DbHtS: A Paradigm for Constructing BBB Secure PRF

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Goutam Paul

Indian Statistical Institute, Kolkata, India

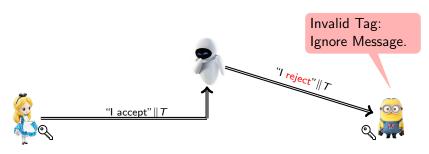
FSE, 2019

Introduction

- Symmetric cryptography: Alice and Bob shares the same key.
- Active attacker: Eve might intercept and manipulate Alice's message.
- **Authentication:** Alice computes and appends a tag. Bob recomputes tag and matches with the received tag.

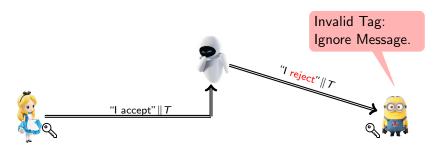
Introduction

- **Verifying:** Bob verifies the tag with the shared key and only reads the message if tags match.
- Forgery: Eve cannnot modify the message without forging a new and correct tag.



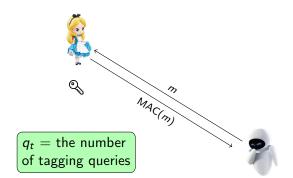
Introduction

- **Verifying:** Bob verifies the tag with the shared key and only reads the message if tags match.
- Forgery: Eve cannnot modify the message without forging a new and correct tag.

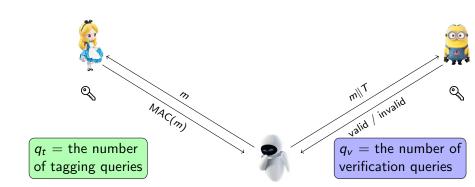


How can I forge? Define the power and goal of a forgery

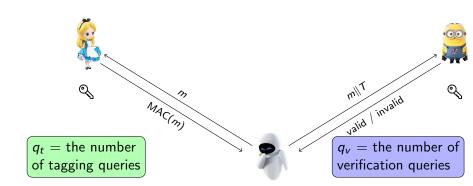
Forgery Security Game



Forgery Security Game

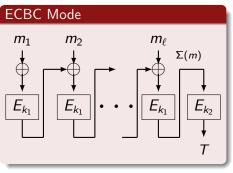


Forgery Security Game



Can Eve forge a valid tag for a message that Alice never saw ?

Case of ECBC



Properties of ECBC: For all messages m, m', c

$$\mathsf{MAC}(m) = \mathsf{MAC}(m')$$

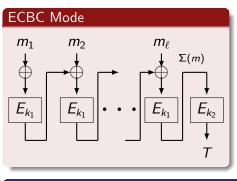
$$\Leftrightarrow E_{k_2}(\Sigma(m)) = E_{k_2}(\Sigma(m'))$$

$$\Leftrightarrow \Sigma(m) = \Sigma(m')$$

$$\Leftrightarrow \Sigma(m||c) = \Sigma(m'||c)$$

$$\mathsf{MAC}(m||c) = \mathsf{MAC}(m'||c)$$

Case of ECBC



Properties of ECBC: For all messages m, m', c

$$MAC(m) = MAC(m')$$

$$\Leftrightarrow$$
 $E_{k_2}(\Sigma(m)) = E_{k_2}(\Sigma(m'))$

$$\Leftrightarrow \quad \Sigma(m) = \Sigma(m')$$

$$\Leftrightarrow \quad \Sigma(m||c) = \Sigma(m'||c)$$
$$\mathsf{MAC}(m||c) = \mathsf{MAC}(m'||c)$$

Expansion Property

Look for a pair of messages m, m' such that MAC(m) = MAC(m'). Then for all c.

$$MAC(m||c) = MAC(m'||c)$$

Birthday Bound Attack

Looking for collsion

Eve looks for $MAC(m_i) = MAC(m_j)$ for some $i \neq j$. She has $\simeq q_t^2$ pairs for an *n*-bit relationship so chances grow as

$$\mathsf{Adv}(\mathcal{A}) \simeq rac{q_t^2}{2^n}$$

Expansion property

$$MAC(m) = MAC(m') \Rightarrow MAC(m||c) = MAC(m'||c), \forall c.$$

Collision found:
$$MAC(I accept) = MAC(I reject)$$

What is your review? $||T_0||$

Expansion property

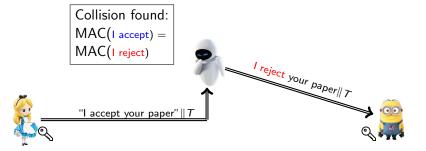
$$MAC(m) = MAC(m') \Rightarrow MAC(m|c) = MAC(m'|c), \forall c.$$

Tell Bob your review.

Oh You are right!

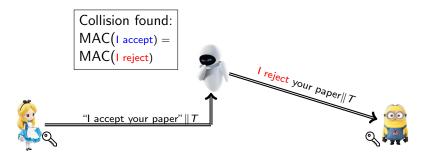
Expansion property

 $MAC(m) = MAC(m') \Rightarrow MAC(m||c) = MAC(m'||c), \forall c.$



Expansion property

$$MAC(m) = MAC(m') \Rightarrow MAC(m|c) = MAC(m'|c), \forall c.$$



Forgery requires $q_t \simeq 2^{n/2}$ and $q_v = 1$ Not secure beyond birthday bound $(2^{n/2})$

Why Beyond Birthday Security?

- BBB security is useful in lightweight cryptography
- Consider the security advantage $\epsilon=2^{-10}$, n=64 and $\ell=2^{16}$ blocks.

Construction	Security	# of queries
ECBC	$16q_t^2/2^n$	$\approx 2^{25}$
PMAC	$5\ell q_t^2/2^n$	$pprox 2^{18}$

Table: Data limit of constructions acheiving birthday bound security.

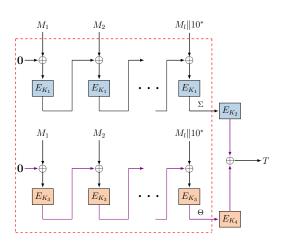
BBB security allows to process larger number of blocks per session key.

Summary So Far

- Forgery Game of Message Authentication Code
- Birthday Bound Forgery for ECBC MAC.
- Birthday Bound is not suitable for small block cipher based MAC

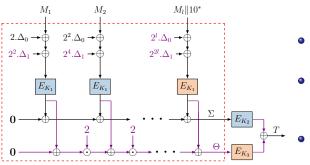
Coming Up: How to get BBB secure MAC.

SUM-ECBC [Yasuda, CT-RSA 2010]



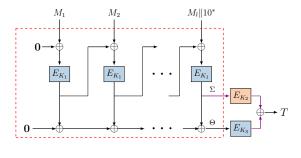
- Rate 1/2, sequential
- Four independent BC keys
- Security: $O(q^3\ell^3/2^{2n})$

PMAC_Plus [Yasuda, CRYPTO 2011]



- Rate 1, parallel
- Three independent BC keys
- Security: $O(q^3\ell^3/2^{2n})$

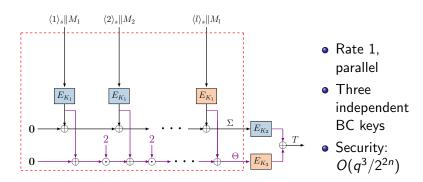
3kf9 [Zhang et al., ASIACRYPT 2012]



- Rate 1, sequential
- Three independent BC keys
- Security: $O(q^3\ell^3/2^{2n})$

★ We found the security bound of 3kf9 is incorrect!

LightMAC_Plus [Naito, ASIACRYPT 2017]



★ First BBB Secure MAC whose security bound is independent of the message length.

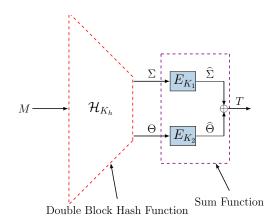
Summary so far

- Beyond Birthday Bound deterministic MACs
- These constructions use three block cipher keys.
- All the constructions share a similar design principle

Coming Up: How to get unify the design and give a generic security proof.

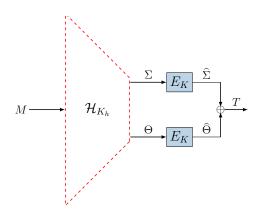
Abstract view of BBB Secure MACs : Double Block Hash-then-Sum (DbHtS)

Three Keyed



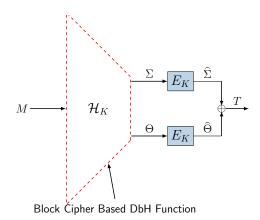
Abstract view of BBB Secure MACs : Double Block Hash-then-Sum (DbHtS)

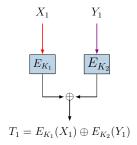
Two Keyed

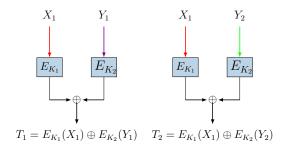


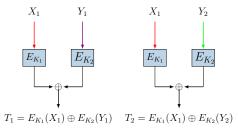
Abstract view of BBB Secure MACs : Double Block Hash-then-Sum (DbHtS)

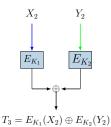
Single Keyed

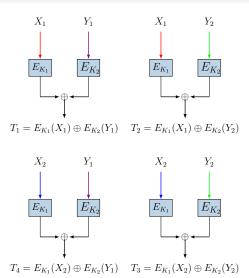




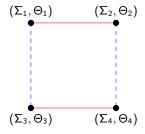


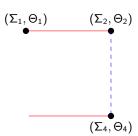




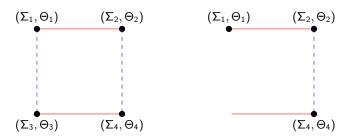


(Alternating) Cycle and Path

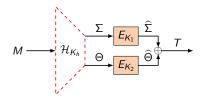




(Alternating) Cycle and Path



AC in the input of sum function makes the sum of its output zero.

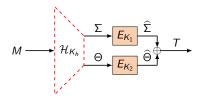


$$\widetilde{\Sigma}=(\Sigma_1,\ldots,\Sigma_q),\ \widetilde{\Theta}=(\Theta_1,\ldots,\Theta_q)$$
 is called covered if $\exists i \neq j, i \neq k$ such that

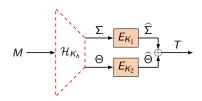
•
$$\Sigma_i = \Sigma_j$$
 and $\Theta_i = \Theta_j \Rightarrow \mathsf{AC2}$

•
$$\Sigma_i = \Sigma_j$$
 and $\Theta_i = \Theta_k \Rightarrow \mathsf{AP3}$

If ${\mathcal H}$ holds either of the above two conditions, it is called covered DbH.



Alternating cycle in $\widetilde{\Sigma}$, $\widetilde{\Theta}$ makes the sum of T_i 's zero.

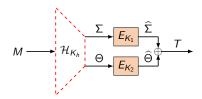


Alternating cycle in $\widetilde{\Sigma}$, $\widetilde{\Theta}$ makes the sum of T_i 's zero.

Avoid alternating cycle in $\widetilde{\Sigma}, \widetilde{\Theta}$.

Bad Event (CF)

• $\exists i \neq j$ such that $\Sigma_i = \Sigma_i$ and $\Theta_i = \Theta_i$ (AC2).

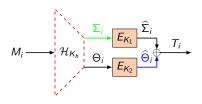


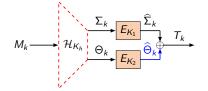
Alternating cycle in $\widetilde{\Sigma}$, $\widetilde{\Theta}$ makes the sum of T_i 's zero.

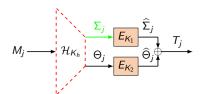
Avoid alternating cycle in $\widetilde{\Sigma}, \widetilde{\Theta}$.

Bad Event (CF)

• $\exists i \neq j \neq k$ such that $\Sigma_i = \Sigma_j$ and $\Theta_i = \Theta_k$. (AP3)

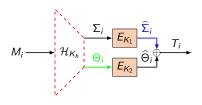




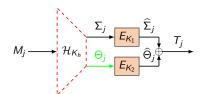


Bad Event (RC1)

 $\exists i \neq j, i \neq k \text{ such that } \Sigma_i = \Sigma_i \text{ and } \widehat{\Theta}_i = \widehat{\Theta}_k.$







Bad Event (RC2)

 $\exists i \neq j, i \neq k \text{ such that } \Theta_i = \Theta_j \text{ and } \widehat{\Sigma}_i = \widehat{\Sigma}_k.$

Bad Tuple

 $(\widetilde{\Sigma},\widetilde{\Theta},\widetilde{\widehat{\Sigma}},\widetilde{\widehat{\Theta}}) \text{ is a } \textcolor{red}{\mathsf{bad}} \text{ tuple if either of CF or RC1 or RC2 holds}.$

Bad Tuple

 $(\widetilde{\Sigma},\widetilde{\Theta},\widetilde{\widehat{\Sigma}},\widetilde{\widehat{\Theta}})$ is a bad tuple if either of CF or RC1 or RC2 holds.

Probability of Bad Events.

$$\bullet \ \Pr[\mathsf{CF}] \leq {q \choose 3} \cdot \underbrace{\Pr[\Sigma_i = \Sigma_j, \Theta_i = \Theta_k]}_{\epsilon_{\mathrm{cf}}(3,\ell)} + {q \choose 2} \cdot \underbrace{\Pr[\Sigma_i = \Sigma_j, \Theta_i = \Theta_j]}_{\epsilon_{\mathrm{coll}}}$$

$$\bullet \; \mathsf{Pr}[\mathsf{RC}] \leq \frac{q^3}{2^n} \cdot \underbrace{\mathsf{max}\left(\,\mathsf{Pr}[\Sigma_i = \Sigma_j], \mathsf{Pr}[\Theta_i = \Theta_j]\right)}_{\epsilon_{\mathrm{univ}}(2,\ell)}$$

Bad Tuple

 $(\widetilde{\Sigma},\widetilde{\Theta},\widetilde{\widehat{\Sigma}},\widetilde{\widehat{\Theta}})$ is a bad tuple if either of CF or RC1 or RC2 holds.

Probability of Bad Events.

$$\bullet \ \Pr[\mathsf{CF}] \leq {q \choose 3} \cdot \underbrace{\Pr[\Sigma_i = \Sigma_j, \Theta_i = \Theta_k]}_{\epsilon_{\mathrm{cf}}(3,\ell)} + {q \choose 2} \cdot \underbrace{\Pr[\Sigma_i = \Sigma_j, \Theta_i = \Theta_j]}_{\epsilon_{\mathrm{coll}}}$$

$$\bullet \ \mathsf{Pr}[\mathsf{RC}] \leq \frac{q^3}{2^n} \cdot \underbrace{\mathsf{max}\left(\,\mathsf{Pr}[\Sigma_i = \Sigma_j], \mathsf{Pr}[\Theta_i = \Theta_j]\right)}_{\epsilon_{\mathrm{univ}}(2,\ell)}$$

Analysis of Good Transcript

We use Sum of Permtation result by [Lucks, Eurocrypt 00].

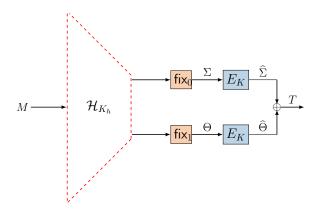
Summarizing the security:

- ullet if ${\mathcal H}$ is a $\epsilon_{
 m cf}(3,\ell)$ cover free and
- $\bullet \ \epsilon_{\rm univ}(2,\ell)$ block-wise universal hash function, then

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{HtS}}(q,\ell) \leq \tbinom{q}{3} \cdot \epsilon_{\mathrm{cf}}(3,\ell) + \tbinom{q}{2} \cdot \epsilon_{\mathrm{coll}} + \tfrac{q^3}{2^n} \cdot \epsilon_{\mathrm{univ}}(2,\ell) + \tfrac{4q^3}{3 \cdot 2^{2n}}.$$

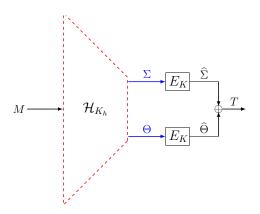
NOTE: $\frac{4q^3}{3.2^{2n}}$ comes from sum of permutation result.

Two-keyed DbHtS (with domain separation)



Domain separation enables us to deal with less bad events

Two-keyed DbHtS without domain separation



Without domain separation, one needs to consider the cross collision

Security of two-keyed DbHtS with fix₀, fix₁

Summarizing the security:

- if \mathcal{H} is a $\epsilon_{\mathrm{cf}}(3,\ell)$ cover free and
- ullet $\epsilon_{\mathrm{univ}}(2,\ell)$ block-wise universal block-separated hash function, then

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{2K-HtS}}(q,\ell) \leq \tbinom{q}{3} \cdot \epsilon_{\mathrm{cf}}(3,\ell) + \tbinom{q}{2} \cdot \epsilon_{\mathrm{coll}} + \tfrac{q^3}{2^n} \cdot \epsilon_{\mathrm{univ}}(2,\ell) + \tfrac{q}{2^n} + \tfrac{6q^3}{2^{2n}}$$

NOTE: $\frac{6q^3}{3.2^{2n}}$ comes from sum of permutation result.

Instantiations of three-keyed and two-keyed DbHtS

Туре	Instantiattions	Old Bound	New Bound
3-key DbHtS	SUM-ECBC PMAC_Plus 3kf9 LightMAC_Plus	$q^{3}\ell^{4}/2^{2n}$ $q^{3}\ell^{3}/2^{2n} + q\ell/2^{n}$ $q^{3}\ell^{3}/2^{2n} + q\ell/2^{n}$ $q^{3}/2^{2n}$	$q\ell^2/2^n + q^3/2^{2n} q^3\ell/2^{2n} + q^2\ell^2/2^{2n} q^3\ell^4/2^{2n} q^3/2^{2n}$
2-key DbHtS	2K-SUM-ECBC 2K-PMAC_Plus 2kf9 2K-LightMAC_Plus	- - - -	$q\ell^{2}/2^{n} + q^{3}\ell^{2}/2^{2n}$ $q^{3}\ell/2^{2n} + q^{2}\ell^{2}/2^{2n}$ $q^{3}\ell^{4}/2^{2n}$ $q^{3}/2^{2n} + q/2^{n}$

Tightness of the bound

- We have shown security of all the constructions upto $2^{2n/3}$.
- Leurent et al. have shown attack on all these constructions with $2^{3n/4}$ query complexity.
- We believe that the security of all these constructions can be improved upto $2^{3n/4}$.

Tightness of the bound

- We have shown security of all the constructions upto $2^{2n/3}$.
- Leurent et al. have shown attack on all these constructions with $2^{3n/4}$ query complexity.
- We believe that the security of all these constructions can be improved upto $2^{3n/4}$.

Thank You!