, BJK+16, CJF+16]
can be mentioned as some examples.

1.1 Related Work.
In [LGS17], the authors could attack 19, 23, and 27 rounds of SKINNY-n-n, SKINNY-n-2n,
and SKINNY-n-3n respectively, using related-tweakey impossible differential and rectangle
attack. They extended a 14-round related tweakey impossible differential trail (with 4.5
rounds in both forward and backward directions) and 12-round related tweakey impossible
differential trail (with 4.5 rounds in backward and 2.5 rounds in forward direction) to
attack 23 and 19 rounds of SKINNY-n-n and SKINNY-n-2n, respectively. In our paper,the
proposed impossible differential trail consists of 15 rounds which is one round more than
the one proposed in [LGS17]. Despite using the longer trail, we present 19 and 23-round
attack against SKINNY-n-n and SKINNY-n-2n with less complexity. The main obstacle
against reaching to an attack with more rounds in comparison with [LGS17] is the key
schedule of skinny, which for attacking 25 rounds of SKINNY, the complexity is more than
guessing the whole key.
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The authors of [TAY17] utilized the 11-round impossible differential characteristic given
in the main paper and presented 18, 20, and 22-round attack applying the key recovery
attack on SKINNY-64-64 (or 128-128), SKINNY-64-128 (or 128-265), and SKINNY-64-192
(or 128-384), respectively. In [ABC+17], the authors used an 11-round related-tweakey
impossible differential characteristic to propose a 21-round attack. By assuming some
tweakey bits as public key, they could extend the attack to 22 and 23 rounds (extending 6
rounds in forward and 4 rounds in backward direction). Sun et al. [SGL+17] obtained 16
related-tweakey impossible differential characteristics for 12 rounds of SKINNY-64-128
using the constraint programming (CP) method and proposed an 18-round attack on
SKINNY-64-128. Untill now, no result on the security of SKINNY against zero-correlation
cryptanalysis has been published prior to this work. A brief comparison of these attacks
with the results of this paper and the complexities are given in Table 1.

1.2 Our Contribution.

The main purpose of this paper is to search related-tweakey impossible differential and
zero-correlation linear characteristics on SKINNY. In this paper, we searched all related-
tweakey impossible differential characteristics having only one active bit in the input
mask and output mask or tweakeys using Mixed Integer Linear Programming (MILP)
while the cell size s = 4. The longest related-tweakey impossible characteristics found
under the assumption of having a single active bit are 13 and 14-round for SKINNY-
64-64 and SKINNY-64-128, respectively. The same characteristics for SKINNY-128-128
and SKINNY-128-256 can be obtained by some slight changes. We also show that in
special cases the 14-round SKINNY-64-128 distinguishers can be extended one round
by assuming more than one active bits in input, output, and tweakeys. Based on the
15-round obtained distinguisher, we present key recovery attack and propose 23-round
related-tweakey impossible differential attack on SKINYY-n-2n. We utilize the 13-round
distinguisher to attack 19 rounds of SKINNY-n-n. Also, this paper proposes 9-round
and 10-round zero correlation distinguishers on all variants of SKINNY. Based on the
aforementioned 9-round zero correlation distinguisher, 14 and 18-round multidimentional
zero-correlatin linear cryptanalysis is applied on SKINNY-64-64 and SKINNY-64-128,
respectively. Our results are shown in Table 1.

1.3 Outline.

The remainder of this paper is organized as follows. Section 2 provides the required
preliminaries, including a brief description of SKINNY. In section 3, related-tweakey
impossible differential for different variants of SKINNY are proposed. In section 4, we
describe 23-round related-tweakey impossible differential attack on SKINNY-n-2n in details.
In section 5, zero-correlation linear characteristics for different variants of SKINNY are
proposed and in section 6, the details of 18-round zero-correlation linear cryptanalysis of
SKINNY-64-128 is presented. Finally, we conclude the paper in section 7.

2 Preliminaries

In this section, we give a brief description of SKINNY, its round function and key schedule.
Then we give a summary of zero-correlation linear cryptanalysis. Finally, the method for
using MILP in impossible differential and zero-correlation cryptanalysis is explained.The
variables used in this section are introduced in the context.
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Table 1: Summary of the main results of attacks on SKINNY, where ID, RK-ID, and
ZC denote impossible differential, related-key(tweakey) impossible differential, and zero
correlation cryptanalysis, respectively.

Vers. n Attack # Rounds log2(Time) log2(Data) log2(Memory) Ref.

n-2n

64

ID 20 121.08 47.69 74.69 [TAY17]
RK-ID 23 79† - - [ABC+17]
RK-ID 23 125.91 62.47 124 [LGS17]
RK-ID 23 124 62.47 77.47 this paper
ZC 18 126 62.68 64 this paper

128
ID 20 245.72 92.1 147.1 [TAY17]

RK-ID 23 251.47 124.47 248 [LGS17]
RK-ID 23 243.41 124.41 155.41 this paper

n-n

64

ID 18 57.1 47.52 58.52 [TAY17]
RK-ID 19 63.03 61.47 56 [LGS17]
RK-ID 19 62.83 61.30 48.30 this paper
ZC 14 62 62.58 64 this paper

128
ID 18 116.94 92.42 115.42 [TAY17]

RK-ID 19 124.60 122.47 112 [LGS17]
RK-ID 19 124.43 122.47 97.47 this paper

† : In this attack, 48 bits of the tweakey are considered publicly as tweak. So the upper bound
for exhaustive search is 80 bits.

2.1 A brief description of SKINNY
The lightweight block ciphers of the SKINNY family have 64-bit and 128-bit block versions.
In both n = 64 and n = 128 versions (n is the block size), the internal state is viewed
as a 4× 4 square array of cells, where each cell can be a nibble (when n = 64) or a byte
(when n = 128). SKINNY is built using the tweakey framework [JNP14] and there are
three versions with tweakey sizes t = n, t = 2n and t = 3n. For simplicity in writing, we
show the SKINNY with block size n and tweakey size t with SKINNY-n-t.

Initialization: The cipher takes a plaintext m = m0||m1|| · · · ||m14||m15, while the
mi are s-bit cells (we have s = 4 for the 64-bit block SKINNY versions and s = 8 for the
128-bit block SKINNY versions). The cipher’s internal state is initialized as follows:

IS =


m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15


The Round Function: One encryption round of SKINNY is composed of the fol-

lowing five operations: SubCells(SC), AddConstants(AC), AddRoundTweakey(ART),
ShiftRows(SR) and MixColumns(MC) (illustration is in Figure 1(a)).

SubCells: Each cell of the cipher internal state goes through an s-bit S-box. For
s = 4, this s-box is shown in Table 2.

Table 2: The 4-bit S-box used in SKINNY-64 in hexadecimal form.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S4[x] C 6 9 0 1 A 2 B 3 8 5 D 4 E 7 F

AddConstants: In this step the round constants derived from using a 6-bit LFSR
are combined with the state.

AddRoundTweakey: The first and the second rows of all tweakey arrays are extracted
and bitwise exclusive-ORed to the cipher internal state, respecting the array positioning.
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Figure 1: (a):SKINNY round function, (b):The tweakey schedule of SKINNY

Then, the tweakey arrays are updated in 2 steps as shown in Figure 1(b). In the first step,
the permutation PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] is applied on tweakey
array. In the second step, every cell of the first and the second rows is individually updated
with an LFSR as shown in Table 3.

Table 3: The LFSRs used in TK-2 model of SKINNY. The s parameter gives the size of
cell in bits.

TK s LFSR

TK-2 4 (x0||x1||x2||x3) −→ (x1||x2||x3||x0 ⊕ x1),
8 (x0||x1||x2||x3||x4||x5||x6||x7) −→ (x1||x2||x3||x4||x5||x6||x7||x0 ⊕ x2)

Note that, no LFSR is used in TK-1 or single key case. More details about LFSRs in
TK-3 model are given in [BJK+16].

ShiftRows: The second, third, and the fourth cell rows are respectively rotated by 1,
2 and 3 positions to the right. This operation can be performed by applying a permutation
P on the cells positions of the cipher internal state cell array.

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12]

MixColumns: Each column of the cipher’s internal state array is multiplied by a
binary matrix M given below:

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


2.2 Zero-Correlation Linar Cryptanalysis
As described in [SN14], we consider an n-bit block cipher with input variable x ∈ Fn2 , and
f-function f : Fn2 7−→ Fn2 . If we call v and u as the input and output masks, respectively,
the linear approximation is defined as follows:

x 7−→ v · x⊕ u · f(x).

Its probability can be defined as:

p(v;u) = pr(v · x⊕ u · f(x) = 0),

and it has the correlation of:

Cf (v;u) = 2p(v;u)− 1.

We note that the correlation of an approximation will be equal to zero if the probability of
approximation is 1

2 .
In zero-correlation linear cryptanalysis, we look for a linear approximation with zero

correlation for all keys. There are usually some XORs, F-functions and branches used in
each round of any cipher. According to [BR14], there are three rules for these operations:
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Lemma 1. (XOR operation) Either the three linear selection patterns at an XOR ⊕
are equal or the correlation over ⊕ is exactly 0.

Lemma 2. (Branching operation) Either the three linear selection patterns at a branch-
ing point • sum up to 0 or the correlation over • is exactly 0.

Lemma 3. (Permutation approximation) Over a permutation φ, if the input and
output selection patterns are neither both zero nor both nonzero, the correlation over φ is
exactly zero.

In fact, lemma 1 means that in zero-correlation attack, the inputs and outputs of the
XOR operation should be considered equal and if not, the correlation will be zero. Also,
in lemma 2, for the branching operation, the input should be equal to the XOR of outputs.
Otherwise, the correlation will be zero.

Zero correlation attack
In this subsection, we give a brief explanation about the zero-correlation attack. More
details are given in [BW12, SN14, BR14]. Similar to the most of the conventional attacks
on block ciphers, zero correlation attack has two stages. In the first stage, the attacker
should find a linear approximation with correlation zero for some rounds of the target
cipher as a distinguisher. Then in the second stage, he adds some rounds before and after
the distinguisher and tries to extract the subkeys of these additional rounds.

In the multidimensional case, there exist m independent linear base approximations
such that all of their l = 2m−1 nonzero linear combinations have correlation zero. As shown
in [BLNW12], the statistical value T can be computed to find possible key candidates. In
order to compute T , for each i ∈ Fm2 the attacker allocates a counter V [i] and initializes
it to zero. Then for each distinct plaintext, he computes the corresponding data in Fm2
and increments the counter V [i] of this value by one. Then the attacker computes the
statistical T as follows:

T =
2m−1∑
i=0

(V [i]−N2−m)2

N2−m(1− 2−m) = N2m

(1− 2−m)

2m−1∑
i=0

(
V [i]
N
− 1

2m

)2
.

The statistical T follows a χ2-distribution with mean and variance of µ0 = l
(

2n−N
2n−1

)
and

σ2
0 = 2l

(
2n−N
2n−1

)2
respectively, for the right key guess while it follows a χ2-distribution

with mean and variance of µ1 = l and σ2
1 = 2l for the wrong guess key. With error

probability type-I as α and error probability type-II as β, if one considers the decision
threshold t = µ0 + σ0z1−α = µ1 − σ1z1−β , then the amount of required distinct known
plaintexts (N) is as follows:

N = 2n(z1−α + z1−β)√
l
2 − z1−β

,

where zp = Φ−1(p) for 0 < p < 1 and Φ is the cumulative function of the standard normal
distribution. The number of required pairs of plaintext-ciphertext depends on the number
of linear approximations with correlation zero, block length, and error probabilities type-I
and II.

2.3 Using MILP in Impossible differential and Zero-correlation crypt-
analysis

In [CJF+16], Cui et al. proposed a method for searching impossible differential character-
istic and zero-correlation linear distinguisher based on Mixed-Integer Linear Programming
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(MILP). In this MILP problem, we can set the objective function to the expression which
conveys the differential characteristic’s probability and the linear constraint phrase is
configured to form the cryptosystem. Thus, with respect to the set cipher system, we can
obtain the optimum probability of differential characteristic forming the cipher system
corresponding to the answer to the MILP problem. Although, if we cannot obtain the
answer to the MILP problem for a specific input or output differential, it shows that the
differential characteristic cannot be formed in the specified cipher system for that input
and output differential value. Hence, the input and output differentials will be invalid
differential characteristics of the given cipher system. Achieving a case where the answer
to the MILP problem cannot be obtained leads to searching for MILP-based impossible
differential characteristics.

Recently, Sasaki et al. proposed a new impossible differential search tool from the
design and cryptanalysis aspects in [ST17] using MILP. They presented an approach for
evaluating s-boxes, including 8× 8 s-boxes, in impossible differential cryptanalysis which
was missing in [CJF+16]. In this paper, we utilize MILP approach and the results of
aforementioned papers to search related-tweakey impossible differential and zero-correlation
linear characteristics.

3 Searching Related-tweakey Impossible Differential Char-
acteristics of SKINNY

In this section, we present related-tweakey impossible differential for different variants of
SKINNY. Because of the special structure of SKINNY and its performance in key recovery,
it is not enough to only search for the longest trails. It means that it is possible to recover
more rounds with a 12-round characteristic than a 14-round characteristic. The place
of the active bit differences of input, output, and tweakey can affect the final recovered
rounds. [ABC+17] can be mentioned as an example. Therefore, we tried to search and
list all suitable characteristics in this section. It should be mentioned that we list the
notations related to each section in the beginning of that section.

3.1 Related-tweakey Impossible Differential Characteristics of SKINNY
in TK1 and TK2 model

The following notations are used in the rest of this subsection (also see Figure 2):

(input) : represents input of the first internal state in the first round of impossible
differential characteristic.

S1 : represents the internal state after SC in the first round of impossible
differential characteristic.

tk1
1, tk

1
2 : represents the first round tweakey in TK-1 and TK-2 model, respectively.

(output) : represents output of the last internal state in the last round of impossible
differential characteristic.

∆[X] : represents a nonzero difference in at least one bit of state X.
∆i[X] : represents a nonzero difference in the i-th cell (i = 0, . . . , 15) of state X.
∆i
j [X] : represents a nonzero difference in the j-th bit of the i-th cell

(
j = 0, 1, 2, 3

(or j = 0, . . . , 7) and i = 0, . . . , 15
)
of state X.

∆i
0xj[X] : represents difference of the i-th cell (i = 0, . . . , 15

)
of state X is 0xj.

”0” : represents zero difference.
”?” : represents an unknown difference.
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Figure 2: r-round of SKINNY in (a): TK1 model (b):TK2 model.

In [BJK+16], the miss-in-the-middle approach was used to find 11-round impossible
differential characteristic of SKINNY as ∆12(input) 119(∆8(output). Then, they utilized
it to attack 16-round SKINNY-64-64 (or 128-128) and 18-round SKINNY-64-128. In
this paper, in order to find related-tweakey impossible differential characteristics, we use
MILP technique to find all related-tweakey impossible differential characteristics based
on bit-wise search for SKINNY in TK-1 and TK-2 model. The characteristics in the
models are searched considering 1 active bit input or output. However, to reach the
best trail in some models due to the structure of trails, we conducted the search under
the assumption of having more than 1 bit difference in input or output. Since we can
consider the difference in any of input, output, and tweakey inputs (tk1

1, tk
1
2), so we have

considered the differential models as
(
∆(input),∆(tk1

1),∆(output)
)
and

(
∆(input),∆(tk1

1),
∆(tk1

2),∆(output)
)
, for SKINNY in TK-1 and TK-2 model, respectively. Since in some

characteristics, the difference value of input, output, tk1
1 or tk1

2 (in TK-2 model) can
be considered zero, we classify the differential trails by the items with zero value. For
example, the differential model

(
∆(input), 0,∆(tk1

2),∆(output)
)
in TK-2 model means

that we have only considered the difference in input, tk1
2, and output bits and we do not

have any difference in tk1
1. Given that the round-tweakey is combined with internal state

after SC, we can consider the difference of the internal state after SC in the first round
(S1) instead of its input in some cases, so we are able to find longer characteristics. A
summary of the best-known approximations for SKINNY in both TK-1 and TK-2 model is
presented in Table 4. It should be mentioned that we searched the characteristics in case
of s = 4. However, these characteristics are extendable for s = 8 by some slight changes in
differences. In addition, in some models, since there are differences in all bits of a cell, we
have considered the differential in that cell as truncated.

3.1.1 Searching Related-tweakey Impossible Differential characteristics of SKINNY
in TK-1 model.

Differences as
(
∆(input), ∆(tk1

1), ∆(output)
)
. Considering this case, we found out

that the longest related-tweakey impossible differential characteristics reach 12 rounds.
We listed all the related-tweakey impossible differential characteristics in Table 5.
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Table 4: A summary of the known related-tweakey impossible differential characteristics
for SKINNY in both TK-1 and TK-2 model.

Cipher Model Differentials # Rounds Ref(
∆(input),∆(tk1

1),∆(output)
)

12 Table 5(
∆(S1),∆(tk1

1),∆(output)
)

13 Table 7
SKINNY

(
∆(input),∆(tk1

1), 0
)

11 Table 16
(In TK-1 model)

(
∆(S1),∆(tk1

1), 0
)

12 Table 8(
0,∆(tk1

1),∆(output)
)

12 Table 9(
0,∆(tk1

1), 0
)

11 Table 20(
∆(input),∆(tk1

1),∆(tk1
2)∆(output)

)
12 Table 10(

∆(S1),∆(tk1
1),∆(tk1

2),∆(output)
) 14 § 3.1.215(

∆(input),∆(tk1
1),∆(tk1

2), 0
)

12 Table 13(
∆(input), 0,∆(tk1

2),∆(output)
)

11 Table 14
SKINNY

(
∆(S1), 0,∆(tk1

2),∆(output)
)

12 Table 15
(In TK-2 model)

(
∆(input), 0,∆(tk1

2), 0
)

11 Table 16(
0,∆(tk1

1),∆(tk1
2),∆(output)

)
14 Table 17(

0, 0,∆(tk1
2),∆(output)

)
11 Table 18(

0,∆(tk1
1),∆(tk1

2), 0
)

13 Table 19(
0, 0,∆(tk1

2), 0
)

11 Table 20

For example, if we pick n = A and choose (i, j, k) = (12, 8, 8), we can derive a 12-round

Table 5: Related-tweakey impossible differential characteristics(
∆i(input),∆j

0xn(tk1
1),∆l

0xn(output)
)
for 12-round SKINNY in TK-1 model.

r n (i, j, l)

12 any non-zero difference

(1,9,13),(1,10,15),(1,11,11),(2,8,8)
(3,9,13),(4,8,8),(4,10,15),(5,9,13)

(6,9,13),(6,10,15),(7,10,15),(7,11,11)
(12,8,8),(12,9,13),(12,10,15),(12,11,11)
(13,9,13),(13,10,15),(14,9,13),(14,10,15)
(14,11,11),(15,8,8),(15,9,13),(15,10,15)

(15,11,11)

related-tweakey impossible differential characteristic as follows:

(0, . . . , 0,∆12, 0, 0, 0︸ ︷︷ ︸
∆12(input)

; 0, . . . , 0,∆8
0xA, 0, 0, 0, 0, 0, 0, 0)︸ ︷︷ ︸
∆8

0xA(tk
1
1)

12R9 (0, . . . , 0,∆8
0xA, 0, 0, 0, 0, 0, 0, 0).︸ ︷︷ ︸

∆8
0xA(output)

Differences as
(
∆(S1), ∆(tk1

1), ∆(output)
)
. In this model, we consider two cases as

follows:

case 1: In this case we noticed that the longest related-tweakey impossible differ-
ential characteristic reaches 12 rounds, which is reported in Table 6. For
example, Liu et al. [LGS17] used 12-round related-tweakey impossible differen-
tial characteristic

(
∆1

0xm(S1),∆1
0xm(tk1

1),∆9(output)
)
, (by choosing (i, j) = (1, 9)

and considered 0xm as fixed) and utilized it to attack 19-round SKINNY-n-n.

case 2: We found out that the longest related-tweakey impossible differential charac-
teristics, when there is difference in the input of tk1

1, input of the internal state
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Table 6: Related-tweakey impossible differential characteristics(
∆i

0xm(S1),∆i
0xm(tk1

1),∆j(output)
)
for 12-round SKINNY in TK1 model.

r m (i, j)

12 any non-zero difference (0,8),(1,9),(1,10),(2,8),(2,9),(4,10),(5,8),(5,9),(5,11)
(6,9),(6,10),(7,10)

after SC at the first round, and also output of the internal state after MC in
the last round, reach 13 rounds. We listed these related-tweakey impossible
differential characteristics in Table 7.

Table 7: Related-tweakey impossible differential characteristics(
∆i

0xm(S1),∆j
0xm(tk1

1),∆l
0xm(output)

)
for 13-round SKINNY-64-64.

r m (i, j, l)
13 any non-zero difference (0,0,8),(3,3,11),(5,5,9),(7,7,10),(12,3,11),(13,0,8)

As an example, for any non-zero difference 0xm and by choosing (i, j, l) = (0, 0, 8),
we can obtain a 13-round related-tweakey impossible differential characteristic(
∆0

0xm(S1),∆0
0xm(tk1

1), ∆8
0xm(output)

)
. The details of this characteristic are de-

picted in Figure 3. We will consider this characteristic for 19-round attack on
SKINNY-n-n in Appendix A.

Differences as
(
∆(S1), ∆(tk1

1), 0
)
. In this case, we observed that the longest related-

tweakey impossible differential characteristic reaches 12 rounds, which is reported in
Table 8.

Differences as
(
0, ∆(tk1

1), ∆(output)
)
. We list all the related-tweakey impossible differ-

ential characteristics for 12-round SKINNY with differences as
(
0,∆(tk1

1),∆(output)
)

in Table 9. Sun et al [SGL+17] also obtained these characteristics using CP approach
and this table is the same with their results.

3.1.2 Searching Related-tweakey Impossible Differential characteristics of SKINNY
in TK-2 model.

In this section, we obtain related-tweakey impossible differential characteristics of SKINNY
in the TK-2 model (i.e both tk1

1 and tk1
2 are considered).

Differences as
(
∆(input), ∆(tk1

1), ∆(tk1
2), ∆(output)

)
. In this case, the longest related-

tweakey impossible differential characteristic obtained consists of 12 rounds. (see
Table 10).

Table 8: Related-tweakey impossible differential characteristics
(
∆i

0xm(S1),∆j
0xm(tk1

1), 0
)

for 12-round SKINNY-64-64.

r m (i, j)

12 any non-zero difference (0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7)
(12,3),(13,0),(14,1)

Table 9: The related-tweakey impossible differential characteristics(
0,∆j

0xn(tk1
1),∆l

0xn(output)
)
for 12-round SKINNY-64-64.

r n (j, l)
12 any non-zero difference (8,8),(13,9),(15,10),(11,11)
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Figure 3: Related-tweakey impossible differential characteristic(
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1),∆8
0xm(output)

)
for 13-round SKINNY in TK-1 model.
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Table 10: Related-tweakey impossible differential characteristics(
∆i(input),∆j

n(tk1
1),∆j

p(tk1
2),∆l

q(output)
)
for 12-round SKINNY-64-128.

r (i, j, l) (n, p, q)
(1,13,9),(1,15,10),(1,11,11),(2,8,8),(3,13,9)
(4,8,8),(4,15,10),(5,13,9),(6,13,9),(6,15,10)

12 (7,15,10),(7,11,11),(12,8,8),(12,11,11),(12,13,9) (2,2,0),(2,0,1),(3,1,1)
(12,15,10),(13,13,9),(13,15,10),(14,11,11) (1,0,2),(1,1,3),(0,2,2)
(14,13,9),(14,15,10),(15,8,8),(15,13,9)

(15,15,10),(15,11,11)

As an example, if we consider (i, j, l) = (12, 8, 8) and (n, p, q) = (2, 2, 0) we can obtain
a 12-round related-tweakey impossible differential characteristic.

Differences as
(
∆(S1), ∆(tk1

1), ∆(tk1
2), ∆(output)

)
. In this difference model, we have

considered the input and output differences to include one or more than one active
bit, to get better result. Therefore, in this model we consider the following two cases:

case 1: The differential
(
∆i

0xm(S1),∆i
0xn(tk1

1),∆i
0xp(tk1

2),∆l(output)
)
is a 14-round

related-tweakey impossible differential characteristic when the following condi-
tions are satisfied:
(1) Choose (i, l) from the sets{

(0, 8), (0, 9), (1, 8), (2, 10), (3, 10), (4, 9), (4, 10), (6, 8), (6, 9), (6, 11), (7, 9), (7, 10)
}
.

(2) m = n⊕ p.
(3) LFSR(p) = n.

The possible values of m, n, and p that satisfy conditions (2) and (3) are listed
in Table 11. This table is constructed for s = 4. For s = 8, the table can be
derived by the same approach.

Table 11: The values of m, n, and p for 14-round RK-ID as(
∆i

0xm(S1),∆i
0xn(tk1

1),∆i
0xp(tk1

2),∆l(output)
)
in TK2 model.

⇓
m 1 2 3 4 5 6 7 8 9 A B C D E F
n E C 2 8 6 4 A F 1 3 D 7 9 B 5
p F E 1 C 3 2 D 7 8 9 6 B 4 5 A

For example, Liu et al. [LGS17] used 14-round related-tweakey impossible differ-
ential characteristic

(
∆2

0xm(S1),∆2
0xn(tk1

1),∆2
0xp(tk1

2),∆10(output)
)
, (by choosing

(i, l) = (2, 10) and considering one of (m, n, p) as fixed) and utilized it to attack
23-round SKINNY-n-2n.

case 2: The differential
(
∆i

0xm(S1),∆i
0xn(tk1

1),∆i
0xp(tk1

2),∆l
0xq(output)

)
is a 15-round

related-tweakey impossible differential characteristic when the following condi-
tions are satisfied:
(1) Choose (i, l) from the sets

{
(1, 8), (3, 10), (5, 11), (6, 9)

}
.

(2) m = n⊕ p.
(3) LFSR(p) = n.
(4) n⊕ LFSR7(p) = q.

For s = 4, the possible values of m, n, p, and q that satisfy conditions (2), (3),
and (4) are listed in Table 12. For s = 8 the table can be derived by the same
approach.
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Table 12: The values of m, n, p, and q for 15-round RK-ID as(
∆i

0xm(S1),∆i
0xn(tk1

1),∆i
0xp(tk1

2),∆l
0xq(output)

)
in TK2 model.

⇓

m 1 2 3 4 5 6 7 8 9 A B C D E F
n E C 2 8 6 4 A F 1 3 D 7 9 B 5
p F E 1 C 3 2 D 7 8 9 6 B 4 5 A
q 7 F 8 E 9 1 6 B C 4 3 5 2 A D

As an example, if we consider (i, l) = (1, 8) and (m, n, p, q) as one of the columns
of Table 12, we can obtain the 15-round related-tweakey impossible differential
characteristic

(
∆1

0xm(S1),∆1
0xn(tk1

1),∆1
0xp(tk1

2),∆8
0xq(output)

)
which is considered

for 23-round attack on SKINNY-n-2n in section 4.3. The details are depicted
in Figure 4.

Differences as (∆(input), ∆(tk1
1), ∆(tk1

2), 0). In this case, we found that the longest
related-tweakey impossible differential characteristics reach 12 rounds, which are
reported in Table 13.

Table 13: Related-tweakey impossible differential characteristics(
∆i(input),∆j

0xn(tk1
1),∆j

0xn(tk1
2), 0

)
for 12-round SKINNY.

r n (i, j)

12 any non-zero difference (12,5),(12,6),(13,1),(13,4),(13,6),(14,3),(14,4),(14,5)
(0,15),(7,14)

Differences as (∆(input), 0, ∆(tk1
2), ∆(output)). In this case, we realized that the

longest related-tweakey impossible differential characteristics reach 11 rounds, which
are reported in Table 14.

Table 14: Truncated Related-tweakey impossible differential characteristics
(∆i(input), 0,∆k(tk1

2),∆l(output)) for 11-round SKINNY.

r (i, k, l)

11 (12,8,13),(12,9,13),(12,11,13),(13,9,9),(13,9,14),(13,10,9)
(14,10,12),(14,10,15),(15,8,8)

Differences as (∆(S1), 0, ∆(tk1
2), ∆(output)). In this case, the longest related-tweakey

impossible differential characteristics will reach 12 rounds, as listed in Table 15.

Table 15: Truncated Related-tweakey impossible differential characteristics(
∆i

0xm(S1), 0,∆i
0xm(tk1

2),∆l(output)
)
for 12-round SKINNY.

r m (i, l)

12 any non-zero difference (0,8),(1,9),(1,10),(2,8),(2,9),(4,10),(5,8),(5,9)
(5,11),(6,9),(6,10),(7,10)

Differences as (∆(input), ∆(tk1
1), 0) and (∆(input), 0, ∆(tk1

2), 0). We considered the
differences as (∆(input),∆(tk1

1), 0) in TK-1 model or (∆(input), 0,∆(tk1
2), 0) in TK-2

model and noticed that the longest related-tweakey impossible differential character-
istics reach 11 rounds. These characteristics are listed in Table 16.



Sadegh Sadeghi, Tahereh Mohammadi and Nasour Bagheri 137

ART

AC
SR MC

ART

AC
SR MC

Round 3

Round 4 Round 5

ART

AC
SR MC

ART

AC
SR MC

Round 6

Round 7

ART

AC
SR MC

ART

AC

Round 8

SR MC

Round 11

ART

AC
SR MC

ART

AC

SR

MC
ART

AC

Round  12 Round 13

SR MC

P

TK2 updates with LFSR 

T

P

TK2 updates with LFSR 

T

PT

ART

AC

Round 14

SR MC

PT

TK2 updates with LFSR 

PT
PTPT

TK2 updates with LFSR 

PT

ART

AC

Round 15

SR MC

Round 10

Round 2

PT

TK2 updates with LFSR 

SR

ART

AC
SR MC

PT

Round 9

Contradiction

ART

AC
SR MC

PT

Round 1

SC

ART

AC
SR MC

PT

ART

AC
SR MC

P

TK2 updates with LFSR 

T

Inactive

Active

Unknown

 Fixed difference

0xn 0xp

0xm
0xm

0xn 0xp 0xn 0xn=LFSR(p)

0xn 0xn 0xn LFSR
2
(p) 0xn LFSR

2
(p)

0xn LFSR
3
(p) 0xn LFSR

3
(p)

0xn LFSR
4
(p) 0xn LFSR

4
(p)

0xn LFSR
5
(p) 0xn LFSR

5
(p) 0xn LFSR

6
(p)

0xn LFSR
6
(p) 0xn LFSR

7
(p)

0xq

0xq

Figure 4: Related-tweakey impossible differential characteristic(
∆1

0xm(S1),∆1
0xn(tk1

1),∆1
0xp(tk1

2),∆8
0xq(output)

)
for 15-round SKINNY in TK-2 model.
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Table 16: Truncated Related-tweakey impossible differential characteristics
(∆i(input),∆j(tk1

1), 0)(in TK-1 model) or (∆i(input), 0,∆j(tk1
2), 0) for 11-round

SKINNY.

r (i, j)

11

(0,9),(0,12),(0,14),(1,11),(1,12),(1,13),(1,15),(2,8),(3,13)
(3,14),(4,8),(4,12),(4,15),(5,9),(5,13),(5,14),(6,9),(6,12)
(6,13),(6,14),(6,15),(7,9),(7,11),(7,12),(7,14),(7,15),(12,8)
(12,9),(12,10),(12,11),(12,12),(12,13),(12,14),(12,15),(13,9)
(13,10),(13,12),(13,13),(13,14),(13,15),(14,11),(14,12),(14,13)
(14,14),(14,15),(15,8),(15,9),(15,10),(15,11),(15,13),(15,14)

(15,15)

Table 17: Related-tweakey impossible differential characteristics
(0,∆j

n(tk1
1),∆j

p(tk1
2),∆l

q(output)) for 14-round SKINNY in TK-2 model.

r l q (j, n, p)

8 0 (9,2,3)
3 (9,1,2)

9 0 (14,2,3)
14 3 (14,1,2)

10 0 (11,2,3)
3 (11,1,2)

11 0 (13,2,3)
3 (13,1,2)

Table 18: Related-tweakey impossible differential characteristics (0, 0,∆(tk1
2),∆(output))

for 11-round SKINNY in TK-2 model.

r
(
0, 0,∆k(tk1

2),∆l(output)
)

11

(k, l)
(8,8),(10,8),(13,8),(9,9),(10,9),(13,9),(14,9),(9,10)

(12,10),(14,10),(15,10),(13,11)(
0, 0,∆k

p(tk1
2),∆l(output)

)
(p, k, l)

(0,11,10),(0,15,11)

Differences as (0, ∆(tk1
1), ∆(tk1

2), ∆(output)). When we consider the differences as
(0,∆(tk1

1), ∆(tk1
2),∆(output)), the longest related-tweakey impossible differential

characteristics reach 14 rounds, which are listed in Table 17.
As an example, if we consider

(
l = 8, q = 0, (j, n, p) = (9, 2, 3)

)
, we can obtain 14-

round related-tweakey impossible differential characteristic as
(
0,∆9

2(tk1
1),∆9

3(tk1
2),∆8

0(output)
)
.

Differences as (0, 0, ∆(tk1
2), ∆(output)). In this case, the longest related-tweakey im-

possible differential characteristics reaches 11 rounds, as reported in Table 18.

Differences as (0, ∆(tk1
1), ∆(tk1

2), 0). In this case, we only considered difference in
tweakey (both tk1

1 and tk1
2) and obtained 13-round related-tweakey impossible dif-

ferential characteristics, listed in Table 19. Also, the characteristics for 11 and 12
rounds are listed in this table.
For example, Ankele et al. [ABC+17] used 11-round related-tweakey impossible
differential characteristic

(
0,∆8(tk1

1),∆8(tk1
2), 0

)
and utilized it to attack 23-round

SKINNY-64-128.
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Table 19: Related-tweakey impossible differential characteristics
(
0,∆(tk1

1),∆(tk1
2), 0

)
for

11, 12 and 13-round SKINNY in TK-2 model.(
0,∆j(tk1

1),∆k(tk1
2), 0

)
r (j, k)

(8,8),(9,9),(9,13),(10,10),(11,11),(12,12)
11 (14,12),(12,14),(13,9),(13,13),(13,14)

(14,13),(14,14),(14,15),(15,14),(15,15)(
0,∆j

n(tk1
1),∆j

p(tk1
2), 0

)
r j (n, p)
12 0, · · · , 7 (0,0),(1,1),(2,2),(3,3)
13 8, · · · , 15 (1,2),(2,3),(3,0)

Table 20: Related-tweakey impossible differential characteristics
(
0,∆j(tk1

1), 0
)
(in TK-1

model) or
(
0, 0,∆j(tk1

2), 0
)
for 10 and 11-round SKINNY.

r j
10 0,· · · ,15
11 8,· · · ,15

Differences as (0, ∆(tk1
1), 0) or (0, 0, ∆(tk1

2), 0). We considered the differences as (0,∆(tk1
1), 0)

in TK-1 model or (0, 0,∆(tk1
2), 0) in TK-2 model and found that the longest related-

tweakey impossible differential characteristics reach 11 rounds. These characteristics
for 10 and 11 rounds are listed in Table 20.

4 Related Tweakey Impossible Differential Attack on SKINNY

4.1 Notations

The following notations are used in the rest of paper:

P : represents plaintext.
C : represents ciphertext.

tki1, tk
i
2 : represents the i-th round tweakey in TK-1 and TK-2 model, respectively.

TKi : represents the i-th round tweakey. This is equal to the result of exclusive-
ORing the first and the second rows of tki1 and tki2 and TKi[j] represents
the j-th cell (0 ≤ j ≤ 15) of TKi.

Xi : represents the internal state before SC in round i and Xi[j] represents
the j-th cell (0 ≤ j ≤ 15) of Xi.

Yi : represents the internal state before ART in round i and Yi[j] represents
the j-th cell (0 ≤ j ≤ 15) of Yi.

Zi : represents the internal state before SR in round i and Zi[j] represents
the j-th cell (0 ≤ j ≤ 15) of Zi.

Wi : represents the internal state before MC in round i and Wi[j] represents
the j-th cell (0 ≤ j ≤ 15) of Wi.

col(i): represents the column i(1 ≤ i ≤ 4).
X : represents the corresponding variable under the related tweakey differ-

ence encryption.
∆Xi,∆Xi[j] : represents the difference at state Xi and cell Xi[j], respectively.
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4.2 An Overview of Impossible Differential Cryptanalysis
We start with recalling the framework introduced by Boura et al in [BNPS14]. In this
method, the cipher is split to three parts: E = E3 ◦ E2 ◦ E1 in which E2 consists of an
impossible differential ∆X 9 ∆Y and by propagating ∆X and ∆Y through E−1

1 and
E3 respectively, we obtain ∆in and ∆out with probability 1. Therefore, we can verify
the differential ∆X ← ∆in and ∆Y ← ∆out with probability 1

2cin
and 1

2cout
respectively.

Notice that cin and cout are defined as the number of bit-conditions needed to be verified
to obtain ∆X from ∆in and ∆Y from ∆out, respectively. We consider kin and kout as the
key information involved in E1 and E3, respectively.

For a given pair of inputs, the probability of having a difference ∆X and an output
difference ∆Y under a random key guess is 2−(cin+cout). The probability for a trial key to
be placed in the set of possible keys should be small enough so that the number of pairs
N can be chosen appropriately. This probability is calculated as:

P = (1− 2−(cin+cout))N ' e−N×2−(cin+cout)
.

By adopting the strategy presented in [BNPS14], we consider the smallest value of pairs
such that e−N×2−(cin+cout)

< 1
2 , to reduce the exhaustive search by at least one bit.

Now, we need to find N pairs which verify a given differential. From [BNPS14], using
the limited birthday problem, the cost of obtaining the N pairs (CN ) is:

max
{

min
∆∈{∆in,∆out}

{√
N2n+1−|∆|

}
, N2n+1−|∆in|−|∆out|

}
, (1)

verifying that CN < 2n, where n is the size of the block cipher. By considering the cost of
one encryption as CE , the time complexity CT is given by the following equation:

CT =
(
CN +

(
N + 2|kin∪kout| N

2cin+cout

)
C
′

E + 2|K|P
)
CE , (2)

where C ′E is the ratio of the cost of partial encryption to the full encryption and 2|K|P is the
cost of the exhaustive search for the key K after the impossible differential attack. It should
be noted that in [BNPS14], a generic complexity analysis of impossible differential attacks
against block ciphers was presented. Afterwards, in [Der16], Derbez showed that the results
of the paper [BNPS14] may be incorrect and sometimes can produce a miscalculation in
time complexity. In fact, it is because of the structure of the key schedule which has a
non-negligible impact on the time complexity of such attacks and it has to be added to
the time complexity CT . Boura et al. did not consider this case in their investigations.
Recently, Boura et al. in [BLNPS18], introduced techniques which complete and improve
the method and the given analysis in [BNPS14]. Based on this new paper, the part of
the key schedule which connects the sub-keys of the first rounds to the sub-keys of the
last rounds can be seen as a black box and the computation above should be taken into
account in the estimation of time complexity. The details of this technique can be seen in
[BLNPS18]. Note that the formula provided for time complexity in [BNPS14, BLNPS18]
is just a lower-bound approximation of the time complexity and for an exact determination
of the complexity, one must perform the detailed attack step by step. Therefore, in this
paper, we performed the detailed attack step by step to compute the time complexity.

To describe our related-tweakey impossible differential attack on the SKINNY-n-2n
and SKINNY-n-n, first, we should introduce the following lemma [ABC+17, LGS17]:

Lemma 4. The equation S(x + ∆i) + S(x) = ∆0 has one solution x on average for
∆i,∆0 6= 0. Similar result holds for the inverse S-Box, S−1.

Using this lemma, we are going to present the 23-round related-tweakey impossible
differential attack on SKINNY-n-2n in the following section.



Sadegh Sadeghi, Tahereh Mohammadi and Nasour Bagheri 141

There are some slight differences between different variants of SKINNY. SKINNY-64-64
and SKINNY-128-128 just differ in the cell size. SKINNY-64-128 and SKINNY-128-256
differ in cell size and the LFSR operation of the key schedule. Since our attacks are
based on the same 15-round distinguisher for SKINNY-64-128 and SKINNY-128-256 and
the same 13-round distinguisher for SKINNY-64-64 and SKINNY-128-128, we present
the details of attacks as a function of the cell size s, where s = 4 and s = 8 in case of
SKINNY-64 and SKINNY-128 respectively. The attack on the 19-round SKINNY-n-n
work in a similar manner and is presented in Appendix A.

4.3 23-round Related Tweakey Impossible Differential Attack on SKINNY-
n-2n

In this section, the details of our 23-round attack on SKINNY-n-2n will be presented
utilizing related-tweakey impossible differential cryptanalysis. We use the 15-round related-
tweakey impossible differential trail, which is shown in Figure 4, and extend it by 3
and 5 rounds in backward and forward directions respectively (see Figure 5). In this
attack, instead of the tweakey TK1, we can obtain the equivalent tweakey ETK by using
ETK = MC(SR(TK1)) in the first round, so we can start our tweakey recovery attack at
Y1; given that there is no tweakey used before Y1. The plaintext P can be recovered by
applying MC−1, SR−1, AC−1, and SC−1 layers on Y1. In the following section, we first
describe the overall strategy of attack and then go through details.

Overall Strategy In this section, we explain the overall strategy of the attack when s = 4
based on Figure 5. For s = 8, the attack can be followed by the same approach.
Figure 5 shows that in the state cells, what kind of information (just difference or
just value or both difference and value) is needed to verify the differential path from
∆X19 → ∆C and ∆Y4 → ∆P . As an example, during the key recovery phase in
rounds 19 to 23, those key guesses for which the given ciphertext pair follows the
differential trail from ∆X19 → ∆C (shown by gray cells) are collected. We can
do this by checking if ∆Xi+1 will lead to the required difference ∆Wi or not for
19 ≤ i ≤ 23 in each round. Starting the procedure from ∆C, to calculate ∆Xi in
each round i, it is required to know the difference and the values of state in the
active cells of the corresponding ∆Yi’s. To compute the required state values of Yi’s
in each round i, knowledge of the state values of cells (that might not be active
differentially) and also the key values in the next rounds (round i+ 1 till round 23)
are required, on which the Yi’s are dependent.
As shown in Figure 5, the values of constant differentials TK2[7], TK4[1], TK18[7],
TK20[1], and TK22[0], in rounds 2, 4, 18, 20, and 22 respectively, affect the 23-round
attack. In addition, these differentials are dependent on each other and by choosing
any of input differentials of the 15-round impossible characteristic, the others can be
defined. These differentials are shown in a table which we call it Tweakey Differentials
Table (TDT) (see Table 21).
For example, from the first column of TDT, if we consider the value of difference
in TK4[1] equal to 0x1 (∆TK4[1] = 0x1), the value of difference in TK18[7] must
be 0x7 to construct a 15-round related-tweakey impossible differential trail (see
Table 12). By choosing these differences, the other differences in TK2[7], TK20[1],
and TK22[0] should be 0x9, 0xD, and 0x8, respectively. It should be mentioned that
all the 255 differences in case of s = 8 can be calculated and form the TDT by the
same approach.
In this 23-round attack, instead of using just one characteristic (one column of TDT),
we use all of these characteristics (all columns of TDT). The general procedure of
this attack is to use 15 lists Li(i = 1, · · · , 15) for storing pairs. In fact, during the



142 Cryptanalysis of Reduced round SKINNY Block Cipher

Table 21: The TDT table.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
TDT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TK2[7] 1 9 3 A 6 F 5 C 4 D 7 E 2 B 1 8

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
TK4[1] 2 1 2 3 4 5 6 7 8 9 A B C D E F

l l l l l l l l l l l l l l l
TK18[7] 3 7 F 8 E 9 1 6 B C 4 3 5 2 A D

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
TK20[1] 4 D A 7 5 8 F 2 6 B C 1 3 E 9 4

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
TK22[0] 5 8 1 9 2 A 3 B C 4 D 5 E 6 F 7

attack procedure, the data related to column i of TDT is saved in Li list and the
attack will be continued based on this list. Using this technique, the adversary will
be able to remove more wrong keys than the case of using just one trail with the
same initial data. For this purpose, for each pair of plaintext and ciphertext, first,
the adversary guesses the value of 7th cell of ETK(ETK[7]) in the first round to
calculate the value of difference ∆Y2[7] in the second round. Here, we study two
cases. First, when the adversary uses one of the impossible differential characteristics
and second when the adversary uses all characteristics.

Case a. When the adversary uses one of the impossible differential characteristics (one
column of TDT):
In this case, the adversary should check the equality of ∆Y2[7] = ∆TK2[7] for
each pair after calculating ∆Y2[7] based on the guessed ETK[7]. This will lead
to an s-bit filter on the remained pairs. Also, by knowing the value of difference
in Y2, the probability of having those differences in Z3 will be p = 2−s.

Case b. When the adversary uses all impossible differential characteristics (all columns
of TDT is considered in the attack):
In this case, after guessing ETK[7] and calculating ∆Y2[7] for each pair, the
adversary chooses i index based on the first row of TDT such that:

TDT [1][i] = ∆Y2[7]

Then stores this pair on list Li (TDT [m][n] means the mth row of nth column
of TDT). For example, if ∆Y2[7] = 0xA, the corresponding pair will be saved on
list L3 and the same approach applies for storing the remained pairs. Obviously,
each pair will be stored in one of the lists and there is no need to filtering in
this step. Also, by knowing the value of differences in Y2, the probability of
having the differences in Z3 will be p = 1. Then the adversary can complete
the attack based on these lists for each pair. As an example, consider the
adversary calculates the value of ∆Y4[1] (i.e., the input of impossible differential
characteristic) by guessing the related keys in the first rounds for the pairs in
ith list (Li). For each pair the adversary checks if:

∆Y4[1] = TDT [2][i].

If the equation is not correct, the corresponding pair will be omitted from the
list. The same process will be applied for the other lists. Therefore, this step
results in a total of an s-bit filter on the remained pairs. This procedure should
be continued for the other rounds to determine the value of difference ∆X19[8]
and remove the wrong keys.



Sadegh Sadeghi, Tahereh Mohammadi and Nasour Bagheri 143

In this paper, the 23-round cryptanalysis is described in details based on the second
case in the following section:

Data Collection The adversary should construct 2x structures at Y1 and consider all the
possible values in 4 cells Y1[5, 7, 8, 15] for each structure, while the remaining cells take
a fixed value. By using 2x+|∆in| = 2x+4s messages, we can generate 2x+2|∆in| = 2x+8s

pairs of messages (P, P ), then ask the encryption oracle to obtain the corresponding
ciphertexts (C,C). Then for each ciphertext pair, we check whether n − |∆out|
bits are zero or not and discard it if false. Note that in our 23-round attack on
SKINNY-n-2n this step is skipped as n = |∆out| and in our 19-round attack on
SKINNY-n-n, this step is not skipped. The expected number of the remaining pairs is
approximately N = 2x+2|∆in|−(n−|∆uot|) = 2x+8c plaintext pairs. This step requires
a total of 2x+|∆in|+1 = 2x+8c+1 encryption calls.

Tweakey Recovery For each of the N pairs

1. Guess ETK[7] and compute Y2[7] and then by using Table 21 (TDT), determine
i index such Y2[7] = TDT [1][i] and store the pair in the list Li and repeat this
for the other pairs. Obviously, each pair will be saved in one list and there is
no need to filtering in this step. The time complexity of this step is N.2s and
the number of tests left for the next step is N.2s.

2. Satisfying the round 23, by applying the following steps on all N message pairs
on all lists, leads to the determination of the number of possible values of
TK23[0 : 7]:
(a) From the knowledge of the value of ciphertext pair, we can compute

∆X23[8, 12], since there is no need to have any tweakey information to
compute these cells. Due to the MC operation on the active cells of col(1)
of W22, we have ∆X23[4] = ∆X23[8]⊕∆X23[12]. Given that:

S−1(Y23[4])⊕ S−1(Y23[4]⊕∆Y23[4]︸ ︷︷ ︸
Y 23[4]

) = ∆X23[4],

the knowledge of the ∆X23[4] and ∆Y23[4] allows the attacker to calculate
Y23[4] = Z23[4] ⊕ TK23[4] as a solution of the above equation by using
lemma 4. Now, the attacker can determine TK23[4].

(b) We can compute ∆X23[14] from the knowledge of Z23[14] and ∆Z23[14].
Based on the properties of MC operation on col(3) of W22, the equation
∆X23[2] = ∆X23[6] = ∆X23[14] helps us to know the difference values of
∆X23[2],∆X23[6]. Since

S−1(Y23[2])⊕ S−1(Y23[2]⊕∆Y23[2]) = ∆X23[2],
S−1(Y23[6])⊕ S−1(Y23[6]⊕∆Y23[6]) = ∆X23[6],

by knowing the difference values of ∆Y23[2],∆Y23[6],∆X23[2] and ∆X23[6],
the lemma 4 guarantees one solution on average and we can obtain Y23[2, 6]
and thus TK23[2, 6] (due to Y23[2] = z23[2]⊕TK23[2] and Y23[6] = z23[6]⊕
TK23[6]).

(c) We can compute ∆X23[15] from the knowledge of Z23[15] and ∆Z23[15].
Based on the properties of MC operation on col(4) of W22, ∆X23[7] will
be simply determined using ∆X23[7] = ∆X23[15]. Since

S−1(Y23[7])⊕ S−1(Y23[7]⊕∆Y23[7]) = ∆X23[7],

Y23[7] can be derived by using lemma 4 and the knowledge of the value of
Z23[7] helps us to determine TK23[7].



144 Cryptanalysis of Reduced round SKINNY Block Cipher

(d) Guess TK23[0, 1, 3, 5]. Hence, we can compute Z22 and ∆Z22 as shown in
Figure 5.

At this step, the attacker can uniquely determine tk1
1[3] and tk1

2[3] from the
knowledge of ETK[7] and TK23[0]. This helps her to determine ETK[15] and
TK21[1]. The time complexity of this step is N.25s and the number of tests
left for the next step is N.25s.

3. Satisfying the round 22, by applying the following steps on all N message pairs
on all lists for the remaining tweakeys, leads to the determination of the number
of possible values of TK22[2, 3, 6, 7]:
(a) From the knowledge of Z22[14] and ∆Z22[14], we can compute ∆X22[14].

Based on the properties of MC operation on col(3) of W21, we have
∆X22[2] = ∆X22[14]. Hence, we can determine ∆X22[2]. Since

S−1(Y22[2])⊕ S−1(Y22[2]⊕∆Y22[2]) = ∆X22[2],

by using lemma 4, Y22[2] can be determined. Now, since Y22[2] = Z22[2]⊕
TK22[2], TK22[2] can be determined

(b) Guess TK22[3, 6, 7]. Hence, we can compute col(3) and col(4) of W21
and ∆W21 as shown in Figure 5. From this information, we can compute
∆X21[8, 12]. Based on the properties of MC operation on col(1) of W20,
we have ∆X21[8] = ∆X21[12]. Checking if ∆X21[8] and the active cell
∆X21[12] are equal will lead to an s-bit filter on the remaining tweakeys.

The time complexity of this step is N.28s and the number of tests left for the
next step is N.27s.

4. Satisfying the round 22, by applying the following steps on all N message pairs
on all lists for the remaining tweakeys, leads to the determination of the number
of possible values of TK22[0, 1, 4, 5]:
(a) From the knowledge of Z22[12] and ∆Z22[12] we can compute ∆X22[12].

Based on the properties of MC operation on col(1) of W21, we have
∆X22[4] = ∆X22[12] and thus ∆X22[4] will be simply determined. Since

S−1(Y22[4])⊕ S−1(Y22[4]⊕∆Y22[4]) = ∆X22[4],

and we have Y22[4] = Z22[4] ⊕ TK22[4], the value of TK22[4] can be
determined based on lemma 4.

(b) From the knowledge of Z22[13] and ∆Z22[13], we can compute ∆X22[13].
Based on the properties of MC operation on col(2) of W21, we have
∆X22[5] = ∆X22[13]. Since

S−1(Y22[5])⊕ S−1(Y22[5]⊕∆Y22[5]) = ∆X22[5],

and we have Y22[5] = Z22[5]⊕ TK22[5], by using lemma 4, TK22[5] can be
determined.

(c) Guess TK22[0, 1]. For each pair on list Li, ∆Y22[0] can be determined. In
fact, ∆Y22[0] = ∆Z22[0] ⊕∆TK22[0] and ∆TK22[0] can be determined
from TDT as ∆TK22[0] = TDT [5][i]. Compute Z21 and ∆Z21 as shown
in Figure 5.

The time complexity of this step is N.29s and the number of tests left for the
next step is N.29s.

5. Satisfying the round 21, by applying the following steps on all N message pairs
on all lists for the remaining tweakeys, leads to the determination of the number
of possible values of TK21[0, 2, 5, 6]:
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(a) From the knowledge of Z21[12] and ∆Z21[12] we can compute ∆X21[12].
Based on the properties of MC operation on col(1) of W20, we have
∆X21[0] = ∆X21[12]. Since Y21[0] = Z21[0]⊕ TK21[0] and we have

S−1(Y21[0])⊕ S−1(Y21[0]⊕∆Y21[0]) = ∆X21[0],

thus, by using lemma 4, TK21[0] can be determined.
(b) We can compute ∆X21[13] from the knowledge of Z21[13] and ∆Z21[13].

Based on the properties of MC operation on col(2) of W20, we have
∆X21[13] = ∆X21[5]. Since Z21[5] = Y21[5]⊕ TK21[5], we have

S−1(Y21[5])⊕ S−1(Y21[5]⊕∆Y21[5]) = ∆X21[5],

hence, by using lemma 4, TK21[5] can be determined.
(c) Based on the properties of MC operation on col(3) of W20, we have

∆X21[2] = ∆X21[6] = ∆X21[14]. Since Y21[2] = Z21[2] ⊕ TK21[2] and
Y21[6] = Z21[6]⊕ TK21[6], we have

S−1(Y21[2])⊕ S−1(Y21[2]⊕∆Y21[2]) = ∆X21[2],

S−1(Y21[6])⊕ S−1(Y21[6]⊕∆Y21[6]) = ∆X21[6],

hence, by using lemma 4, we can determine TK21[2, 6]. For each list Li,
checking if ∆X21[5] = TDT [4][i] will generally lead to an s-bit filter on all
Li lists.

At this step, the attacker can uniquely determine tk1
1[1, 2, 4, 7] and tk1

2[1, 2, 4, 7]
from the knowledge of TK23[2, 3, 4, 5] and TK21[0, 2, 5, 6]. This helps her to
determine ETK[1, 2, 5, 6, 8, 9, 14] and TK3[1]. The time complexity of this step
is N.29s and the number of tests left for the next step is N.28s.

6. Since ETK[5, 8, 15] is known from the previous steps, we can satisfy the round
1 by applying the following steps on all N message pairs on all lists for the
remaining tweakeys.
(a) From the knowledge of ETK[5, 8, 15], ∆Y2[8, 5, 15] can be determined.

Based on the properties of MC−1 operation on col(3) of X3, we have
∆Y2[5] = ∆Y2[15] and ∆Y2[15] = ∆Y2[8]. This will lead to two s-bit filters.

The time complexity of this step is N.28s and the number of tests left for the
next step is N.26s.

7. Since we know TK21[1] from the previous steps, we can satisfy the round 21 by
applying the following steps on all N message pairs on all lists for the remaining
tweakeys. This will lead to the determination of the number of possible values
of TK21[4, 7]:
(a) Guess TK21[4, 7]. Compute Z20 and ∆Z20 as shown in Figure 5. Checking

if X20[10] = X20[14] will lead to an s-bit filter on the remaining tweakeys.
At this step, the attacker can uniquely determine tk1

1[0, 5] and tk1
2[0, 5] from the

knowledge of TK23[1, 6] and TK21[4, 7].
The time complexity of this step is N.28s and the number of tests left for the
next step is N.27s.

8. Satisfying the round 20, by applying the following steps on all N message pairs
on all lists for the remaining tweakeys, leads to the determination of the number
of possible values of TK20[2, 6]:
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(a) From the knowledge of Z20[14] and ∆Z20[14] we can compute ∆X20[14].
Based on the properties of MC operation on col(3) of W19, we have
∆X20[2] = ∆X20[14]. Since Y20[2] = Z20[2]⊕ TK20[2], we have

S−1(Y20[2])⊕ S−1(Y20[2]⊕∆Y20[2]) = ∆X20[2].

Now by using lemma 4, TK20[2] can be simply determined.
(b) Guess TK20[6]. Compute ∆X19[8] and for each Li list, checking if ∆X19[8] =

TDT [3][i]. This will generally lead to an s-bit filter.
At this step, the attacker can uniquely determine tk1

1[9, 10] and tk1
2[9, 10] from

the knowledge of TK22[4, 5] and TK20[2, 6]. The time complexity of this step
is N.28s and the number of tests left for the next step is N.27s.

9. Satisfying the first round, by applying the following step on all N message pairs
on all lists for the remaining tweakeys, leads to the determination of the number
of possible values of ETK[11]:
(a) Guess ETK[11]. Since ETK[1, 2, 5− 9, 14, 15] are known from the previous

steps, we can compute Y2 and ∆Y2 as shown in Figure 5.
At this step, the attacker can uniquely determine tk1

1[6] and tk1
2[6] from the

knowledge of TK23[7] and ETK[11]. The time complexity of this step is N.28s

and the number of tests left for the next step is N.28s.
10. Satisfying the second round, by applying the following step on all N message

pairs on all lists for the remaining tweakeys, leads to the determination of the
number of possible values of TK2[1, 2, 6]:
(a) Guess TK2[1, 2, 6]. Knowledge of these cells allows the attacker to compute

Y3 and ∆Y3 as shown in Figure 5. Therefore, from the knowledge of TK3[1],
∆Y4[1] can be simply determined. Checking if ∆Y4[1] = TDT [2][i], for each
pair on Li list, will certainly lead to an s-bit filter.

At this step, the attacker can uniquely determine tk1
1[8, 12, 15] and tk1

2[8, 12, 15]
from the knowledge of TK22[2, 3, 6] and TK2[1, 2, 6]. The time complexity of
this step is N.211s and the number of tests to verify the impossible distinguisher
is N.210s.

Complexity analysis In this attack, the parameters are as follows:

• |∆in| = 4s, |∆out| = 16s.
• cin = 3s. For more details, there is

2s bit-conditions in the ∆X2 propagates to ∆X3,
s bit-conditions in the ∆X4 propagates to ∆Y4.
So we can verify the differential ∆P → ∆Y4 with probability 1

23s .
• cout = 16s. For more details, there is

4s bit-conditions in the ∆X23 propagates to ∆X22,
3s bit-conditions in the ∆X22 propagates to ∆X21,
6s bit-conditions in the ∆X21 propagates to ∆X20,
3s bit-conditions in the ∆X20 propagates to ∆X19.

So we can verify the differential ∆C → ∆X19 with probability 1
216s .

• |kin ∪ kout| = 29s. For more details, the key information used in the attack is
26s for tk1

1[i], tk1
2[i] , i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15,

3s for tk1
1[i]⊕ LFSR11(tk1

2[i]) , i = 11, 13, 14.
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Thus, based on the method proposed in [BNPS14], we can calculate the data, time,
and memory complexity as follows:
The probability that a given pair of inputs has a difference ∆in and an output
difference ∆out, under a random key guess, is 2−(cin+cout). The probability for a trial
key to be placed in the set of possible keys should be small enough so that number
of pairs, N , must be chosen appropriately. This probability is calculated as follows:

P = (1− 2−(cin+cout))N = (1− 2−19s)2x+8s

' e−2x−11s

.

By adopting the strategy presented in [BNPS14], we consider the number of pairs such
that e−2x−11s

< 1
2 , to reduce the exhaustive search by at least one bit. By choosing

x = 45.47 (resp. x = 91.40) in the case of SKINNY-64-128 (resp. SKINNY-128-256),
the remaining 29-nibble subkey space is reduced to

TKremain = 2|kin∪kout|(1− 2−(cin+cout))N '229se−2x−11s

'229×4e−245.47−11×4
' 2112

(resp. 229×8e−291.40−11×8 ' 2216.70). By exhaustively searching the TKremain =
2112 (resp. 2216.70) remaining tweakey candidates with 23s remaining tweakey bits
(TKremain × 23s), which are not used in the attack, we can recover the tweakey
candidates.
Data complexity of this attack is

D = 2N×2n+1−|∆in|−|∆out| =22x+2|∆in|−(n−|∆out|)×2n+1−|∆in|−|∆out|

=2x+|∆in|+1 = 245.47+4×4+1 = 262.47

(resp. 291.40+4×8+1 = 2124.41) chosen plaintexts. Then, the time needed for obtaining
N pairs of messages (D), multiplying the number of pairs by the average time needed
for trying key candidates out (N.211s) and the time needed for trying the remaining
key candidates out and recovering the complete key will determine the complexity.
So the the attack requires

T =D +N.211s + TKremain × 23s

=262.47 + 2121.47 + 2112 × 212 = 2124.21

(resp. T = 2124.41 + 2243.41 + 2216.70 × 224 = 2243.61) encryptions which is the overall
time complexity in case of SKINNY-64-128 (resp. SKINNY-128-256). The memory
complexity of the attack is dominated by the memory needed for storing 2x+32=77.47

(resp. 2x+64=155.41) pairs, which is 277.47 (resp. 2155.41) in case of SKINNY-64-128
(resp. SKINNY-128-256).

Remark

In our attack, the time complexity of step 10 is N.211s. Actually, similar to the method used
in [LGS17], this complexity can be reduced to N.29s and it reduces the total complexity
as a factor of 2−0.2 in our attack. For this purpose, step 10 can be performed as follows:
For each pair on list Li, (i = 1, · · · , 15), the attacker guesses TK2[2]. Knowledge of this cell
allows her to compute ∆Y3[14] and so ∆X4[1]. From the knowledge of ∆Y4[1](= TDT [1][i])
and by using lemma 4, X4[1] can be simply determined. Now, two subtweakey cells
TK2[2, 6] can be calculated as given below:
since S(X3[1])⊕ S(X3[11]) = TK3[1]⊕X4[1]⊕W3[13], by constructing a table to store
input values X3[1] and X3[11] for the two S-boxes for each possible right hand value, input
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values can be retrieved. For each right hand value, we have 2s possible combinations of
X3[1] and X3[11]. Then we can calculate TK2[1] = X3[1]⊕W2[9]⊕W2[13]⊕ Y2[1] and
TK2[6] = X3[11]⊕W2[11]⊕ Y2[6]. So the time complexity of this step can be considered
as N.29s and the number of tests to verify the impossible distinguisher would be N.210s.

5 Zero-Correlation Linear Attack

5.1 Searching Zero-correlation Linear distinguishers of SKINNY
In this section, we use ”0” to denote a zero mask, Γi to denote a nonzero mask in i-th
nibble (i = 0, . . . , 15), and ”?” to denote a zero or nonzero mask. Also, we use Γiin

r9Γjout
to show that the correlation of linear approximation of r-round SKINNY with input mask
Γiin (i-th nibble of input) to output mask Γjout (j-th nibble of output) is zero.

5.1.1 9-round Zero-correlation linear distinguishers for SKINNY

By using miss-in-the-middle approach, we firstly found a 9-round zero-correlation distin-
guisher as follows:

(Γ15
in) 99(Γ12

out).

As can be seen in Figure 6, in the encryption direction,we see that for any 4-round non-zero
linear characteristic with input mask of (Γ15

in), the linear mask of the internal state must be

(0, 0,Γ2,Γ3, ?,Γ5,Γ6, 0,Γ8, 0,Γ10, 0,Γ12,Γ13, ?,Γ15). (3)

Similarly, in the decryption direction for any 5-round non-zero linear characteristic
with output mask of Γ12

out, the linear mask of the internal state must be

(Γ0, ?, ?, ?,Γ4, ?, ?, ?, ?, ?, ?, ?,Γ12,Γ13, ?, 0). (4)

If we combine (3) and (4) with each other, we derive a 9-round zero-correlation linear
distinguisher for SKINNY.

We searched for all 9-round zero-correlation characteristics with the miss-in-the-middle
technique and we list them all in Table 22. Based on this table, there are 172 different
characteristics with single active cells in input and output masks.

Table 22: Zero-correlation linear approximations Γiin
r9Γjout for 9-round SKINNY.

(i, j)
(0, 0), (0, 1), . . . , (0, 15), (1, 0), (1, 1), . . . , (1, 15)
(2, 0), (2, 1), . . . , (2, 15), (3, 0), (3, 1), . . . , (3, 15)
(4, 4), (4, 5), (4, 6), (4, 7), (5, 4), (5, 5), (5, 6), (5, 7)
(6, 4), (6, 5), (6, 6), (6, 7), (7, 4), (7, 5), (7, 6), (7, 7)
(8, 4), (8, 5), . . . , (8, 11), (8, 13), (8, 14), (8, 15)
(9, 4), (9, 5), . . . , (8, 12), (9, 14), (9, 15)
(10, 4), (10, 5), . . . , (10, 13), (10, 15)
(11, 4), (11, 5), . . . , (11, 14), (12, 4), (12, 5), . . . , (12, 15)
(13, 4), (13, 5), . . . , (13, 15), (14, 4), (14, 5), . . . , (14, 15)
(15, 4), (15, 5), . . . , (15, 15)
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Figure 5: Related-tweakey impossible differential attack on 23-round of SKINNY-n-2n.
Differences which are added from tweakey to the state are shown only for the case of s = 4.
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Figure 6: The 9-round distinguisher for SKINNY. SR and MC stand for ShiftRows and
MixColumns, respectively. SubCel, AddConstant and AddRoundTweakey are omitted
since they are not related here.

Table 23: Zero-correlation linear approximations Γiin
r9Γjout for 10-round SKINNY.

(i, j)
(0, 4), (0, 5), (0, 6), (0, 7), (1, 4), (1, 5), (1, 6), (1, 7)
(2, 4), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (3, 7)

5.1.2 10-round Zero-correlation linear distinguishers for SKINNY

Using the MILP technique, we found 16 zero-correlation linear characteristics reaching 10
rounds, which are listed in Table 23. After finding the trails by MILP results, we tried
to verify them by miss-in-the-middle technique, for which the procedure comes in the
following.

For example, one of the 10-round zero-correlation linear characteristics is (Γ0
in) 109(Γ4

out).
It should be noted that we tried to obtain this characteristic by using miss-in-the-middle
approach and considering r1 rounds forward and r2 rounds backward (r1 + r2 = 10), but
we did not reach any contradiction directly by considering different r1 and r2 rounds.
Hence, to show that the 10-round zero-correlation linear characteristic with this input and
output mask exists, we firstly construct a 9-round zero-correlation distinguisher as shown
in Figure 7. This distinguisher consists of a forward part (along the encryption direction)
and a backward part (along the decryption direction). After encrypting 4 rounds in the
forward part and 5 rounds in the backward part, a contradiction will happen in the first
cell of the middle state which is shown in Figure 7.

By decrypting (or encrypting) 1 more round in the backward part (or forward part),
no contradiction will be found but we used a trick here to reach a contradiction in the
10-round characteristic. There are 3 possible types of cell conditions in each state: active,
inactive, and unknown. As we know, the active and inactive cells have deterministic
conditions but unknown cells can take any condition so we can assume them to be active
or inactive and see whether this assumption can make any change in the condition of
the deterministic cells to reach a contradiction. To explain more, the trick is to decrypt
one more round after the contradiction place (which here is the state C) in the 9-round
trail and derive state B. As we know, states A and B are equivalent but derived from two
different directions, i.e., forward and backward. So, we can assume the unknown cells of
state B to have the same condition of the corresponding cell in state A. In this step, we
should try to assume some of these cells to have the corresponding condition; then, we
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Figure 7: Zero-correlation characteristic for 9-round (extended to 10-round) SKINNY. SR
and MC stand for ShiftRows and MixColumns, respectively. Subcells, AddConstant and
AddTweakey are omitted since they are not related here.

encrypt one more round under this assumption to check if it will cause any changes in
the deterministic cells of the first state of the next round. As it is shown in Figure 7, we
assumed the 6-th and the 9-th cells to be inactive and encrypted one more round to derive
D. As we can see, in this case, the 15-th cell of the input mask of this new round will
change and become active and this is a contradiction. More details are depicted in Figure
7.

6 Zero-Correlation Linear Cryptanalysis of SKINNY
In this section, we investigate the security of SKINNY64-128 by using zero-correlation
linear cryptanalysis. Note that we use the 9-round zero-correlation distinguisher described
in the section 5.1, since it provides better results in terms of time and memory complexity.
We present the key recovery attacks on 18-round SKINNY64-128. The 14-round attack of
SKINNY64-64 is presented in Appendix B. In this section, si means the internal state of
i-th round and si(j) means the j-th cell of the state i.

6.1 Zero-correlation linear cryptanalysis of SKINNY-64 with 128-bit
tweakey

As shown in Figure 8, we can append 5 rounds after the distinguisher and add 4 rounds
before the distinguisher. It means that the 9-round distinguisher starts from the 5-th
round and ends at the 13-th round (round number starting from 1). In this way, we can
attack 18-round SKINNY64-128.
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Attack procedure

In this case, the attack procedure consists of two phases:

Phase one: Collect N pairs of plaintexts and corresponding ciphertexts. Guess 11 nibbles
TK18(0, 3, 5, 6, 7), TK17(1, 4, 6), TK16(2, 7), TK15(3), do the partial decryption
and calculate s13(12) for each pair. Allocate an 8-bit counterN0[s1, s13] for each of
256 possible values of (s1||s13), where s1 = s1(0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13) and
s13 = s13(12), and set them to zero. Then, calculate the number of pairs of plaintext-
ciphertext with given values s1 and s13 and store it in N0[s1, s13]. Hence, around 264

plaintext-ciphertext pairs are divided into 256 different states. The expected pairs
for each state are about 28. So the assumption N0 as a 1-byte counter is sufficient.

Phase two: 1. Guess the 6 nibbles TK1(0, 2, 3, 4, 6, 7). Then, allocate a counterN1[s2, s13]
for each of 236 possible values of (s2||s13), where s2 = s2(0, 3, 4, 6, 9, 10, 11, 12),
and set them to zero. For all 244 possible values of s1, encrypt s1 one round to
obtain s2 and update the value N1[s2, s13] = N1[s2, s13] +N0[s1, s13] for all 24

values of s13.
2. Guess 4 nibbles TK2(0, 3, 4, 6). Then, allocate a counter N2[s3, s13] for each of

224 possible values of (s3||s13), where s3 = s3(3, 4, 9, 11, 12), and set them to
zero. For all 232 possible values of s2, encrypt s2 one round to obtain s3 and
update the value N2[s3, s13] = N2[s3, s13] +N1[s2, s13] for all 24 values of s13.

3. Guess 2 nibbles TK3(3, 4). Then, allocate a counter N3[s4, s13] for each of 212

possible values of(s4||s13), where s4 = s4(3, 9), and set them to zero. For all 220

possible values of s3, encrypt s3 one round to obtain s4 and update the value
N3[s4, s13] = N3[s4, s13] +N2[s3, s13] for all 24 values of s13.

4. Guess the nibble TK4(3). Then, allocate a counter N4[s5, s13] for each of 28

possible values of (s5||s13), where s5 = s5(4), and set them to zero. For all
28 possible values of s4, encrypt s4 one round to obtain s5 and update the
value N4[s5, s13] = N4[s5, s13]+N3[s4, s13] for all 24 values of s13. The counter
N4[s5, s13] is then taken as the desired counter V [z], where z is the 1-byte data
value s5||s13.

5. Compute the statistical value

T = N ∗ 24

1− 2−4

24−1∑
S13=4

24−1∑
S5=0

(
N4[S5, S13]

N
− 1

24

)2

.

If T < t, then the guessed key is taken a possible candidate.
6. Do exhaustive search for all keys that correspond to the guessed subkey bits.

Attack complexity

The memory complexity of the attack is 256 bytes which is dominated by step 2. The time
complexity of phase one is equal to N × 244. The time complexity of the steps between 1
and 4 depends on the number of accesses to the memory. The time complexity for each
round can be derived as follows.

Step 1: 2(44+24)× 248× 24 = 2120 memory accesses needed, since we should guess 24 bits
for TK1 (plus 44 bits guessed in phase one), encrypt s1 one round for248 values, and
update N1 for 24 times.

Step 2: 2(68+16)× 232× 24 = 2120 memory accesses needed, since we should guess 16 bits
for TK2, and for 232 values encrypt s2 one round and update N2 for 24 times.
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Table 24: Time and data complexity for different values of α and β for SKINNY-64 with
128-bit tweakey

α β PS Time complexity Data complexity
2−7.3 2−1 0.99 2127 262.95

2−3.3 2−1 0.89 2127 262.37

2−3.3 2−3 0.89 2125 263.30

2−2.7 2−1 0.84 2127 262.15

2−2.7 2−2 0.84 2126 263.47

2−1.7 2−1 0.69 2127 261.34

2−1.7 2−5 0.69 2123 263.58

2−1.7 2−2 0.69 2126 262.58

Step 3: 2(84+8) × 220 × 24 = 2116 memory accesses needed, since we should guess 8 bits
for TK3, encrypt s3 one round for 220 values and update N3 for 24 times.

Step 4: 2(92+4) × 28 × 24 = 2108 memory accesses needed, since we should guess 4 bits
for TK4, encrypt s4 one round for 28 values and update N3 for 24 times.

Step 5: 296 ××28 = 2105 times of reading the 1-byte memory.

Step 6: needs 2128 × β full encryption.

The total complexity of time and data is available in Table 24 .

7 Conclusion
In this work, we presented the related-tweakey impossible differential and zero-correlation
linear characteristics on different variants of SKINNY block cipher. For SKINNY-n-n and
SKINNY-n-2n, we searched all of the related-tweakey impossible differential characteristics
using MILP technique. Moreover, we found 13-round and 15-round related-tweakey
impossible differential characteristics for SKINNY-n-n and SKINNY-n-2n, respectively.
Utilizing these characteristics, we proposed 19-round related-tweakey impossible differential
attack on SKINNY-n-n and 23-round attack on SKINNY-n-2n. We also constructed 9 and
10-round zero correlation linear distinguishers and attacked 14 and 18 round of SKINNY-
64-64 and SKINNY-64-128 respectively, by extending the 9-round trail. Based on the
MILP results, we claim that the given characteristics are the longest under the assumption
of having a single active bit in input and output masks (and tweakeys in related-tweakey
cases).
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A 19-round Related Tweakey Impossible Differential At-
tack on SKINNY-n-n

In this section, we present the details of a 19-round attack on SKINNY-n-n utilizing the
13-round related-tweakey impossible differential trail shown in Figure 3 and extend it by 3
rounds in both backward and forward directions. The same as the previous section, instead
of the tweakey TK1, we can obtain the equivalent tweakey ETK in the first round, start
the tweakey recovery attack at Y1, and recover the plaintext P by applying MC−1, SR−1,
AC−1 and SC−1 layers on Y1.

Data Collection The adversary should construct 2x structures at Y1 and consider all the
possible values in 4 cells Y1[1, 4, 11, 14] for each structure, while the remaining cells
take a fixed value. By using 2x+4s messages, we can generate 2x+8s pairs of messages
(P, P ), then ask the encryption oracle to obtain the corresponding ciphertexts (C,C).
We have 7 s-bit filters after peeling off the last MC layer from the ciphertext to W19.
Therefore, we have N = 2x+8s−7s=x+s remaining pairs to do the attack and decrypt
them partially over SR−1 and compute Z19.

Tweakey Recovery For each of the N pairs

1. Satisfying the round 19, by applying the following steps on all N message pairs,
leads to the determination of the number of possible values of TK19[0, 2, 5, 6]:

(a) From the knowledge of Z19[12] and ∆Z19[12] we can compute ∆X19[12].
Based on the properties of MC operation on col(1) of W18, we have
∆X19[0] = ∆X19[12]. Since Y19[0] = Z19[0]⊕ TK19[0] and we have

S−1(Y19[0])⊕ S−1(Y19[0]⊕∆Y19[0]) = ∆X19[0],

thus by using lemma 4, TK19[0] can be determined.
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(b) We can compute ∆X19[13] from the knowledge of Z19[13] and ∆Z19[13].
Based on the properties of MC operation on col(2) of W18, we have
∆X19[13] = ∆X19[5]. Since Y19[5] = Z19[5]⊕ TK19[5] and we have

S−1(Y19[5])⊕ S−1(Y19[5]⊕∆Y19[5]) = ∆X19[5],

by using lemma 4, TK19[5] can be determined.
(c) Based on the properties of MC operation on col(3) of W18, ,we have

∆X19[2] = ∆X19[6] = ∆X19[14]. Since Z19[2] = Y19[2] ⊕ TK19[2] and
Z19[6] = Y19[6]⊕ TK19[6] we have

S−1(Y19[2])⊕ S−1(Y19[2]⊕∆Y19[2]) = ∆X19[2],

S−1(Y19[6])⊕ S−1(Y19[6]⊕∆Y19[6]) = ∆X19[6],

by using lemma 4 we can determine TK19[2, 6].
(d) From the knowledge of ∆Z19[8, 12] and Z19[8, 12], we can determine ∆X19[8, 12].

Based on the properties of MC operation on col(1) of W18, we have
∆X19[8] = ∆X19[12]; checking the correctness of this equality, will lead to
an s-bit filter. Also, checking if ∆X19[5] = 0xi, stores the pair on the list
Li. Obviously, each pair will be saved on one list and there is no need to
filtering in this step.

The time complexity of this step is N and the number of tests left for the next
step is N.2−s.

2. Since we know ETK[0, 1, 4, 5, 11, 13], from the knowledge of TK19[0, 2, 5, 6], we
can satisfy the round 1 by applying the following steps on all N message pairs
on all lists for the remaining tweakeys. This will lead to the determination of
the number of possible values of ETK1[7, 9, 14]:
(a) Since we know ETK[11], ∆Y2[11] can be computed. Based on the properties

of MC−1 operation on col(2) of X3, we have ∆Y2[11] = ∆Y2[14]. Since
X2[14] = Y1[14]⊕ ETK[14] and we have

S(X2[14])⊕ S(X2[14]⊕∆X2[14]) = ∆Y2[14],

hence lemma 4 helps us to determine ETK[14].
(b) Guess ETK[10]. Compute Y2 and ∆Y2 as shown in Figure 9. Checking if

∆Y2[1] = 0xi, for each pair on Li list, will lead to a total of an s-bit filter.
Also, checking if ∆Y2[4] = ∆Y2[11], will lead to another s-bit filter.

The time complexity of this step is N and the number of tests left for the next
step is N.2−2s.

3. Since we know TK19[1, 4] from the knowledge of ETK[8, 14] , we can satisfy
the round 19 by applying the following steps on all N message pairs on all lists
for the remaining tweakeys. This will lead to the determination of the number
of possible values of TK19[7]:
(a) Guess TK19[7]. Compute Z18 and ∆Z18 as shown in Figure 9. Checking if

∆X18[10] = ∆X18[14], will lead to an s-bit filter.
The time complexity of this step is N.2−s and the number of tests left for the
next step is N.2−2s.

4. Satisfying the round 18, by applying the following steps on all N message pairs
on all lists for the remaining tweakeys,leads to the determination of the number
of possible values of TK18[2, 6]:
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(a) From the knowledge of Z18[14] and ∆Z18[14] we can compute ∆X18[14].
Based on properties of MC operation on col(3) of W17, we have ∆X18[2] =
∆X18[14]. Since Y18[2] = Z18[2]⊕ TK18[2] we have

S−1(Y18[2])⊕ S−1(Y18[2]⊕∆Y18[2]) = ∆X18[2].

Now by using lemma 4, TK18[2] can be simply determined.
(b) Guess TK18[6]. Compute ∆X17[8] and for each pair on Li list, checking if

∆X17[8] = 0xi, this will lead to a total of an s-bit filter.
The time complexity of this step is N.2−s and the number of tests left for the
next step is N.2−2s.

5. Satisfying the round 2, by applying the following steps on all N message pairs
on all lists for the remaining tweakeys, leads to the determination of the number
of possible values of TK2[0, 1, 5]:
(a) Guess TK2[0, 1, 5]. Knowledge of these cells allows the attacker to compute

Y3 and ∆Y3 as shown in Figure 9. Therefore, from the knowledge of
TK3[0](= TK19[2]), ∆Y4[0] can be simply determined. For each pair on Li
list, checking if ∆Y4[0] = 0xi, this will lead us to a total of an s-bit filter.

The time complexity of this step is N.2s and the number of tests to verify the
impossible distinguisher is N .

Complexity analysis In this attack cin = |∆in| = 4s, cout = 8s, |∆out| = 9s and |kin ∪
kout| = 13s. Thus, according to the formulas derived in the previous section, we can
calculate the data, time and memory complexity as follows:
We consider the number of pairs such that (1− 2−12s)2x+s = e−2x−11s

< 1
2 , to reduce

the exhaustive search by at least one bit. By choosing x = 44.30 (resp. x = 89.47),
in case of SKINNY-64-64 (resp. SKINNY-128-128) the remaining 13-nibble subkey
space is reduced to 213×4e−244.30−11×4 = 250.22 (resp. 213×8e−289.47−11×8 = 2100). By
exhaustively searching the 250.22 (resp. 2100) remaining key candidates with 23s

remaining tweakey bits, which are not used in the attack, we can recover the tweakey
candidates. Data complexity of this attack is D = 2x+|∆in|+1 = 244.30+4×4+1 = 261.30

(resp. 289.47+4×8+1 = 2122.47) chosen plaintexts. Then, the attack requires T =
261.30 + 252.3 + 250.22× 212 = 262.83 (resp. T = 2122.47 + 2105.47 + 2100× 224 = 2124.43)
encryption which is the overall time complexity in case of SKINNY-64-64 (resp.
SKINNY-128-128). The memory complexity of the attack is dominated by the
memory needed for storing 2x+4=48.30 (resp. 2x+8=97.47) pairs which is 248.30 (resp.
297.47) pairs after the ciphertext filtration to exclude the wrong keys in case of
SKINNY-64-64 (resp. SKINNY-128-128).

B Zero-correlation linear cryptanalysis of SKINNY-64 with
64-bit tweakey

As shown in Figure 10, by a key recovery attack we can add 2 rounds before the distinguisher
and 3 rounds after the distinguisher. It means that the 9-round distinguisher starts from
the round 3 and ends at the round 11 (round number starting from 1). In this way, we
can attack 14-round SKINNY64-64. The description of this attack is given below:

Attack procedure

1. Collect N pairs of plaintexts and the corresponding ciphertexts.
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Figure 9: Related-tweakey impossible differential attack on 19-round of SKINNY-n-n.
Differences which are added from tweakey to the state are shown only for the case of s = 4.
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2. Allocate a 3-byte counter N0[s1, s14] for each of 244 possible values of (s1||s14), where
s1 = s1(3, 4, 9, 11, 12) and s14 = s14(2, 5, 7, 9, 13, 14), and set them to zero. Then,
calculate the number of pairs of plaintext-ciphertext with given values s1 and s14

and store it in N0[s1, s14]. Hence, around 244 plaintext-ciphertext pairs are divided
into 244 different states. The expected pairs for each state are about 220. So the
assumption N0 as a 3-byte counter is sufficient.

3. Guess the 2 nibbles TK1(3, 4). Then, allocate a counter N1[s2, s14] for each of
232 possible values of (s2||s14), where s2 = s2(3, 9), and set them to zero. For all
220 possible values of s1, encrypt s1 one round to obtain s2 and update the value
N1[s2, s14] = N1[s2, s14] +N0[s1, s14] for all 224 values of s14.

4. Guess the nibble TK2(3). Then, allocate a counter N2[s3, s14] for each of 228

possible values of (s3||s14), where s3 = s3(4), and set them to zero. For all 28

possible values of s2, encrypt s2 one round to obtain s3 and update the value
N2[s3, s14] = N1[s3, s14] +N1[s2, s14] for all 224 values of s14.

5. Guess the 2 nibbles TK14(3, 4). Then, allocate a counter N3[s3, s13] for each of 212

possible values of (s3||s13), where s13 = s13(3, 4, 15), and set them to zero. For all
224 possible values of s14, decrypt s14 one round to obtain s13and update the value
N3[s3, s13] = N3[s3, s13] +N2[s3, s14] for all 24 values of s3.

6. Guess the nibble TK13(0). Then, allocate a counterN4[s3, s12] for each of 212

possible values of(s3||s12), where s12 = s12(0, 12), and set them to zero. For all 212

possible values of s13, decrypt s13 two rounds to obtain s11 and update the value
N4[s3, s11] = N4[s3, s11] +N3[s3, s13] for all 24 values of s3. The counter N4[s3, s11]
is then taken as the desired counter V [z], where z is the 3-byte data value s3||s11.

7. Compute the statistical value

T = N ∗ 24

1− 2−4

24−1∑
S11=4

24−1∑
S3=0

(
N4[S3, S11]

N
− 1

24

)2

.

If T < t, the guessed key is taken as a possible candidate.

8. Do exhaustive search for all keys that correspond to the guessed subkey bits.

Attack complexity

The memory complexity of the attack is 244 × 3 bytes, which is dominated by step 2.
The time complexity of step 1 and 2 is equal to the number of needed pairs of plaintext-
ciphertext N . The time complexity of steps between 3 and 7 depends on the number of
accesses to the memory. The time complexity for each round can be derived as follows.

Step 3: 28 × 220 × 224 = 252 memory accesses needed, since we have to guess 8 bits for
TK1, and for 220 values encrypt s1 one round and update N1 for 224 times.

Step 4: 2(8+4) × 28 × 224 = 244 memory accesses needed, since we have to guess 4 bits
for TK2, and for 28 values encrypt s2 one round and update N2 for 224 times.

Step 5: 2(12+8) × 224 × 24 = 248 memory accesses needed, since we have to guess 8 bits
for TK14, and for 224 values decrypt s14 one round and update N3 for 24 times.

Step 6: 2(20+4) × 212 × 24 = 240 memory accesses needed, since we have to guess 4 bits
for TK13, and for 212 values decrypts13 two rounds and update N3for 24 times.
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Figure 10: 14-round key recovery with zero-correlation linear attack for SKINNY-64 with
64-bit tweakey and SKINNY-128 with 128-bit tweakey

Step 7: 224 × 3× 28 = 233 times of reading the 3-byte memory.

In addition, step 8 needs 264.β full encryptions, β is the probability of surviving a wrong
subkey. The time complexity of step 8 and the success probability are determined based
on the error probability type I(α), error probability type II(β), and the number of required
plaintexts-ciphertext pairs.

There is a trade-off between the time complexity and the data complexity of the attack,
as presented in Table 25.

Table 25: Time and data complexity for different values of α and β for SKINNY-64 with
64-bit tweakey

α β PS Time complexity Data complexity
2−7.3 2−1 0.99 263 262.95

2−3.3 2−1 0.89 263 262.37

2−3.3 2−3 0.89 261 263.30

2−2.7 2−1 0.84 263 262.15

2−2.7 2−2 0.84 262 263.77

2−1.7 2−1 0.69 263 261.34

2−1.7 2−5 0.69 259 263.58

2−1.7 2−2 0.69 262 262.58
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