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Background & Contribution
Differential Cryptanalysis

� Most fundamental techniques Biham and Shamir @ CRYPTO 1990

� More accurate distribution of the fixed-key differential probability

Automatic Search

� Automatic tools for the search of differential trails or differentials

Essential Problems

� Fixed-key probability of a differential trail

� Fixed-key probability of a differential when multiple trails are available

� Weak-key ratio of the differential distinguisher

Contribution

� Automatic method based on SAT for the search of differentials

� Automatically search for right pairs of the STEP functions of LED64

I Improved differential attacks

� Models for the estimation of the weak-key space of a differential

I Applying to the analysis of Midori64
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Preliminaries
Differential Cryptanalysis

� An r -round differential characteristic/trail C = (C0,C1, . . . ,Cr ).

� The differential probability (DP) of a differential (α, β) is

DPf (α, β) =
{x ∈ Fn

2 | f (x)⊕ f (x ⊕ α) = β}
2n

.

I For a keyed function f (·, k): DPf [k](α, β) & DPf [k](C)

� Expected differential probability (EDP):

EDPf (α, β) = mean
k∈K

(
DPf [k](α, β)

)
.

� The weight of a differential or a trail:
− log2 (EDPf (α, β)) .



Preliminaries
Markov Cipher Theory (Lai et al. @ EUROCRYPT 1991)

� A Markov cipher is an iterative cipher for which the average differential
probability over one round is independent of the input of the round
function.
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� With the assumption of independent round keys, we have

EDPf (C) =
r∏

i=1

EDPfi (Ci−1,Ci ),

EDPf (α, β) =
∑

C0=α,Cr=β

EDPf (C).

� Since Markov cipher is an ideal primitive, the EDP may deviate from the
real differential probability.

Hypothesis of Stochastic Equivalence

For all differentials (α, β), it holds that for most values of the key k,
DPf [k](α, β) = EDPf (α, β).



Preliminaries
Distribution of the Fixed-key Probability

Theorem 1 (Daemen and Rijmen @ 2007)

In a key-alternating cipher f (·, k), the fixed-key cardinality Nf [k](α, β) of a
differential (α, β) is a stochastic variable with the following distribution:

Pr(Nf [k](α, β) = i) ≈ Poisson(i ; 2n−1EDP(α, β)),

where the distribution function measures the probability over all possible values
of the key and all possible choices of the key schedule.
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2n−1EDP(α, β)

� Since the key-alternating cipher is an abstract of the real cipher, the
distribution might not fit the real one, entirely.

� We call the keys fulfilling N[k](α, β) > 2n−1EDP(α, β) the weak-keys.

� The set of weak-keys is denoted as WK (α, β).
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Automatic Search of Differentials
Main Idea
SAT Problem

� The boolean satisfiability problem (SAT) considers the satisfiability of a
given Boolean formula.

� Cryptominisat
I Compatible with the XOR operation
I The usage of searching for multiple solutions

P-layer

S-layer

Objective Function

Model

Model

Model

CNF

SAT Solver

Trail Differential



Automatic Search of Differentials
Main Idea

P-layer

S-layer

Objective Function

Model

Model

Model

CNF

SAT Solver

Trail Differential

� The number of solutions handled by the solver is determined by the
individual SAT problem.

� According to our experience, 232 is an upper-bound.

� The crucial problem is how to use these trails to conduct differential
cryptanalysis more accurately.



Outline

Background & Contribution

Preliminaries

Automatic Search of Differentials

Differential Analysis of the LED64 Block Cipher

Differentials of Midori64 Considering Key-Schedule

Conclusion



Differential Analysis of the LED64 Block Cipher
Main Idea

Computing the probability

of a differential

Equivalent Searching for the right pairs

of a differential
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Differential Analysis of the LED64 Block Cipher

Planar Differentials and Maps

� For the differential (α, β) of the function f ,
Ff (α, β) = {x | f (x)⊕ f (x ⊕ α) = β},
Gf (α, β) = {y | y = f (x), x ∈ Ff (α, β)}.

� (α, β) is called a planar differential if Ff (α, β) and Gf (α, β) are affine
subspaces.

� A mapping is planar if all differentials over it are planar.

� The S-layer composed of the parallel applications of S-boxes is planar
when all the S-boxes have differential uniformity of 4.
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x i ∈ FS(∆x i ,∆y i ) if and only if MatiF · x i = VeciF ,

y i ∈ GS(∆x i ,∆y i ) if and only if MatiG · y i = VeciG .



Differential Analysis of the LED64 Block Cipher

Constraints for the Right Pairs
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[
MatiG

Mati+1
F · P

]
·
[
y i
]

=

[
VeciG

Veci+1
F ⊕Mati+1

F · c i+1

]
.

y i = SC(x i ).

x i+1 = MC ◦ SR(y i )⊕ c i+1.

Framework for the Search of Right Pairs

� To obtain the right pairs of a given differential

I Searching for many characteristics within the differential
I Generating MatG , MatF , VecG and VecF corresponding to the

differential trail
I Applying SAT solver to get the right pairs for every trail



Differential Analysis of the LED64 Block Cipher
Improved Differential Attacks

3-STEP Related-key Attack for LED64 (Mendel et al. @ ASIACRYPT 2012)

∆⊕∆∗
∆
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∆∗ → ∆

∆

Fi+1

Probability 1

∆

Fi+2

∆→ ?

∆

∆C 259.00 ↘ 256.50

4-STEP Related-key Attack for LED64 (Mendel et al. @ ASIACRYPT 2012)
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5-STEP Related-key Attack for LED64 (Nikolić et al. @ FSE 2013)
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Differentials of Midori64 Considering Key-Schedule
Outline
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Weak-key Space of a Differential

∆xi

xi S yi

∆yi

P
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y i ∈ GS(∆x i ,∆y i ) if and only if MatiG · y i = VeciG .

Mati+1
F · x i+1 = Mati+1

F ·
(
P · y i ⊕ k i

)
= Mati+1

F · P · y i ⊕Mati+1
F · k i = Veci+1

F .

⇒
[

MatiU
0 MatiK

]
·
[

y i

k i

]
=

[
VeciU
VeciK

]
.

Necessary Condition

� The i-th subkey k i falls into the affine space {x | MatiK · x = VeciK}.

� For an r -round differential consisting of m characteristics, if a particular
key leads all m characteristics to become impossible trails, the differential
under this fixed-key turns into an impossible differential.

� For the differential (α, β), we denote the set of these keys as IK (α, β),
which satisfies WK (α, β) ⊆ K − IK (α, β).



Upper-Bound for Weak-key Ratio of Differential
Estimating the Cardinality of the Weak-key Space

� WK (α, β) ⊆
m−1⋃
j=0

V
(j)
K .

� Pr{K | K ∈
m−1⋃
j=0

V
(j)
K }: a natural

upper-bound for the weak-key ratio.
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� By De Morgan’s laws, we know

K −
m−1⋃
j=0

V
(j)
K =

m−1⋂
j=0

(
K − V

(j)
K

)
.

� Main idea: converting the restrictions on the set into clauses in CNF.



Upper-Bound for Weak-key Ratio of Differential
4-round Differentials with Weak-key Ratio Lower than 50%
The First Example

0x0022022202200202→ 0x2220000022022022.

� Pr

{
K

∣∣∣∣∣K ∈ K − m−1⋃
j=0

V
(j)
K

}
≈ 78.64%.

� The weak-key ratio for this differential is less than 21.36%.

� The experimental results illustrate that the probability for a fixed-key with
no right pair is about 78.66%.

The Second Example

0x7000000000a0000a→ 0x5ffa05ff5faf00aa.

� Pr

{
K

∣∣∣∣∣K ∈ K − m−1⋃
j=0

V
(j)
K

}
≈ 96.06%.

� For 96.06% of the keys, the differential is an impossible one.

� The experimental results illustrate that the probability for a fixed-key with
no right pair is about 96.09%.



Maximum Number of Compatible Characteristics

Max-PoSSo Problem

� F = {f0(x), f1(x), . . . , fm−1(x)}, where
fi (x)’s are polynomial functions over Fn

2,
x ∈ Fn

2.

� The Max-PoSSo problem is to find any
x ∈ Fn

2 that satisfies the maximum
number of polynomials in F .
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� If fj(K) denotes fj(K) = M(j) · K ⊕ V (j), we know
K ∈ V

(j)
K if and only if fj(K) = 0.

� Determining the maximum
number of compatible
characteristics

� Finding K under which the
number of functions following
fj(K) = 0 is maximised

� We use an automatic method based on SAT to settle this problem.



Maximum Number of Compatible Characteristics

Application

#{Trails} 212 211 208 128
#{Groups} 3 4 1 8

Rank 15 15 15 16
EDPP 2−16 2−16 2−16 2−18

� The EDP on the eight subspaces is improved to 2−16 (EDP = 2−23.79).

� For a randomly drawn key, the possibility that the EDP of the differential
under this key is no less than 2−16 is at least 2−15 × 8 = 2−12.

� To verify the validity of this probability, we do some tests for the
randomly selected keys. The probability is about 2−12.18.
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Conclusion

� Automatic method based on SAT for the search of differentials

� Automatically search for right pairs of the STEP functions of LED64

I Improved differential attacks

� Models for the estimation of the weak-key space of a differential

I Applying to the analysis of Midori64

Discussion

� All automatic methods can be generalised to analyse other ciphers.

� For some lightweight block ciphers with a simple key schedule, we need to
pay more attention to the analysis of the differential.

� How to utilise automatic tools to provide more precise evaluation for the
linear hull effect considering the key schedule is an open problem.



Thank you for your attention!
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