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Abstract. SUM-ECBC (Yasuda, CT-RSA 2010) is the first beyond birthday bound
(BBB) secure block cipher based deterministic MAC. After this work, some more
BBB secure deterministic MACs have been proposed, namely PMAC_Plus (Yasuda,
CRYPTO 2011), 3kf9 (Zhang et al., ASIACRYPT 2012) and LightMAC_Plus (Naito,
ASIACRYPT 2017). In this paper, we have abstracted out the inherent design
principle of all these BBB secure MACs and present a generic design paradigm to
construct a BBB secure pseudo random function, namely Double-block Hash-then-
Sum or in short (DbHtS). A DbHtS construction, as the name implies, computes a
double block hash on the message and then sum the encrypted output of the two hash
blocks. Our result renders that if the underlying hash function meets certain security
requirements (namely cover-free and block-wise universal advantage is low), DbHtS
construction provides 2n/3-bit security. We demonstrate the applicability of our
result by instantiating all the existing beyond birthday secure deterministic MACs
(e.g., SUM-ECBC, PMAC_Plus, 3kf9, LightMAC_Plus) as well as a simple two-keyed
variant for each of them and some algebraic hash based constructions.
Keywords: DbHtS · Beyond Birthday · Cover-free · Block-wise Universal · PRF · Sum
of PRP.

1 Introduction
Pseudo Random Function or in short PRF plays an important role in symmetric key
cryptography in providing solutions for authentication and encryption of any arbitrary
length message. Mostly, PRFs are realized by iterating a block cipher or a fixed length
compression function in a specific mode of operation. These PRFs are called block cipher
based PRF or compression function based PRF respectively. Some of the commonly
used block cipher based PRFs are CBC-MAC [BKR00], PMAC [BR02], OMAC [IK03],
LightMAC [LPTY16] etc. and compression function based PRFs include NI-MAC [AB99],
NMAC [BCK96] etc. These PRFs are secure only up to the birthday bound, i.e., the mode
is secure only when the total number of blocks that the mode can process does not exceed
2n/2, where n is the block size of the underlying primitive (i.e., a block cipher for a block
cipher based PRF, a compression function for a compression function based PRF etc.) of
the construction. The bound 2n/2 is called the birthday bound in cryptography.

1.1 Limitations of Birthday Bound Secure PRFs
Birthday bound secure constructions are acceptable in practice, if one uses any of these
constructions with a moderately large block size. For example, PMAC instantiated with
AES-128 permits roughly about 248 queries (using 5`q2/2n [NM08] bound), when the
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longest message size is 216 blocks and the success probability of breaking the scheme
is restricted to 2−10. However, the same construction becomes vulnerable to use if
instantiated with some light weight (smaller block size) block ciphers, whose number
has grown tremendously in recent years, e.g., PRESENT [BKL+07], GIFT [BPP+17],
LED [GPPR12] etc. For example, PMAC, when instantiated with the PRESENT block
cipher (a 64 bit block cipher), permits only about 216 queries when the longest message
size is 216 blocks and the success probability of breaking the scheme is 2−10. Therefore,
it becomes risky to use the birthday bound secure constructions instantiated with light
weight block ciphers. In practice 64-bit block ciphers are still widely used primarily due to
legacy applications with backward compatibility e.g., financial sectors, web browsers etc
uses triple DES instead of AES as using the latter one in corporate mainframe computers
is more expensive. However, if the mode provides only birthday bound security, then 64-bit
block cipher does not give adequate security. Having a beyond birthday secure mode solves
the issue.

Many practical secure applications use standard AES. Using AES in a birthday secure
mode provides 64-bit security which is adequate enough in current days technology.
However, due to the technological advancement 64-bit security may not be adequate in
future. In such situation, the better option would be to use a mode with beyond birthday
security instead of replacing the cipher with larger block size. Note that, there are no
standard block cipher of size higher than 128 bits.

1.2 Beyond Birthday Bound Constructions

In this line of research, Yasuda [Yas10] first proposed a BBB secure deterministic MAC,
called SUM-ECBC, a rate-1/2 sequential mode of construction with four block cipher keys
that offers roughly about 2n/3-bit security. Followed by this work, Yasuda [Yas11] came
up with another deterministic MAC, called PMAC_Plus that also offers roughly about
2n/3-bit security. Unlike SUM-ECBC, PMAC_Plus is a rate-1 parallel mode of construction
with three block cipher keys. Zhang et al. [ZWSW12] proposed another candidate of BBB
secure deterministic MAC, called 3kf9, a rate-1 sequential mode of construction with three
block cipher keys that offers 2n/3-bit security. In all of these proposals security bound of
the construction is some function of q and `, where q is the total number of queries and ` is
the maximum number of message blocks in any of the q queried messages. LightMAC_Plus,
as proposed by Naito [Nai17], is the first deterministic MAC which is proven to have an
` independent beyond birthday bound and hence, it effectively offers a better security
than that of all the earlier three proposals. In a very recent work, Datta et al. [DDN+17]
proposed a single-keyed variant of the PMAC_Plus that offers a better security bound
than that of PMAC_Plus. The MAC part of GCM-SIV2 [IM16] also achieves a stronger,
beyond the birthday bound (roughly 2n/3-bit) security. Besides block cipher based BBB
secure PRFs, beyond birthday secure compression function based PRFs have also been
studied by Yasuda [Yas08] and Dutta et al. [DNP16].

Interestingly, all these existing beyond birthday bound secure deterministic MACs
(i.e., SUM-ECBC, PMAC_Plus, 3kf9, LightMAC_Plus) possess a similar structural design,
which is a composition of two constituent elements: (i) a double block hash function that
outputs a 2n-bit hash value of the input message and (ii) a finalization phase that generates
the final tag by xor-ing the encryption (via two independent block ciphers) of two n-bit
hash values. However, all these MACs follow a different way to bound the security. This
observation motivates us to come up with a generic design guideline to construct a beyond
birthday bound secure PRF that brings all the existing BBB secure MACs under one
common roof and enables us to give a unified security proof for all of them.
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1.3 Our Contributions
The contributions of this paper are threefold:

1. We introduce a generic design which we call Double-block Hash-then-Sum (in
short DbHtS) paradigm, a method of designing a beyond birthday bound secure PRF
by xor-ing the encryption of the outputs of a double block hash function. Based on
the usage of the keys, we call the DbHtS construction three-keyed (resp. two-keyed),
if two block cipher keys are (resp. a single block cipher key is ) used in the finalization
phase along with the hash key. We would like to mention that we consider only
the keyed hash functions unlike popular unkeyed hash functions (e.g., SHA-256,
RIPEMD etc).
We show that if the cover-free and the block-wise universal advantage (See Sect. 3.3
for the definition) of the underlying double block hash function is sufficiently low,
then the two-keyed DbHtS is secure beyond the birthday bound. We also extend our
generic security result from the two-keyed to the three-keyed DbHtS construction.

2. We show the applicability of our security result for the two-keyed DbHtS construc-
tion by instantiating the two-keyed variants of poly-hash based construction and
existing beyond birthday secure deterministic MACs (i.e., SUM-ECBC, PMAC_Plus,
3kf9, LightMAC_Plus). Using our generic security result for the two-keyed DbHtS
construction, we have shown that all the two-keyed variants (i.e., 2K-ECBC_Plus, 2K-
PMAC_Plus, 2kf9 and 2K-LightMAC_Plus) achieve beyond birthday bound security.
The bounds are given in Table 1.

3. Finally, we apply our generic security result for the three-keyed DbHtS construction
to bound the PRF security of SUM-ECBC, PMAC_Plus, 3kf9 and LightMAC_Plus.
Our approach not only provides a generic tool to achieve the BBB security of these
constructions, but also helps us to obtain an improved bound for some of the construc-
tions (e.g., SUM-ECBC and PMAC_Plus). Note that, a similar improvement in the
security bound has also been observed in 1k-PMAC_Plus by Datta et al. [DDN+17].
Additionally, we have identified a flaw in the existing security proof of 3kf9 [ZWSW12]
and to the best of our knowledge, this paper provides the first correct security bound
of 3kf9. A comparison of the old security bounds of the existing BBB secure MACs
with the new one is depicted in Table 1.

Very recently, Leurent et al. [LNS18] have shown attacks on all these constructions with
23n/4 query complexity. This raises an interesting future problem to study the tightness of
PRF security of these constructions.
Organization. We develop the notations and recall the basic security definitions in Sect. 2.
In Sect. 3, we introduce the DbHtS paradigm and prove its PRF security. We instantiate
DbHtS with algebraic double block hash function in Sect. 4. Sect. 5 deals with the
security analysis of the two-keyed variants of the parallel constructions (i.e, PMAC_Plus
and LightMAC_Plus) and provides an alternative security proof for PMAC_Plus and
LightMAC_Plus. Sect. 6 deals with the security analysis of two-keyed variants of sequential
constructions (i.e., SUM-ECBC and 3kf9) and provides an alternative security proof for
SUM-ECBC and 3kf9. Finally, we conclude the paper by discussing some open problems
and difficulties in proving the PRF security of the single-keyed DbHtS in Sect. 7.

2 Preliminaries
We will introduce necessary symbols and notations in Sect. 2.1 followed by the required
security definitions in Sect. 2.2. We discuss the lazy sampling of permutations in Sect. 2.3.



Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul 39

Table 1: #Keys denote the number of block cipher keys used in the construction. Rate
defines the average number of message blocks processed by a single execution of block
cipher. q denotes the total number of queries and ` denotes the maximum number of
message blocks in all q queries. Only the dominant terms of the security bounds are listed.
(?) symbolizes the new bound is improved over the existing one and (†) symbolizes the
corresponding bound is incorrect. We discuss this issue at the end of Sect. 6.3.

Construction (#Keys, rate) Old bound New Bound

Three-keyed DbHtS
SUM-ECBC (4, 1/2) q3`4/22n q`2/2n + q3/22n(?)
PMAC_Plus (3, 1) q3`3/22n + q`/2n q3`/22n + q2`2/22n(?)
3kf9 (3, 1) q3`3/22n + q`/2n (†) q3`4/22n

LightMAC_Plus (3, 1) q3/22n q3/22n

Two-keyed DbHtS
2K-ECBC_Plus (3, 1/2) - q`2/2n + q3`2/22n

2K-PMAC_Plus (2, 1) - q3`/22n + q2`2/22n

2kf9 (2, 1) - q3`4/22n

2K-LightMAC_Plus (2, 1) - q3/22n + q/2n

Sect. 2.4 briefly discusses about H-Coefficient Technique. Some basic results of linear
algebra is given in Sect. 2.5, followed by the result on xor of two permutations in Sect. 2.6.

2.1 Notations
Given a finite set S and a random variable X, we write X ←$S to denote that X is
sampled uniformly at random from S.

We fix a positive integer n for the rest of this section. {0, 1}n denotes the set of all
binary strings of length n. A block is defined as an n-bit binary string. The functions fix0
and fix1 take an n-bit binary string x and return x with its least significant bit set to 0
and 1 respectively. We write 0 to denote the all zero binary string and 1 to denote the
binary string whose first n− 1 bits are all zeros and the least significant bit is one.

A tuple x̃ over an index set I is denoted by (xi : i ∈ I). For notational simplicity, we
sometimes write the tuple as (xi)i when the index set is understood from the context. The
i-th element of a tuple x̃ is represented by xi. Length of a tuple x̃ refers to the number of
elements in it and is denoted by |x̃|. An element xi of a tuple x̃ is called a fresh value if
for all j 6= i, xi 6= xj . Otherwise, we say xi is a colliding value or alternatively not fresh in
x̃. A tuple is said to be distinct if each of its elements is fresh. Otherwise, we say it is not
a fresh tuple. Concatenation of two tuples x̃ and ỹ is denoted by (x̃, ỹ). A tuple is said to
be a block-tuple, if each of its element is a member of {0, 1}n. For a set X , X (q) denotes
the set of all distinct tuples over X of length q. If X = {0, 1}n, then ({0, 1}n)(q) denotes
the set of all block-wise distinct tuples of length q. For a positive integer q, we write [q] to
denote the set {1, 2, . . . , q}. We denote the empty set as Φ.

We regard the set {0, 1}n as a set of integers {0, 1, . . . , 2n − 1} by converting an n-bit
binary string (an−1an−2 . . . a1a0) ∈ {0, 1}n to an integer an−12n−1 + an−22n−2 + . . . +
a12 + a0, where multiplication and addition are integer arithmetic. Let GF (2n) be the
field with 2n elements and we regard {0, 1}n as GF (2n). We identify an n-bit string
(an−1an−2 . . . a1a0) ∈ {0, 1}n as a polynomial an−1x

n−1 + an−2x
n−2 + . . . + a1x + a0 ∈

GF (2)[x]. To do operations on the elements of GF (2n), we fix an irreducible polynomial
f(x) ∈ GF (2)[x] and addition, denoted as ⊕ and multiplication, denoted as · are done
modulo f(x). With a slight abuse of notation, we write {0, 1}n to denote the set of n-bit
binary strings or the field GF (2n).

The set of all functions from X to Y is denoted as Func(X ,Y). Similarly, the set of all
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permutations over X is represented by Perm(X ). A function φ mapping an element from
an arbitrary domain to {0, 1}n is called a block function. Similarly, if φ maps to ({0, 1}n)2,
we call it a double-block function. We write a double block function as φ = (φ0, φ1), where
φ0 and φ1 are block functions. We denote the set of all block functions with domain X as
Func(X ) 1 and the set of all block permutations as Perm. For integers 1 ≤ b ≤ a, we write
(a)b to denote a(a− 1) . . . (a− b+ 1), where (a)0 = 1 by convention.

2.2 Security Definitions
PRF and PRP. A keyed function with the key space K, the domain X and the range
Y is a function F : K × X → Y and we denote F (K,X) by FK(X). Similarly, a keyed
permutation with the key space K and the domain X is a mapping E : K ×X → X such
that for each key K ∈ K, X 7→ E(K,X) is a permutation over X and we denote EK(X)
for E(K,X).

Let A be an oracle algorithm with oracle access to a function from X to Y that outputs
a single bit. Without loss of generality, we assume that A can make at most q oracle
queries with running time at most t. We call such an oracle algorithm a distinguisher. We
define the prf-advantage of A against a keyed function F as

AdvPRF
F (A) := |Pr[K ←$K : AFK = 1]− Pr[RF←$ Func(X ,Y) : ARF = 1]|.

Similarly, we define the prp-advantage of the distinguisher A against a keyed permutation
E as

AdvPRP
E (A) := |Pr[K ←$K : AEK = 1]− Pr[Π←$ Perm(X ) : AΠ = 1]|.

For a keyed function family F , Advxxx
F (q, t) denotes max

A
Advxxx

F (A), where xxx is either
prf or prp and maximum is taken over all distinguishers A running in time at most
t and make at most q queries. If F is a keyed function (resp. permutation) family
such that Advxxx

F (q, t) ≤ δ, then we say F is a (δ : q, t)-PRF (resp. PRP). If A is a
computationally unbounded distinguisher, then we disregard the time parameter from its
advantage definition.
(Almost-XOR) Universal Advantage of Hash Function. Let Kh and X be two
non-empty finite sets and ε > 0. A keyed function H : Kh×X → {0, 1}n is a ε-(almost-xor)
universal hash function, if for any distinct X,X ′ ∈ X and for any Y ∈ {0, 1}n,

Pr[Kh←$Kh : HKh
(X)⊕HKh

(X ′) = Y ] ≤ ε.

Moreover, H is said to be an ε-universal hash function, if for any distinct X,X ′ ∈ X ,

Pr[Kh←$Kh : HKh
(X) = HKh

(X ′)] ≤ ε.

Double-Block Hash Function. A keyed hash function H is said to be a Double-block
Hash (DbH) function, if H : Kh ×X → ({0, 1}n)2. We denote the pair of block outputs as
(HKh,0(X), HKh,1(X)), where X ∈ X and HKh,0(X)‖HKh,1(X) = HKh

(X).

2.3 Lazy Sampling of Random Permutation
Suppose, a distinguisher A is interacting with a random permutation Π←$ {0, 1}n. This
interaction is simulated by a simulator that maintains a partial function (or sometimes
we call it a list) Ψ which is initially set to an empty function (i.e., a function with empty
domain). On the i-th query xi, the simulator checks whether xi ∈ Dom(Ψ), where Dom(Ψ)
is the set of all elements of {0, 1}n on which Ψ is defined. If so, the corresponding response
yi is set to Ψ(xi). Else, the response is sampled uniformly from {0, 1}n \Ran(Ψ), where
Ran(Ψ) is the set of all elements of {0, 1}n which have at least one preimage under Ψ and
xi added to the set Dom(Ψ).

1When X = {0, 1}n then we write Func to denote Func({0, 1}n)
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2.4 H-Coefficient Technique
In this section, we briefly discuss the H-Coefficient Technique [Pat08c, CLL+14] which
has been introduced by Patarin [Pat08c] and recently regained attention since Chen and
Steinberger used it to analyze the iterated Even-Mansour cipher [CS14]. This technique
gives a kind of “systematic” way to upper bound the statistical distance between the
answers of two interactive systems and is typically used to prove the information theoretic
pseudo randomness of constructions. In this setting, we consider a computationally
unbounded and hence deterministic distinguisher A that interacts with either the real
oracle, i.e., the construction of our interest, or the ideal oracle which is usually considered
to be a uniform random function or permutation. The collection of all the queries and
responses that A made and received to and from the oracle, is called the transcript of A,
denoted as τ . Sometimes, we allow the oracle to release more internal information to A
only after A completes all its queries and responses, but before it outputs its decision bit.
In this case, the transcript of A includes the additional information about the oracle and
clearly the maximum distinguishing advantage of A in this setting can not be less than
that of without additional information. Observe that the transcript τ is a random variable
and the randomness of the distribution of τ only comes from the randomness of the oracle
with which A interacts.

Let Xre and Xid denote the probability distributions of the transcript τ induced by
the real oracle and the ideal oracle respectively. The probability of realizing a transcript τ
in the ideal oracle (i.e., Pr[Xid = τ ]) is called the ideal interpolation probability. Similarly,
one can define the real interpolation probability. A transcript τ is said to be attainable
with respect to A if the ideal interpolation probability is non-zero (i.e., Pr[Xid = τ ] > 0).
We denote the set of all attainable transcripts by Θ. Following these notations, we state
the main theorem of H-Coefficient Technique [Pat08c, CLL+14] as follows:

Theorem 1 (H-Coefficient Technique). Let A be a fixed deterministic distinguisher
that has access to either the real oracle Ore or the ideal oracle Oid. Let Θ = Θg tΘb
(disjoint union) be some partition of the set of all attainable transcripts of A. Suppose
there exists εratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ εbad. Then,

AdvOid
Ore

(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ εratio + εbad. (1)

When Oid is a uniform random function and Ore is some keyed construction defined over
the same domain, then Eqn. (1) says that Advprf

Ore
(A) ≤ εratio + εbad.

2.5 Some Results on Linear Algebra
For a matrix L of dimension s × t defined over GF (2n), L[i][j] denotes the element in
its i-th row and j-th column. For a column vector c of dimension s × 1, L‖c denotes
the augmented matrix of dimension s× (t+ 1). For any row vector R := (R1, . . . , Rt) of
dimension 1× t, transpose of row vector R, denoted as RT, denotes the column vector

RT :=


R1
R2
...
Rt


of dimension t× 1.
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One can represent any system of s linear equations with t unknowns (Y1, . . . , Yt) defined
over GF (2n), denoted as L, as a matrix L of dimension s × t, where the i-th equation
Li := ai1 · Y1 ⊕ . . .⊕ ait · Yt = ci, where ci ∈ GF (2n), corresponds to the i-th row vector
of L as (ai1, . . . , ait). We say L is consistent if it has at least one solution, otherwise we
call it inconsistent. For L to be consistent, one must have rank(L) = rank(L‖c) 2, where
c = (c1, . . . , cs)T. L has a unique solution if rank(L) = t and it has many solutions if
rank(L) < t.

Let L · Y T = c represent a system of s linear equations with t unknowns (Y1, . . . , Yt),
where rank(L) = r and the elements of L are from GF (2n). Let Y := (Y1, . . . , Yt) be
without replacement samples from a set Y ⊆ {0, 1}n and c is any arbitrary column vector
of dimension s × 1 with its elements from GF (2n). Thus, the probability of realizing a
particular solution is at most 1

(|Y|−t+r)r
as stated formally in the following lemma.

Lemma 1. Let Y := (Y1, . . . , Yt) be without replacement samples from a set Y ⊆ {0, 1}n
and L be a matrix of dimension s× t defined over GF (2n). Then, for any given column
vector c of dimension s× 1 over GF (2n), we have

Pr[(L)s×t · Y T = c] ≤ 1
(|Y| − t+ r)r

,

where r is the rank of the matrix L.

Proof. Since, the rank of L is r, the number of free variables in the system of equations
is (t− r). Now, each choice of free variables, which necessarily has to be distinct, uniquely
determine the remaining variables such that the overall system of equations is satisfied.
Therefore, the number of solutions is at most (|Y|)t−r and the total number of ways we
can choose t distinct variables (Y1, . . . , Yt) is (|Y|)t. Dividing the former one by later gives
the result.

2.6 Sum of Two Identical Permutations
In this section, we briefly revisit the security result of the sum of two identical random
permutations. The sum of two permutations is one of the PRP to PRF transformations,
suggested by Bellare et al. [BKR98] as:

SUMEK1 ,EK2
(x) = EK1(x)⊕ EK2(x),

where EK1 and EK2 are two independent PRPs. We call this construction as the sum
construction. This construction was later analyzed by Lucks [Luc00] who proved 22n/3

security. Further improvements have been shown in [Pat08b, Pat10, Pat13]. The results are
natively inherited by the construction that consists of the xor of three or more independent
PRPs [CLP14, MP15].

Security of the single-keyed sum construction (i.e., the sum construction with K1 = K2),
as simulated through the domain separation, suggested in [Luc00, BI99], has been shown
to be provably secure by Bellare and Impagliazzo [BI99] up to O(n) · q

3/2

23n/2 . However,
their security proof is too sketchy to verify and contains unverifiable gaps. In a series of
papers [Pat08b, Pat10, Pat13], Patarin proved the optimal security of the construction
using the standard H technique [Pat13] and the mirror theory technique [Pat10] but the
proof is still unverifiable. Recently, Dai et al. [DHT17] showed (1.5q + 3√q)/2n bound for
the sum construction and its single-keyed variant using the chi-squared method.

In the following, we state and prove that the single-keyed sum construction is a secure
PRF that offers 2n/3-bit security. Formally, we have the following result:

2rank of a matrix L is defined as the maximum number of linearly independent columns of L
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Lemma 2. For any block tuple (T1, . . . , Tq) of length q such that each Ti is non-zero, let

Z = {(Ui, Vi)i : Ui ⊕ Vi = Ti ∀i ∈ [q], (Ui, Vi)i ∈ ({0, 1}n)(2q)}.

Then, |Z| ≥ (2n)2q

2nq (1− 6q3

22n ), with the assumption q ≤ 2n−2.

Proof. Datta et al. [DDN+17] showed in Theorem 2, that for any set B := {B1, . . . , Bs} ⊆
{0, 1}n and a q-length block tuple (T1, . . . , Tq) such that each Ti is non-zero, the following
holds:

| {(H0
i , H

1
i ) : H0

i ⊕H1
i = Ti, (H0

i , H
1
i )i ∈ ({0, 1}n \ B)(2q)}︸ ︷︷ ︸

H

| ≥ (2n − s)2q

2nq (1− µ2), (2)

where µ2 ≤ qs2+2sq2+4q3/3
(2n−s−2q)2 .

Now, note that the set Z is the same as H with B as an empty set and hence s = 0.
Therefore, from Eqn. (2) and with the assumption q ≤ 2n−2, we obtain the result.

Remark 1. It is natural to wonder that why we prove a weaker bound of the construction
in the face of its existing optimal security bound. We note that the optimal security bound
of the construction has been proved for PRF advantage. However, we need a counting
results on the number of permutations to apply the H-coefficient technique. Currently, we
do not know how to use this optimum PRF security result directly in our proof setting. In
this regard, one can possibly use the Patarin’s proof of sum construction using the mirror
theory [Pat10] technique. However, the reliability of Patarin’s proof [Pat10] is debatable.
Thus, we independently prove the security of the sum construction up to 22n/3 bound,
which is good enough for our purpose. Moreover, as we will see later in the paper that
we will use the above result in the security analysis of the two-keyed DbHtS construction.
The dominant term of its security bound appears due to the cover-free advantage (defined
later in Sect. 3.3) of its underlying DbH function, overkilling the optimal bound of the
single-keyed sum construction.

3 DbHtS : A BBB Secure VIL PRF Paradigm
Hash-then-PRF or (HtP) is a well known paradigm for constructing a Variable Input
Length (VIL) PRF by composing a universal hash function and a Fixed Input Length (FIL)
PRF due to Shoup [Sho04]. Formally, HtP composition result says the following:

If H is an ε(`) universal hash function that outputs m bits and F is a (δ : q)-PRF with
domain {0, 1}m, then the composition construction (F ◦H) is a (δ + ε(`)q2/2 : q, `)-PRF.

To obtain the BBB PRF-security of a keyed construction following the HtP paradigm,
the PRF advantage bound of F and the universal advantage bound of H need to be
beyond birthday. It is feasible to construct a double block hash function (which outputs
m = 2n bits) with ε(`) = O(`c2−2n) (e.g., multi-linear hash [HK97], PolyHash [dB93,
BJKS93, Tay93] etc). However, obtaining a beyond birthday bound secure PRF over 2n
bits input would not be easy and efficient. It is needless to say that a beyond birthday
bound secure F can be constructed from scratch or one can try some variants of the
5-rounds Luby-Rackoff [Pat98] or the Benes-Butterfly construction [Pat08a] that gives a
beyond birthday bound secure PRF over 2n bits input. However, the former suggestion is
non-trivial and the latter one would require at least 6 primitive calls for realizing 2n bits
to n bits PRF. Moreover, its security proof is based on pseudorandom function. A possible
way out is to instantiate each pseudorandom function with the sum of two independent
block ciphers. But this idea comes at the cost of using total 12 block cipher keys. To
realize it with less block cipher keys is non-trivial. .
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This motivates us to design a paradigm for constructing a beyond birthday secure VIL
PRF, where the underlying hash function H is required to achieve some stronger security
assumption than the universal property, whereas we require a simple and efficient keyed
function that is not required to be a PRF.

3.1 Double-block Hash-then-Sum (DbHtS) Paradigm
In this section, we describe the Double-block Hash-then-Sum (in short, DbHtS) paradigm
to build a BBB secure VIL PRF. In this paradigm, a Double-block Hash (DbH) function
is used with a very simple and efficient single-keyed or two-keyed sum function:

- Single-Keyed Sum Function: SumK(x, y) = EK(x)⊕ EK(y),

- Two-Keyed Sum Function: SumK1,K2(x, y) = EK1(x)⊕ EK2(y),

where EK , EK1 , EK2 are n-bit block ciphers and K1 and K2 are independent. Given a
DbH function and the sum function over two blocks, we apply the composition of the DbH
function and the sum function to realize the DbHtS construction. Based on the types
of sum function (i.e., single-keyed or two-keyed) used in the composition, we categorize
DbHtS into following two categories:

- Three-Keyed DbHtS: C3[H,E](M) := SumK1,K2(HKh,0(M), HKh,1(M)).

- Two-Keyed DbHtS: C2[H,E](M) := SumK(HKh,0(M), HKh,1(M)).

M

HKh

EK1 EK2

⊕

T

M

HKh

EK EK

⊕

T

Figure 3.1: Two different types of Double block Hash then Sum constructions. Left :
three-keyed construction C3[H,E](M) := EK1(HKh,0(M)) ⊕ EK2(HKh,1(M)). Right :
two-keyed construction C2[H,E](M) := EK(HKh,0(M))⊕EK(HKh,1(M)) where Kh ∈ Kh.
For simplicity of notations we sometimes simply refer them as C3 and C2 respectively.

We use the name two-keyed (or three-keyed) DbHtS construction, as we count the hash key
as one key and the sum function requiring one key (or two independent keys respectively),
independent of the hash key. However, a concrete instantiation of a DbH function may
require multiple keys.

Most of the BBB secure deterministic MACs like SUM-ECBC, PMAC_Plus, 3kf9, Light-
MAC_Plus are specific instantiations of the three-keyed DbHtS paradigm. However, we
would like to work with the two-keyed DbHtS construction as it involves more challenging
analysis than its three-keyed version. We would like to note that the three-keyed DbHtS
does not outperform its two-keyed version in terms of providing improved security bound
as evident from the last column of Table 1. Its only advantage lies in its simpler security
proof, as the number of cases to analyze gets reduced.
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Remark 2. As the sum function is not a PRF 3, we can not apply the HtP composition
result directly to analyze the security of DbHtS. This says that we need a different type
of composition result for the security analysis of DbHtS construction in which we require
some higher security properties from its underlying DbH function instead of having only
the universal property.

3.2 Proof Idea of Two-Keyed DbHtS Construction
In this section, we provide a brief idea of proving the security of the two-keyed DbHtS
construction. We believe that this will motivate the reader to understand the crux of the
main proof given in Sect. 3.4 and also help to understand a few definitions introduced in
Section 3.3.

We use the H-Coefficient technique, which requires us to bound: (i) the probability of
the bad transcripts in the ideal oracle and (ii) the ratio of the real to ideal interpolation
probability of the good transcripts. The computation of the real interpolation probability
is reduced to the probability of satisfying the following q many bi-variate equations:

Π(HKh,0(M1))⊕Π(HKh,1(M1)) = T1,

Π(HKh,0(M2))⊕Π(HKh,1(M2)) = T2,
...

Π(HKh,0(Mq))⊕Π(HKh,1(Mq)) = Tq,

Now, to obtain a meaningful lower bound of the real interpolation probability, we need
at least one of the inputs of Π to be fresh for each equations and each Ti to be non-zero.
In this regard, we call a transcript to be good if for each i ∈ [q], either HKh,0(Mi) or
HKh,1(Mi) or both are fresh in the following tuple:

H̃ :=
(
(HKh,0(M1), HKh,1(M1)), (HKh,0(M2), HKh,1(M2)), . . . , (HKh,0(Mq), HKh,1(Mq))

)
,

and every Ti is non-zero. In other words, we call a transcript to be bad if one of the
following three conditions occur:

(i) ∃i ∈ [q] such that HKh,0(Mi) = HKh,1(Mi). We call it the collision condition.

(ii) ∃i 6= j, i 6= k, b, b′ ∈ {0, 1} such that HKh,0(Mi) = HKh,b(Mj), HKh,1(Mi) =
HKh,b′(Mk). We call it the covered condition.

(iii) ∃i : Ti = 0.

If none of the above conditions happen, then for each i ∈ [q], either HKh,0(Mi) and
HKh,1(Mi) both are fresh in H̃, or any one of the HKh,0(Mi) or HKh,1(Mi) are colliding
in H̃. If both the inputs are fresh, we can directly apply Lemma 2. Otherwise (w.l.o.g.
assume that HKh,1(Mi) is non-fresh), the permutation output of HKh,1(Mi) is defined
(or may need to sampled, if not defined already), which in turn uniquely determines the
permutation output of HKh,0(Mi) (as we have already fixed the response Ti). However,
this uniquely determined output may collide with some already sampled values in range.
We call this condition the range collision condition which actually creates a permutation
input-output compatibility issue.

Therefore, bounding the probability of bad transcripts is nothing but to bound all of
the above events. A detailed treatment of bounding the bad probability is given in Sect. 3.4.
Finally, by computing the ratio of real to ideal interpolation probability concludes the
proof of C2[H,E].

3One can construct a PRF distinguisher A with PRF advantage very close to 1. A makes four queries
(x1, y1), (x1, y2), (x2, y1), (x2, y2) and check if the xor of their output is zero which holds with probability
1 for real oracle, and holds with probability 2−n for ideal oracle.
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Remark 3. We would like to mention that we have identified the bad events with a clear
intention in mind to apply the sum construction result when these bad events do not
happen. As a result, the bad events essentially boil down to investigating the collision, the
covered and the range collision condition of the underlying DbH function. Whether all of
these bad events directly lead to an attack in the construction, is not known.

3.3 Security Notions for DbH Functions
In this section, we define the necessary security notions of a DbH function which will be
required in proving the main security result of this paper.

Let g̃ and h̃ be two tuples of length q. We say that the tuple (g̃, h̃) is covered at an
index i ∈ [q], if gi and hi are colliding values in (g̃, h̃), but they do not collide at the same
value i.e., gi 6= hi for all i ∈ [q]. As a matter of fact, (g̃, h̃) is covered at an index i ∈ [q] if
and only if ∃j 6= i, k 6= i such that either of the following conditions hold:

(i) gi = gj , hi = hk (ii) gi = hj , hi = hk (iii) gi = gj , hi = gk (iv) gi = hj , hi = gk

As there is no restriction on j and k, we can have j = k and therefore plugging-in j = k in
(i) and (iv) gives rises the following two possibilities:

(v) ∃j 6= i : gi = hj , hi = gj (vi) ∃j 6= i : gi = gj , hi = hj .

Note that, for (ii) and (iii), j = k case is excluded by the “no-collision at the same value
condition” at index i. Moreover, it is needless to mention that for q = 1, the tuple (g1, h1)
is always cover-free.

We say that there is a cross-collision between g̃ and h̃, when any one of the conditions
(ii)-(v) occur. The tuple (g̃, h̃) is called covered, if it is covered at some index i ∈ [q]. If
the tuple (g̃, h̃) is not covered, we say that it is cover-free. So for a cover-free tuple (g̃, h̃)
such that none of (gi, hi) collides at the same value, for every i ∈ [q], either gi is fresh in
(g̃, h̃) or hi is fresh in (g̃, h̃) or both. The tuple (g̃, h̃) is said to be weak covered, if (g̃, h̃)
is covered but there is no cross-collision between (g̃, h̃). In other words, if (g̃, h̃) is weak
covered, then only condition (i) or (vi) holds. Thus, a weak covered tuple is always a
covered tuple but the other direction is not true.
Example 1. Let us consider two tuples g̃ = (a, b, a, d, e, f) and h̃ = (b, c, c, d, e, g) of
length 6. Observe that (g̃, h̃) is covered at index 1, 2, 3, but not covered at index 4 and 5
as g4 = h4 and g5 = h5. Moreover, it is not a weak covered tuple. On the other hand, the
tuple g̃ = (a, b, a, d, e, f) and h̃ = (u, u, v, x, y, z) of length 6 is a weak covered tuple.

3.3.1 Security Definitions for DbH Function

Having defined the cover-free tuple, we now introduce the necessary security definitions for
a DbH function. We begin with defining the cover-free advantage of a DbH function H.

For a q, a distinct tuple (M1, . . . ,Mq) and fixed i, j, k ∈ [q] such that i 6= j, i 6= k, we
define the following event:

CFijk :=
∨

b,b′∈{0,1}

(
HKh,0(Mi) = HKh,b(Mj), HKh,1(Mi) = HKh,b′(Mk)

)
∨(

HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mj)
)
.

We also define the event

WCFijk :=
(
HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mk)

)
∨(

HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mj)
)
.
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Definition 1. Let Kbad be a function from a set of tuple of q distinct messages to the
power set of hash keys P(Kh). We say that a DbH function H : Kh ×M→ ({0, 1}n)2 is a
(Kbad, εcf)-cover-free DbH function, if for any q-tuple of distinct messages (M1, . . . ,Mq),
each of length at most ` blocks such that

∀i, j, k such that i 6= j, i 6= k, Pr[CFijk holds, Kh ∈ Kh \ Kbad(M1, . . . ,Mq)] ≤ εcf .

We call εcf to be the cover-free advantage for three messages of the DbH function H.
Similarly, we define the weak-cover-free advantage of the DbH function H as follows:

Definition 2. Let Kbad be a function from a set of tuple of q distinct messages to the
power set of hash keys P(Kh). We say that a DbH function H : Kh ×M → ({0, 1}n)2

is a (Kbad, εwcf)-weak-cover-free DbH function, if for any q-tuple of distinct messages
(M1, . . . ,Mq), each of length at most ` blocks such that,

∀i, j, k such that i 6= j, i 6= k, Pr[WCFijk holds, Kh ∈ Kh \ Kbad(M1, . . . ,Mq)] ≤ εwcf .

We call εwcf to be the weak-cover-free advantage for three messages of the DbH function
H.
Note. It is to be noted that in both the definitions Kbad is treated as a function that
maps a tuple of q distinct messages to a subset of hash keys. As we work on a fixed tuple
of q distinct messages, the set Kbad(M1, . . . ,Mq) is a fixed set and hence for the sake of
notational simplicity, we abuse the notation Kbad to indicate the image set of the function
Kbad.
Note that, for a cover-free tuple (g̃, h̃) and for a fixed index i ∈ [q], either gi is non-fresh
and hi is fresh in (g̃, h̃) or gi is fresh and hi is non-fresh in (g̃, h̃) or both are fresh in (g̃, h̃).
Considering the first two cases, we now define the block-wise universal advantage of DbH
function as follows:

For a q, a distinct tuple (M1, . . . ,Mq) and fixed i, j ∈ [q] such that i 6= j, we define the
following event:

UNIVij :=
(
HKh,0(Mi) = HKh,0(Mj)

)∨(
HKh,0(Mi) = HKh,1(Mj)

)
∨(

HKh,1(Mi) = HKh,0(Mj)
)∨(

HKh,1(Mi) = HKh,1(Mi)
)
.

We also define the event

WUNIVij :=
(
HKh,0(Mi) = HKh,0(Mj)

)∨(
HKh,1(Mi) = HKh,1(Mj)

)
.

Definition 3. We say that a DbH function H : Kh ×M → ({0, 1}n)2 is (Kbad, εuniv)-
block-wise universal DbH function, if for any q-tuple of distinct messages (M1, . . . ,Mq),
each of length at most ` blocks such that

∀i, j such that i 6= j, Pr[UNIVij holds, Kh ∈ Kh \ Kbad] ≤ εuniv.

We call εuniv to be the block-wise universal advantage for two messages of DbH function
H.
Similarly, we define the weak-block-wise universal advantage of the DbH function H as
follows;

Definition 4. We say that a DbH functionH : Kh×M→ ({0, 1}n)2 is (Kbad, εwuniv)-weak-
block-wise universal DbH function, if for any q-tuple of distinct messages (M1, . . . ,Mq),
each of length at most ` blocks such that,

∀i, j, k such that i 6= j, i 6= k, Pr[WUNIVij holds, Kh ∈ Kh \ Kbad] ≤ εwuniv.
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We call εwuniv to be the weak-block-wise universal advantage for two messages of the DbH
function H.
The prior two events perfectly capture all the possibilities of having non-freshness condition
in (g̃, h̃) tuple except the condition that gi and hi can collide at the same value. In the
following, we define the event that captures the collision of gi and hi at the same value.

For a q, a distinct tuple (M1, . . . ,Mq) and a fixed i ∈ [q], we define the following event:

COLLi :=
(
HKh,0(Mi) = HKh,1(Mi)

)
.

Definition 5. We say that a DbH function H : Kh ×M → ({0, 1}n)2 is a (Kbad, εcoll)-
colliding DbH function, if for any q tuple of distinct messages (M1, . . . ,Mq), each of length
at most ` blocks such that,

∀i ∈ [q], Pr[COLLi holds, Kh ∈ Kh \ Kbad] ≤ εcoll.

We call εcoll to be the maximum collision probability of DbH function H.

Discussion. (1) We would like to point out that εcf , εuniv and εcoll are functions of ` only
as these values depend only on the length of a triplet of messages, pair of messages and a
single message respectively. To emphasize this fact, we often write εcf(3, `) and εuniv(2, `)
to denote εcf and εuniv respectively. In the same line of reasoning εcoll(1, `) should also
denote εcoll, but we prefer to denote it as εcoll.

(2) The notion of weak-cover-free advantage and weak-block-wise universal advantage
are the required properties for the DbH function of the three-keyed DbHtS construction.
Because, in the three-keyed DbHtS construction, we apply the two-keyed sum function
on the input of the underlying DbH function. As a result, we do not require to bother
about considering any cross-collisions in the output of the hash function. Here we intend
to use the notion weak in terms of the security definition. If a double-block hash function
is cover-free or (block-wise universal) then it is also weak-cover-free or (weak-block-wise
universal respectively), however the converse is not necessarily true.

(3) The notion for cover-free and collision have also been used in the context of the
NI+-MAC [DNP16] security proof. However, the notion of cover-free and collision used in
their paper is substantially different from ours: (i) In [DNP16], the cover-free notion was
used to refer to the collision event between the input of the final function call with the
input of an intermediate function call and (ii) the collision event was used to denote the
input collision in the final function call.

3.3.2 Security Definitions for Block-Separated DbH Function.

A DbH function HKh
= (HKh,0, HKh,1) is said to be block-separated if the range of possible

values of HKh,0 and HKh,1 are disjoint. It is easy to see that using fix0 and fix1 functions,
one can easily transform any DbH function HKh

to a block-separated DbH function H ′Kh

as follows:
H ′Kh

:= (fix0(HKh,0), fix1(HKh,1)).

Note that, for a block-separated DbH function HKh
, (H̃Kh,0, H̃Kh,1) is covered at an index

i ∈ [q] implies that only condition (i) or (vi) holds i.e., one of the following conditions hold:

- ∃i 6= j, i 6= k such that HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mk).

- ∃i 6= j such that HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mj).
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Accordingly, for a block-separated DbH function, the event CFijk will be

CFijk =
(
HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mk)

)
∨(

HKh,0(Mi) = HKh,0(Mj), HKh,1(Mi) = HKh,1(Mj)
)
. (3)

Note that, the above event is exactly identical to WCFijk and therefore, the cover-free
notion of a block-separated DbH function is equivalent to its weak-cover-free notion.
Therefore, the cover-free advantage of a block-separated DbH function is equivalent to
its weak-cover-free advantage. Similarly, for a block-separated DbH function HKh

, the
block-wise universal advantage implies one of the following conditions hold:

- ∃i 6= j such that HKh,0(Mi) = HKh,0(Mj).

- ∃i 6= j such that HKh,1(Mi) = HKh,1(Mj).

Accordingly, for a block-separated DbH function, the event UNIVij will be

UNIVij =
(
HKh,0(Mi) = HKh,0(Mj)

)∨(
HKh,1(Mi) = HKh,1(Mj)

)
. (4)

Similar as before, the above event UNIVij is exactly identical to WUNIVij and therefore,
the block-wise universal notion of a block-separated DbH function is equivalent to its
weak-block-wise universal notion. Therefore, the block-wise universal advantage of a
block-separated DbH function is equivalent to its weak-block-wise universal advantage.
Moreover, it is easy to see that for a block-separated DbH function, COLLi is an impossible
event for any i ∈ [q] and hence a block separated DbH H is always (Kbad, 0)-colliding DbH
function.

3.4 Security of DbHtS
In this section, we state and prove the PRF security of DbHtS construction. In particular,
we prove only the PRF security of two-keyed DbHtS construction C2[H,E] based on a
DbH function H and pseudo random permutation or block cipher E.

Theorem 2. Let K,Kh andM be three non-empty finite sets. Let E : K×{0, 1}n → {0, 1}n
be a block cipher and H : Kh × M → ({0, 1}n)2 be a DbH function. Let Kbad be a
function from a set of tuple of q distinct messages to the power set of hash keys P(Kh)
such that for any tuple of q distinct messages (M1, . . . ,Mq), one has Pr[K ←$Kh : K ∈
Kbad(M1, . . . ,Mq)] ≤ εbh.
(i) If H is (Kbad, εcf(3, `)) cover-free, (Kbad, εuniv(2, `)) block-wise universal and (Kbad, εcoll)
colliding hash function, then

Advprf
C2[H,E](q, `, t) ≤ Advprp

E (2q, t′)+εbh+q ·εcoll+
q3

6 ·εcf(3, `)+ 3q3

2n ·εuniv(2, `)+ 6q3

22n + q

2n ,

where t′ = t+q(th+tγ), th be the time complexity of hash computation for a single message,
tγ be the time complexity of making two primitive queries with xoring their reply and we
have assumed that q ≤ 2n−2.
(ii) If H is (Kbad, εcf(3, `)) cover-free and (Kbad, εuniv(2, `)) block-wise universal block-
separated DbH function, then

Advprf
C2[H,E](q, `, t) ≤ Advprp

E (2q, t′) + εbh + q3

6 · εcf(3, `) + 3q3

2n · εuniv(2, `) + 6q3

22n + q

2n ,

where t′ = t+q(th+tγ), th be the time complexity of hash computation for a single message,
tγ be the time complexity of making two primitive queries with xoring their reply and we
have assumed that q ≤ 2n−2.
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(iii) If H is (Kbad, εwcf(3, `)) weak-cover-free and (Kbad, εwuniv(2, `)) weak-block-wise uni-
versal hash function, then

Advprf
C3[H,E](q, `, t) ≤ 2Advprp

E (2q, t′) + εbh + q3

6 · εwcf(3, `) + 3q3

2n · εwuniv(2, `) + 2q3

22n ,

where t′ = t+q(th+tγ), th be the time complexity of hash computation for a single message,
tγ be the time complexity of making two primitive queries with xoring their reply and we
have assumed that q ≤ 2n−2.

Proof of part (i). Using the standard argument of switching from computational setting
to information theoretic setting, we analyze the security of the construction C∗2 := C∗2[H,Π]
based on an n-bit random permutation Π and a double block hash function H. This
conversion adds the term Advprp

E (2q, t′) in the security bound. Therefore, we need to show
that

Advprf
C∗2

(q, `) ≤ εbh + q · εcoll + q3

6 · εcf(3, `) + 3q3

2n · εuniv(2, `) + 6q3

22n + q

2n . (5)

The remainder of the proof is organized as follows: We begin with describing the ideal
oracle and the attack transcript of the adversary in Sect. 3.4.1. In Sect. 3.4.2, we define
and bound the probability of bad transcripts in the ideal oracle. Analysis of the good
transcripts is shown in Sect. 3.4.3. Finally, part (i) of Theorem 2 follows from Theorem 1
and Eqn. (5) above and Lemma 3 and Lemma 4 proven below.

3.4.1 Initial Setup

We fix a computationally unbounded and hence deterministic non-repeating query making
distinguisher D that interacts with either (1) a real oracle C∗2[HKh

,Π] for a random
permutation Π and a random hashing key Kh or (2) an ideal oracle $, making at most q
queries adaptively to the oracle.
Description of the Ideal Oracle. The ideal oracle consists of two phases: (i) Online
Phase : In this phase, for each queried message Mi, the oracle samples the response Ti
uniformly at random from {0, 1}n and returns it to the distinguisher D. When all the
queries and responses are over, the oracle samples a dummy hash key Kh from the hash
key space Kh, uniformly and independently to all the previously sampled random variables.
If the sampled hash key happens to fall in the set of bad hash keys Kh (note that the
message tuple is fixed and thus we can talk about the set Kh), then it aborts the game
(see line 2 of Fig. 3.2), otherwise the oracle computes the hash value for all the q queried
messages. During this hash computation, if for any message Mi, one block of the hash
value collides with another block, then Coll is set to 1 and the game will be aborted (see
line 5 of Fig. 3.2).
Otherwise the oracle checks if any index i ∈ [q] has been covered or not. If covered, then
Cover is set to 1 and the oracle aborts the game (see line 6 of Fig. 3.2); otherwise it
continues.

If the game does not abort, that means there is a non-empty set of free indices F for
which both blocks of the hash value are fresh in the tuple of 2q many hash blocks value.
Then, the oracle samples the outputs for these fresh hash values in without replacement
manner such that for any i ∈ F , the sampled output Z0,i and Z1,i sums up to Ti, where
Ti has already been sampled in the online phase of the game (see line 8 of Fig. 3.2).

Now the remaining cases are those where exactly one block of the hash value collides.
For all i ∈ [q] \ F , if the output of the colliding hash value, say HKh,0(Mi), has not been
sampled yet, then the oracle samples its output in without replacement manner, say Z0,i,
and sets the output of the remaining block, i.e., output of HKh,1(Mi) as the sum of Z0,i
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Online Phase of Oideal

∀i ∈ [q] : On i-th query Mi, return Ti ←$ {0, 1}n;

1 : if ∃i : Ti = 0 then ZeroT← 1 , ⊥;

Offline Phase of Oideal, initialize L = ∅

1 : Kh ←$Kh;
2 : if Kh ∈ Kbad, then Bad-Hash← 1, ⊥;

3 : ∀i ∈ [q] : (HKh,0(Mi), HKh,1(Mi))← HKh (Mi);
4 : H̃0 := (HKh,0(M1), . . . , HKh,0(Mq)), H̃1 := (HKh,1(M1), . . . , HKh,1(Mq));

5 : if ∃i ∈ [q] : HKh,0(Mi) = HKh,1(Mi) then Coll← 1, ⊥;

6 : if (H̃0, H̃1) is not a cover-free tuple then Cover← 1, ⊥;

7 : F := {i ∈ [q] : HKh,0(Mi) and HKh,1(Mi) both are fresh in (H̃0, H̃1)}; f = |F|;
8 : (Z0,i, Z1,i)i∈F ←$S := {(Qi, Ri)i∈F ∈ ({0, 1}n)(2f) : Qi ⊕Ri = Ti ∀i ∈ F};
9 : ∀i ∈ [q] ∩ F : Ψ(HKh,0(Mi))← Z0,i, Ψ(HKh,1(Mi))← Z1,i;

10 : ∀i ∈ [q] \ F : let HKh,b(Mi) be not fresh in (H̃0, H̃1), b ∈ {0, 1};
11 : if HKh,b(Mi) /∈ Dom(Ψ) then Ψ(HKh,b(Mi))← Zb,i ←$ {0, 1}n \Ran(Ψ), Z1−b,i ← Ti ⊕ Zb,i;
12 : else Zb,i ← Ψ(HKh,b(Mi)) and Z1−b,i ← Ti ⊕ Zb,i;

13 : if Z1−b,i ∈ Ran(Ψ) then RC← 1 ,⊥;
14 : Ψ(HKh,1−b(Mi))← Z1−b,i;

15 : return (Kh, Z̃0, Z̃1);

Figure 3.2: Ideal oracle $: Boxed statements denote bad events. Whenever a bad event is
set to 1, the ideal oracle immediately aborts (denoted as ⊥) and returns the remaining
values of the transcript in any arbitrary manner. So, if the game aborts for some bad event,
then we can surely assume that its previous bad events have not happened. Line 10 indicates
that there exists some j for which HKh,b(Mi) = HKh,b(Mj) or HKh,b(Mi) = HKh,1−b(Mj)
and line 11 indicates that permutation output of HKh,b(Mi) is not defined yet. Z̃0 denotes
the tuple (Z0,1, Z0,2, . . . , Z0,q) and Z̃1 denotes the tuple (Z1,1, Z1,2, . . . , Z1,q).

and Ti (see line 11 of Fig. 3.2). Otherwise, the oracle sets the output of HKh,0(Mi) to the
already defined element and adjusts the output of the other block accordingly (see line 12
of Fig. 3.2). Note that in the latter case, the oracle does not sample the output.

In the above said adjustment, if the output of HKh,1(Mi) happens to collide with any
previously sampled output, then RC is set to 1 (see line 13 of Fig. 3.2) and aborts the
game. Note that, this event cannot hold for the real oracle, as HKh,1(Mi) is fresh in the
tuple of 2q many hash block values. Finally, it returns all these sampled values along with
the sampled hash key to the distinguisher D.

Description of Attack Transcript. Let τ =
(

(M1, T1), (M2, T2), . . . , (Mq, Tq)
)
be the

list of queries and responses of D which constitutes the query transcript of the attack. For
convenience, we slightly modify the experiment where we reveal some more information
to the distinguisher D in addition to the queries and responses only after D made all its
queries and responses but before it output its decision. Therefore, the transcript of D
essentially consists of all the internal values which are obtained while computing C∗2 for all
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q queries. All in all, the transcript of the attack is

τ =
(

(M1, T1, Z0,1, Z1,1), (M2, T2, Z0,2, Z1,2), . . . , (Mq, Tq, Z0,q, Z1,q),Kh

)
.

In case of D interacting with the real oracle, we release the hash key Kh and the values

∀i ∈ [q], Z0,i := Π(HKh,0(Mi)) and Z1,i := Π(HKh,1(Mi)),

to D where HKh
(Mi) = (HKh,0(Mi), HKh,1(Mi)).

Note that a transcript τ in the real oracle must satisfy all of the following:

1. Z0,i ⊕ Z1,i = Ti for all i ∈ [q] and

2. the 2q-tuples of input and output blocks of Π, namely I := (H̃0, H̃1) and O := (Z̃0, Z̃1)
are permutation compatible. 4 Note that, I is uniquely determined by the message
tuples (M1, . . . ,Mq) and the hash key Kh.

Recall that Xre and Xid are the probability distributions for the transcript τ induced by
the real and the ideal oracle respectively. τ is attainable if Pr[Xid = τ ] > 0 and let Θ
denotes the set of all attainable transcripts.

3.4.2 Definition and Probability of Bad Transcripts

An attainable transcript τ is said to be bad if either of the following bad flags

ZeroT,Bad-Hash,Coll,Cover,RC

is set to 1 as defined in Fig. 3.2. We define the event

Bad := ZeroT ∨ Bad-Hash ∨ Coll ∨ Cover ∨ RC.

Let Θb denote the set of all bad transcripts and Θg = Θ \ Θb be the set of all good
transcripts. Having identified the set of all bad transcripts, we bound the probability of
realizing the bad transcript in the ideal oracle in the following lemma:

Lemma 3. Let Xid and Θb be defined as above then,

εbad := Pr[Xid ∈ Θb] ≤ εbh + q · εcoll + q3

6 · εcf(3, `) + 3q3

2n · εuniv(2, `) + q

2n . (6)

Proof. Bounding the probability of the bad transcripts in the ideal oracle is equivalent to
bounding the probability of the event Bad in the ideal oracle. Using the union bound we
have,

Pr[Bad] ≤ Pr[ZeroT] + Pr[Bad-Hash] + Pr[Coll ∧ Bad-Hash]
+ Pr[Cover ∧ Bad-Hash] + Pr[RC ∧ Bad-Hash]. (7)

In the following, we separately bound each of the above terms.

Bounding ZeroT. The bad flag ZeroT is set to 1, if out of q responses, there exists at
least one response Ti such that Ti = 0, i.e.

Pr[ZeroT] = Pr[∨qi=1Ti = 0] ≤
q∑
i=1

Pr[Ti = 0] = q

2n . (8)

4For two block tuples x̃ and ỹ having equal length over the same index set, we say x̃ is permutation-
compatible with ỹ, if there exists a permutation π such that ∀i, π(xi) = yi.
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Last equality follows due to the uniform and independent sampling of the responses in the
ideal oracle.
Bounding Bad-Hash. This probability is basically determined from the probability of
sampling the hash key of the underlying DbH function. Therefore,

Pr[Bad-Hash] ≤ εbh. (9)

Bounding Coll ∧Bad-Hash. From the definition of the ideal oracle game, Coll is set to 1
if there exists at least one i ∈ [q] such that HKh,0(Mi) = HKh,1(Mi) and Kh ∈ Kh \ Kbad.
Therefore,

Pr[Coll ∧ Bad-Hash] ≤
q∑
i=1

Pr[HKh,0(Mi) = HKh,1(Mi), Kh ∈ Kh \ Kbad]

=
q∑
i=1

Pr[COLLi holds, Kh ∈ Kh \ Kbad]
(1)
≤ q · εcoll, (10)

where (1) follows from Definition 5.
Bounding Cover ∧ Bad-Hash. From the definition of the ideal oracle game, Cover is set
to 1 if the tuple (H̃0, H̃1) is not cover-free where the sampled hash key Kh belongs to
the set Kh \ Kbad. Moreover, Cover event set to 1 implies Coll event has not occurred.
Therefore,

Pr[Cover ∧ Bad-Hash] = Pr[
(
(HKh,0(Mi))i, (HKh,1(Mi))i

)
is covered, Kh ∈ Kh \ Kbad]

≤
∑

i 6=j,i 6=k
Pr[CFijk holds, Kh ∈ Kh \ Kbad]

(1)
≤ q3

6 · εcf(3, `), (11)

where (1) follows from Definition 1.
Bounding RC ∧ Bad-Hash. The event holds when for some b ∈ {0, 1} and i ∈ [q],
HKh,b(Mi) is not fresh in

(
(HKh,0(M1), . . . ,HKh,0(Mq)), (HKh,1(M1), . . . ,HKh,1(Mq))

)
and Z1−b,i ∈ Ran(Ψ) (see line 12-13 of Fig. 3.2). Observe that the event considers undesired
collision among range elements. This bad event will occur if for some i, j, k, b, b′, u with i < j,
i 6= k and b, b′, u ∈ {0, 1}, we have: (1) HKh,b(Mi) = HKh,b′(Mj) and (2) Zb,i ⊕ Ti = Zu,k
where Zb,i←$ {0, 1}n \Ran(Ψ). Now, we split this bad event into the following cases and
compute the probabilities for these cases individually:

• Case A. j 6= k. Since the first condition is an event of the sampling of hash key Kh

and the second one is the event of lazy sampling (independent of the distribution of
the hash key Kh), the probability of the bad event for this case for a specific choice
of i, j, k, b, b′, u would be

P := Pr[HKh,b(Mi) = HKh,b′(Mj),Kh ∈ Kh \ Kbad]× Pr[Zb,i = Ti ⊕ Zu,k]
= Pr[UNIVij holds, Kh ∈ Kh \ Kbad]× Pr[Zb,i = Ti ⊕ Zu,k]
(1)
≤ εuniv(2, `)× 1

2n − 2q ,

where (1) follows from Definition 3. By summing over all possible choices of
i, j, k, b, b′, u, the probability of bad event for this case would be bounded above by
2q(q − 1)(q − 2) · εuniv(2, `)/2n, with the assumption that q ≤ 2n−2.

• Case B. j = k. Here we sample Zb,i←$ {0, 1}n \Ran(Ψ) first and then set Zb′,j to
Zb,i. Now, we analyse this case in different sub cases:
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– Case B.1. u = b′. We first consider the case when u = b′. In this case,
HKh,b(Mi) = HKh,b′(Mj) and Zb,i ⊕ Ti = Zb′,j , But these two events implies
Ti = 0 which is impossible and hence the probability, denoted by PB.1, becomes
zero.

– Case B.2. u 6= b′ and b = b′. This case eventually boils down to the
joint event (i) HKh,b(Mi) = HKh,b(Mj) and (ii) Zb,i ⊕ Ti = Z1−b,j . Note
that, if the event Ti = Tj holds, then condition (ii) is implied by condition
(i) and the constraint Ti = Tj . Therefore, bounding the joint probability of
HKh,b(Mi) = HKh,b(Mj) and Zb,i ⊕ Ti = Z1−b,j is equivalent to bounding the
joint probability of HKh,b(Mi) = HKh,b(Mj) and Ti = Tj . Now, to bound the
later one, we have

PB.2 := Pr[Ti = Tj , HKh,b(Mi) = HKh,b(Mj),Kh ∈ Kh \ Kbad]
= Pr[HKh,b(Mi) = HKh,b(Mj),Kh ∈ Kh \ Kbad|Ti = Tj ] · Pr[Ti = Tj ]
= Pr[UNIVij holds, Kh ∈ Kh \ Kbad|Ti = Tj ] · Pr[Ti = Tj ]
(1)
≤ εuniv(2, `)× 1

2n , (12)

where (1) follows from Definition 3 and Eqn. (12) follows from the argument
that after conditioning T1, . . . , Tq, all the q messages would be fixed and hence,
the conditional probability of UNIVij ,Kh ∈ Kh \ Kbad is at most εuniv(2, `).
Moreover, the event Tj = Ti is bounded by 1

2n . On the other hand, if Ti 6= Tj
then Zb,j ⊕ Tj 6= Zb,i ⊕ Ti and hence the probability becomes zero.

– Case B.3. u 6= b′ and b 6= b′. This case eventually boils down to the joint
event (i) HKh,b(Mi) = HKh,1−b(Mj) and (ii) Zb,i ⊕ Ti = Zb,j . Note that, i 6= j
as that would leads to Ti = 0 and hence the probability becomes zero. Now, if
the event Ti = Tj holds, then as before condition (ii) is implied by condition (i)
and the constraint Ti = Tj . Using the previous argument we have

PB.3 := Pr[Ti = Tj , HKh,b(Mi) = HKh,1−b(Mj),Kh ∈ K\Kbad]
(1)
≤ εuniv(2, `)× 1

2n ,

where (1) follows from Definition 3. Moreover, if Ti 6= Tj then Z1−b,j ⊕ Tj 6=
Zb,i ⊕ Ti and hence the probability in that case becomes zero.

By summing over all (i, j, b, b′, u) with i < j and b, b′, u ∈ {0, 1}, the probability
for case B, denoted by PB, is bounded above by taking the maximum of
PB.1,PB.2 and PB.3, which is upper bounded by q(q−1)·εuniv(2,`)

2n .

Therefore, we have

Pr[RC ∧ Bad-Hash] ≤ PA + PB

≤ q(q − 1) · εuniv(2, `)
2n + 2q(q − 1)(q − 2) · εuniv(2, `)

2n

≤ 3q3

2n · εuniv(2, `). (13)

Finally, the result follows from Eqn. (7), Eqn. (8), Eqn. (9), Eqn. (10), Eqn. (11) and
Eqn. (13).
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3.4.3 Analysis of Good Transcripts

In this section, we lower bound the ratio of the probability of realizing a good transcript τ
in the real and the ideal oracle. For this, let us first understand what does a good transcript
in the ideal oracle mean. Note that, for each i ∈ F , both HKh,0(Mi) and HKh,1(Mi) are
fresh in the concatenated tuple (H̃0, H̃1), as shown in line 7 of Fig. 3.2. Moreover, as the
transcript τ is good, Cover is not set to 1 and therefore, for every i 6∈ F , exactly one of the
HKh,0(Mi) or HKh,1(Mi) is fresh in (H̃0, H̃1). Thus, we have exactly (q + f) many fresh
blocks (2f many fresh blocks for all those indices belong to F and additionally we have
(2q − 2f)/2 many fresh blocks) and q − f many non-fresh blocks, where f = |F|. Now, we
define a relation ∼ on Fc := [q] \ F as i ∼ j if HKh,b(Mi) = HKh,b′(Mj) for b, b′ ∈ {0, 1}.
Clearly, ∼ is an equivalence relation over Fc and hence partitions Fc as C1 t · · · t Cr. Note
that each Ci contains at least two elements. Therefore, line 11 is executed only for one
element of these Cj ’s. Let cj := min Cj be the minimum valued element of Cj . So, when
i = cj for some j ∈ [r], we execute line 11 once for sampling the output of HKh,b(Mi),
which in turn determines the outputs for all HKh,b(Mp), where p ∈ Cj and b ∈ {0, 1}. Due
to the definition of Z0,i, Z1,i in line 8, 9, 11 and 12, for all i ∈ [q] we have Z0,i ⊕ Z1,i = Ti.
As the event ZeroT does not hold, we also have Z0,i 6= Z1,i. Moreover, as τ is good, RC is
not set to 1 and thus no range collision occurs for two different inputs. Thus, we have the
following result:

Claim 1. For a good transcript τ , 2q-tuples of input and output blocks of Π, namely
I := (H̃0, H̃1) and O := (Z̃0, Z̃1) are permutation compatible.
We would like to mention here that the result of Claim 1 will be used to compute the ratio
of real to ideal interpolation probability for a good transcript τ as follows:

Lemma 4. Let τ be a good transcript. Then,

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− 6q3

22n .

Proof. As τ is a good transcript, the pair of tuple (H̃0, H̃1) is cover-free. We have
considered the set F , the set of all free indices, as defined in line 7 of Fig. 3.2 and let
f = |F|. We have also defined a set S in line 8 of Fig. 3.2. Recall that, Ψ is the list of
responses of the lazy sampling made in the ideal game. Now,

Pr[Xid = τ ] = 1
|Kh|

· 1
2nq · Pr[Ψ(HKh,0(Mi)) = Z0,i,Ψ(HKh,1(Mi)) = Z1,i ∀i ∈ [q]]

(1)= 1
|Kh|

· 1
2nq · Pr[Ψ(HKh,0(Mi)) = Z0,i,Ψ(HKh,1(Mi)) = Z1,i ∀i ∈ F︸ ︷︷ ︸

B

]

· Pr[Ψ(HKh,0(Mi)) = Z0,i,Ψ(HKh,1(Mi)) = Z1,i ∀i ∈ [q] \ F |B]
(2)= 1

|Kh|
· 1

2nq ·
1
|S|
· 1

(2n − 2f)r
, (14)

where r denotes the number of equivalence classes Ci. First, we use the fact that the hash
key Kh, the response tuple T̃ and the lazy sampling of Ψ are jointly independent as each
Ti is distributed independent to (i) all the previously sampled T and (ii) the distribution
of Kh and lazy sampling of Ψ, made in the offline phase of the game. Moreover, the
distribution of Kh is independent to the distribution of lazy sampling. For the last equality
(2), we note that Ψ is defined in two stages: (i) in the first stage, it samples elements from
S randomly for all the free indices i ∈ F (see line 8 of Fig. 3.2) and thus Pr[B] = |S|−1

and then (ii) in the next stage, it defines the rest of Ψ values by the lazy sampling method
as described in line 11-14. Note that, in the second stage of the sampling process, the
oracle samples the permutation output for r many distinct values in such a manner that
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these sampled output should not collide with the already sampled values in the first stage
of the sampling process. Hence, we have

Pr[Ψ(HKh,0(Mi)) = Z0,i,Ψ(HKh,1(Mi)) = Z1,i ∀i ∈ [q] \ F |B] = 1
(2n − 2f)r

.

Computing Real Interpolation Probability. Now, we compute the real interpolation
probability. From Claim 1, it is obvious that (H̃0, H̃1) is permutation compatible with
(Z̃0, Z̃1). Note that, the number of permutation outputs that we need to sample is exactly
q + f + r. This is because, we have all total q + f many fresh hash blocks value and for
each equivalent class, we need to additionally sample the output for a single hash block
value. Hence,

Pr[Xreal = τ ] = 1
|Kh|

· 1
(2n)q+f+r

(15)

Computing the Ratio. Now we compute the ratio of Eqn. (15) to Eqn. (14) as follows:

Pr[Xreal = τ ]
Pr[Xid = τ ] = 2nq · (2n − 2f)r · |S|

(2n)q+f+r
(1)
≥ 2nq · (2n − 2f)r · (2n)2f

(2n)q+f+r · 2nf
·
(

1− 6f3

22n

)
= 2n(q−f)

(2n − 2f + r)q−f︸ ︷︷ ︸
≥1

·
(

1− 6f3

22n

)
(2)
≥
(

1− 6q3

22n

)

where (1) follows after substituting the lower bound of |S| from Lemma 2 and (2) follows
as f ≤ q.

3.5 Proof of Theorem 2 part (ii)
Proof of the second part of Theorem 2, i.e., the proof of the PRF security of C2[H,E]
construction when H is a block-separated DbH function, easily follows from that of
the first part of Theorem 2. All the bad events from the first part of the theorem
will remain same, except that the bad flag Coll cannot be set to 1 as there cannot be
any collision event for a block-separated DbH function and hence we have εcoll = 0.
Moreover, the analysis for the ratio of the real to ideal interpolation probability for a
good transcript τ remains identical to the proof of the first part of the theorem. For all
i ∈ F (set of free indices), we regard HKh,0(Mi) = Ui and HKh,1(Mi) = Vi. Since, H
is a block-separated DbH function, (U1, U2, . . . , Uf , V1, V2, . . . , Vf ) ∈ ({0, 1}n)(2f). Now,
to sample the corresponding output tuple of (U1, U2, . . . , Uf , V1, V2, . . . , Vf ), we sample
(Z0,1, Z0,2, . . . , Z0,f , Z1,1, Z1,2, . . . , Z1,f ) ∈ ({0, 1}n)(2f) such that Z0,i ⊕ Z1,i = Ti,∀i ∈ F ,
where f = |F|. This equivalence allows us to apply Lemma 2 for bounding the ideal
interpolation probability (as done in the proof of the first part of the theorem).

3.6 Proof of Theorem 2 part (iii)
There are subtle differences in the proof of the third part of the theorem from its first part
which we list as follows:

(a) Unlike C2[H,E], where we used the same permutation in the sum function, in this case
we use two “independent” random permutations instead of two identical permutation.
Use of independent permutations makes the significant differences in defining the bad
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events. Firstly, (i) we no longer need to have the zero output restriction, i.e., Ti = 0
for i ∈ [q] as the bad event. This is because, we do not care if HKh,0(Mi) collides
with HKh,1(Mi) for any i = 1, . . . , q, as the two permutations are independent. This
condition also alleviates the necessity to consider the maximum collision probability of
the DbH function. Hence, in this security bound, we do not have the q/2n term and
the maximum collision probability term.

(b) For analysing the ratio of the real to ideal interpolation probability, we use the result
of Lucks (see Theorem 5, [Luc00]) for lower bounding the number of solutions to the
sum of two independent permutations problem.

Summarizing above, security result for three-keyed DbHtS follows.

3.7 Application of Theorem 2.
To prove the BBB security of a particular construction that follows DbHtS paradigm, one
needs to show the followings:

(a) The cover-free advantage of its underlying DbH function for any triplet of distinct
messages should be of the order of O(`c/22n).

(b) The block-wise universal advantage of its underlying DbH function for any pair of
distinct messages should be O(`c/2n).

(c) The maximum collision probability of its underlying DbH function (wherever it is
applicable) must be of the order of O(`c/2n).

(d) Finally, the probability bound of the bad-hash-key must be of beyond birthday bound.

Here c is some small positive constant and ` is the maximum number of message blocks
among all q queries.

Discussion. The importance of introducing the set of bad hash keys in the security
statement lies in providing the improved security bound for different instantiations of the
two-keyed and the three-keyed DbHtS construction. A more detailed explanation follows
in Sect. 6.6.
Remark 4. Dodis et al. [DS11] have shown that if H is a cover-free DbH function and
the sum function is instantiated with two independent n-bit keyed unforgeable functions,
then C3[H,F ] is unforgeable. One can similarly show the PRF-security of the construction
when the sum function is instantiated with two independent n-bit keyed functions. For the
PRF security of C3[H,F ], if the output tuple of the underlying DbH function is cover-free,
then the output of C3[H,F ] is perfectly random. Hence, the security of the construction
boils down to the cover-free advantage of the underlying DbH.

4 Instantiation of DbHtS Using PolyHash
In this section, we instantiate the DbH function using the double-block PolyHash function,
that results in a PolyHash based DbHtS construction. PolyHash [dB93, BJKS93, Tay93] is
a very efficient algebraic hash function. To apply this on a message M , we first use apply
an injective padding such as 10∗ i.e., pad 1 followed by minimum number of zeros so that
the total number of bits in the padded message becomes mutiple of n. Let the padded
message be M∗ = M1‖M2‖ . . .Ml, where l is the number of n-bit blocks in it. Then, we
define the PolyHash as follows:

PHKh
(M) = MlKh ⊕Ml−1K

2
h ⊕ . . .⊕M1K

l
h.
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Now, we define the following PolyHash-DbH function:

PH-DbHKh,K?
h
(M) :=

(
fix0(PHKh

(M)), fix1(PHK?
h
(M))

)
,

where Kh and K?
h are two independent hash keys. Note that, PH-DbH is a block-separated

DbH function. By composing PH-DbH with the single-keyed sum function, we obtain
the two-keyed PolyHash based DbHtS construction, which we denote as C2[PH-DbH, E].
Similarly, by composing PH3-DbH with the double-keyed sum function, where

PH3-DbHKh,K?
h
(M) :=

(
(PHKh

(M)), (PHK?
h
(M))

)
,

we obtain the three-keyed PolyHash based DbHtS construction, which we denote as
C3[PH3-DbH, E]).

Bad Hash Key. For PolyHash based DbH function, we consider that the set of the bad
hash keys is empty, i.e., Kbad = Φ for both PH-DbH and PH3-DbH.
The following result shows that PH-DbH is a (Φ, 4`2/22n)-cover-free and (Φ, 2`/2n)-block-
wise universal block-separated DbH function. Moreover, PH3-DbH is a (Φ, `2/22n)-weak-
cover-free and (Φ, `/2n)-weak-block-wise universal DbH function.

Theorem 3. PH-DbH is a (Φ, 4`2/22n)-cover-free and (Φ, 2`/2n)-block-wise universal
block-separated DbH function. Moreover, PH3-DbH is a (Φ, `2/22n)-weak-cover-free and
(Φ, `/2n)-weak-block-wise universal DbH function.

We defer the proof of Theorem 3 to Sect. 4.3. Assuming that the theorem holds, we now
prove the PRF security of C2[PH-DbH, E] and C3[PH3-DbH, E] in Sect. 4.1 and Sect. 4.2
respectively.

4.1 Implication for PolyHash Based Two-Keyed DbHtS
Recall that, PH-DbH is a block-separated DbH function. As the set of bad hash keys of
PH-DbH is empty, we have εbh = 0. Security result for C2[PH-DbH, E] is as follows:

Theorem 4. Let Kh,K andM be three non-empty finite sets. Let E : K×{0, 1}n → {0, 1}n
be a block cipher and PH-DbH : (Kh × Kh) ×M → ({0, 1}n)2 be a block separated DbH
function. Assume that there is no set of bad hash keys. Then, any distinguisher with
running time at most t, making q tuple of distinct messages each of at most ` blocks long,
can distinguish C2[PH-DbH, E] from an n-bit uniform random function by

Advprf
C2[PH-DbH,E](q, `, t) ≤ Advprp

E (2q, t′) + 2q3`2

3 · 22n + 6q3`

22n + 6q3

22n + q

2n ,

where t′ = t+ q(th + tγ), th be the time complexity of PH-DbH computation for a single
message and tγ be the time complexity of making two primitive queries with xoring their
reply.

Proof of the theorem directly follows from εbh = 0, Theorem 3 and part (ii) of Theorem 2.

4.2 Implication for PolyHash Based Three-Keyed DbHtS
Recall that, PH3-DbH is not a block-separated DbH function and for PH3-DbH, we have
εbh = 0 (as its set of bad hash keys is empty). The security result for C3[PH3-DbH, E] is
as follows:
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Theorem 5. Let Kh,K andM be three non-empty finite sets. Let E : K×{0, 1}n → {0, 1}n
be a block cipher and PH3-DbH : (Kh×Kh)×M→ ({0, 1}n)2 be a DbH function. Assume
that there is no set of bad hash keys. Then, any distinguisher with running time at most
t, making q tuple of distinct messages each of at most ` blocks long, can distinguish
C3[PH3-DbH, E] from an n-bit uniform random function by

Advprf
C3[PH3-DbH,E](q, `, t) ≤ 2Advprp

E (q, t′) + q3`2

6 · 22n + 3q3`

22n + 2q3

22n

where t′ = t+ q(th + tγ), th be the time complexity of PH3-DbH computation for a single
message and tγ be the time complexity of making two primitive queries with xoring their
reply.

Proof of the theorem directly follows from εbh = 0, Theorem 3 and part (iii) of Theorem 2.

4.3 Proof of Theorem 3
In this section, we bound the cover-free and the block-wise universal advantage of PH-DbH.
We also bound the weak-cover-free and the weak-block-wise universal advantage of PH3-
DbH. Recall that, we have considered that there is an empty set of bad hash keys for both
PH-DbH and PH3-DbH. Therefore, for analyzing the cover-free and the block-wise universal
advantage of PH-DbH and for analyzing the weak-cover-free and the weak-block-wise
universal advantage of PH3-DbH, we sample the hash key from the set of all hash keys
and as a result we have

Pr[Bad-Hash] := εbh = 0.

Bounding Block-wise Universal advantage of PH-DbH. It is a well known result
that the (almost-xor) universal advantage of the PolyHash [dB93, BJKS93, Tay93] is about
`/2n, where ` is the maximum number of message blocks. One can trivially extend this
result to show that the universal advantage of the one-bit chopped version of the PolyHash,
i.e., fixb(PHKh

(M)), is 2`/2n, where b ∈ {0, 1}.
For a fixed pair of messages M and M ′, where the maximum number of message

blocks of M and M ′ is `, and for any b ∈ {0, 1}, we denote the event fixb(PHKh
(M)) =

fixb(PHKh
(M ′)) by PKh,b(M,M ′). Therefore, for a fixed b ∈ {0, 1}, we have

Pr[PKh,b(M,M ′)] =
∑
b∈0,1

Pr[PHKh
(M) = PHKh

(M ′)⊕ b] ≤ 2`
2n , (16)

where the last inequality follows from the almost-xor universal advantage of the PolyHash.
For brevity, let us denote Pr[UNIVij holds, (Kh,K

?
h) ∈ Kh ×Kh] by Puniv. Therefore, we

have

Puniv
(1)= max

(
Pr[PKh,0(M,M ′), (Kh,K

?
h) ∈ Kh ×Kh],Pr[PK?

h
,1(M,M ′), (Kh,K

?
h) ∈ Kh ×Kh]

)
(2)= max

(
Pr[PKh,0(M,M ′)],Pr[PK?

h
,1(M,M ′)]

)
(3)
≤ 2`

2n ,

where (2) is equivalent to (1) and (3) follows from Eqn. (16). Therefore, we have

εuniv(2, `) = 2`
2n . (17)

Bounding Cover-free advantage of PH-DbH. To bound the cover-free advantage for
any three distinct messages, we first fix three distinct messages Mi,Mj and Mk and for
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brevity we denote Pr[CFijk holds, (Kh,K
?
h) ∈ Kh ×Kh] by Pcf . Therefore, we have

Pcf
(1)= Pr[PKh,0(Mi,Mj),PK?

h
,1(Mi,Mk), (Kh,K

?
h) ∈ Kh ×Kh]

(2)= Pr[PKh,0(Mi,Mj),PK?
h
,1(Mi,Mk)]

(3)= Pr[PKh,0(Mi,Mj)] · Pr[PK?
h
,1(Mi,Mk)]

(4)
≤

( 2`
2n
)2

= 4`2

22n ,

where (1) follows from the definition of PH-DbH, (2) is an equivalent form of (1), (3) follows
from the independence of Kh and K?

h and finally (4) follows from Eqn. (16). Therefore,
we have

εcf(3, `) = 4`2

22n . (18)

Therefore, the first part of Theorem 3 follows from Eqn. (17) and Eqn. (18).
Bounding Weak-Cover-free and Weak-Block-Wise Universal advantage of
PH3-DbH. We know that PolyHash is an `/2n-AXU hash function. Therefore, by doing a
similar analysis of the weak-cover-free and weak-block-wise universal advantage of PH3-DbH
as similarly done for PH-DbH, we have

εwuniv(2, `) = `

2n , εwcf(3, `) = `2

22n . (19)

Therefore, the second part of Theorem 3 follows from Eqn. (19).
Remark 5. We would like to point out that the security proof for the MAC part of GCM-
SIV2 (Lemma 2 of [IM16]) follows a similar analysis as used in the proof of Theorem 3.
The MAC part of GCM-SIV2 uses two independent keyed hash functions to generate the
two hash e values and independent random permutations in the sum function. Therefore,
it provides the desired security even with much weaker assumption on the underlying
hash function. To be more precise, the almost universal property of the hash function is
sufficient and there is no need to have the cover-free or the blockwise universal restriction
of hash function.

5 Parallel Block Cipher Evaluation
In this section, we instantiate the DbH function using block ciphers that operate in a
parallel mode, results in a parallel block cipher based DbHtS construction. We analyze the
underlying hash function of the PMAC_Plus and the LightMAC_Plus construction, which
we refer to as PMAC_Plus-Hash and LightMAC_Plus-Hash respectively. We make a little
twist in their design to construct the two-keyed variants of PMAC_Plus and LightMAC_Plus,
which we refer to as 2K-PMAC_Plus and 2K-LightMAC_Plus respectively and prove their
PRF security using our generalized security result for the two-keyed DbHtS construction.

The double block hash function for 2K-PMAC_Plus and 2K-LightMAC_Plus, which we
refer to as 2K-PMAC_Plus-Hash and 2K-LightMAC_Plus-Hash respectively, are structurally
almost similar to the PMAC_Plus-Hash and the LightMAC_Plus-Hash, except the following:

(i) We use the fix0 and fix1 functions (to incorporate the block-separated feature).

(ii) We multiply Λ′ by 2 before applying the fix1 function on it 5 (see Fig. 5.1).

The algorithms of the DbH function for the PMAC_Plus and the LightMAC_Plus and their
respective two-keyed variants are depicted in Figure 5.1.

5If we do not multiply by 2, then there exists a trivial birthday bound attack.
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PMAC_Plus-Hash(K,M)

1 : M ′ ←M‖10∗; M ′
1‖ . . . ‖M ′

l � M ′;
2 : ∆0 ← EK(0); ∆1 ← EK(1);
3 : for j = 1 to l;

4 : Xj = M ′
j ⊕ 2j∆0 ⊕ 22j∆1;

5 : Yj = EK(Xj);
6 : Σ′ = Y1 ⊕ Y2 ⊕ . . .⊕ Yl;

7 : Λ′ = 2l−1 · Y1 ⊕ 2l−2 · Y2 ⊕ . . .⊕ Yl;
return (Σ′, Λ′);

2K-PMAC_Plus-Hash(K,M)

1 : (Σ′, Λ′)← PMAC_Plus-Hash(K, M);
2 : Σ = fix0(Σ′); Λ = fix1(2Λ′);

return (Σ, Λ);

LightMAC_Plus-Hash(K,M)

1 : M ′ ←M‖10∗;
2 : M ′

1‖ . . . ‖M ′
l � M ′;

3 : for j = 1 to l;
4 : Xj = 〈j〉s ‖M

′
j ;

5 : Yj = EK(Xj);
6 : Σ′ = Y1 ⊕ Y2 ⊕ . . .⊕ Yl;

7 : Λ′ = 2l−1 · Y1 ⊕ 2l−2 · Y2 ⊕ . . .⊕ Yl;
return (Σ′, Λ′);

2K-LightMAC_Plus-Hash(K,M)

1 : (Σ, Λ)← LightMAC_Plus-Hash(K, M);
2 : Σ = fix0(Σ′); Λ = fix1(2Λ′);

return (Σ, Λ);

Figure 5.1: Left: PMAC_Plus-Hash and 2K-PMAC_Plus-Hash; Right: LightMAC_Plus-
Hash and 2K-LightMAC_Plus-Hash with s-bit counter. M ′1‖ . . . ‖M ′l �M ′ denotes parsing
of message M ′ into (n bit blocks for PMAC_Plus-Hash; n− s bit blocks for LightMAC_Plus-
Hash). 〈j〉s denotes the s-bit binary representation of integer j.

5.1 Bounding Cover-free and Universal Advantages
In this section, we bound the cover-free and universal advantages for 2K-PMAC_Plus-Hash,
2K-LightMAC_Plus-Hash, PMAC_Plus-Hash and LightMAC_Plus-Hash. To do so, we first
need to identify the set of bad hash keys for 2K-PMAC_Plus-Hash, PMAC_Plus-Hash,
2K-LightMAC_Plus-Hash and LightMAC_Plus-Hash. Note that, for all these hash functions,
the underlying set of bad hash keys is nothing but the set of permutations Π (we consider
only the information theoretic setting as switching to the computational setting from the
information theoretic one is done by a standard hybrid argument). Now, to identify the set
of bad hash keys, we develop a few notations, which will also be required for the analysis of
the cover-free and the block-wise universal advantage of these double block hash functions
when the hash key is sampled from outside of the set of bad hash keys.
Notations. For a q tuple of distinct messages (M1, . . . ,Mq), w.l.o.g we assume that the
message size(# of bits) for all q messages is a multiple n for PMAC_Plus and multiple of
(n− dlog2 `e) for LightMAC_Plus, where ` is the maximum message length (# of blocks).
We consider two distinct indices i, j ∈ [q] and define the set NEQi,j := {α ∈ [min{li, lj}] :
M i
α 6=M j

α} ∪ {α : min{li, lj} + 1 ≤ α ≤ max{li, lj}}. In other words, the set NEQi,j
contains all the positions, where the message blocks of i-th and j-th message are not equal.
minNEQi,j and min2 NEQi,j denote the minimum and second minimum element of the set
NEQi,j .
Bad Hash Keys for 2K-PMAC_Plus-Hash and PMAC_Plus-Hash. Recall that a
hash key for 2K-PMAC_Plus-Hash or PMAC_Plus-Hash is a random permutation. We say
that a hash key for 2K-PMAC_Plus-Hash is bad, if any of the following events holds:

(a) ZeroOneX: ∃i ∈ [q], α ∈ [li] such that Xi
α = 0 or Xi

α = 1.

(b) ZeroY: ∃i ∈ [q], α ∈ [li] such that Y iα = 0.

(c) 3CollX: ∃i 6= j ∈ [q], i1, i2, i3 ∈ {i, j}, α ∈ [li1 ], β ∈ [li2 ], γ ∈ minNEQi,j where
α 6= β 6= γ, such that Xi1

α = Xi2
β = Xi3

γ .
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The set of bad hash keys for 2K-PMAC_Plus-Hash and PMAC_Plus-Hash is same and we
denote it as Kpp

bad ⊆ Perm. Therefore, to bound the probability that a hash key, sampled
uniformly at random from the hash key space, falls in the set Kpp

bad, is same as bounding
the probability of the event Bad-Hash := ZeroOneX∨ZeroY∨ 3CollX. Therefore, we bound
the probability of Bad-Hash as follows:

εbh := Pr[Bad-Hash] ≤ Pr[ZeroOneX] + Pr[ZeroY] + Pr[3CollX]

≤ 2q`
2n − 1 + q`

2n − q` + q`(q`− 1)
2n(2n − 1)

≤ q2`2

22n + 5q`
2n . (20)

Bad Hash Keys for 2K-LightMAC_Plus-Hash and LightMAC_Plus-Hash. For 2K-
LightMAC_Plus-Hash and LightMAC_Plus-Hash, we consider an empty set of bad hash key
and as a result we have εbh = 0.
In the following, we bound the cover-free and the block-wise universal advantage of
2K-PMAC_Plus-Hash and 2K-LightMAC_Plus-Hash.

Theorem 6. 2K-PMAC_Plus-Hash is a (Kpp
bad, (18` + 22)/22n)-cover-free, (Kpp

bad, (2` +
5)/2n)-block-wise universal DbH function and 2K-LightMAC_Plus-Hash is a (Φ, 16/22n)-
cover-free, (Φ, 4/2n)-block-wise universal DbH function. In both the cases, we have assumed
that ` < 2n−1/3.

Similarly, we bound the cover-free and the block-wise universal advantage of PMAC_Plus-
Hash and LightMAC_Plus-Hash as follows:

Theorem 7. PMAC_Plus-Hash is a (Kpp
bad, (6(` + 1))/22n)-weak-cover-free, (Kpp

bad, (2` +
3)/2n)-weak-block-wise universal DbH function and LightMAC_Plus-Hash is a (Φ, 4/22n)-
weak-cover-free and (Φ, 2/2n)-weak-block-wise universal DbH function. Here also we have
assumed that ` < 2n−1/3.

Proofs of Theorem 6 and Theorem 7 are deferred to Sect. 5.4. Assuming that these
theorems hold, we now prove the PRF security of 2K-PMAC_Plus and 2K-LightMAC_Plus
in Sect. 5.2 and that of PMAC_Plus and LightMAC_Plus in Sect. 5.3.

5.2 PRF Security of 2K-PMAC_Plus and 2K-LightMAC_Plus
2K-PMAC_Plus and 2K-LightMAC_Plus are two parallel mode of block cipher based
instantiations of the two-keyed DbHtS. Algorithmic description of these two constructions
are depicted in Fig. 5.2.

2K-PMAC_Plus(K1,K2,M)

1 : (Σ, Λ)← 2K-PMAC_Plus-Hash(K1, M);
2 : T ← EK2 (Σ)⊕ EK2 (Λ);

return T ;

2K-LightMAC_Plus(K1,K2,M)

1 : (Σ, Λ)← 2K-LightMAC_Plus-Hash(K1, M);
2 : T ← EK2 (Σ)⊕ EK2 (Λ);

return T ;

Figure 5.2: Algorithm for 2K-PMAC_Plus 2K-LightMAC_Plus.

The following two results show the PRF security bound of 2K-PMAC_Plus and 2K-
LightMACPlus.

Theorem 8 (PRF-Security of 2K-PMAC_Plus). Let K and M be two non-empty
finite sets. Let E : K × {0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with
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running time at most t, making q tuple of distinct messages each of at most ` blocks long,
can distinguish 2K-PMAC_Plus[E] from a n-bit uniform random function by,

Advprf
2K-PMAC_Plus[E](q, `, t) ≤ 2Advprp

E (`q + 2, t′) + 9q3`

22n + q2`2

22n + 5q`
2n + 25q3

22n + q

2n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q + 2 times
and ` < 2n−1/3.

Proof. Proof of the theorem follows from Eqn. (20), Theorem 6 and part (ii) of Theorem 2.

Theorem 9 (PRF-Security of 2K-LightMAC_Plus). Let K andM be two non-empty
finite sets. Let E : K × {0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with
running time at most t, making q tuple of distinct messages each of at most ` blocks long,
can distinguish 2K-LightMAC_Plus[E] from a n-bit uniform random function by,

Advprf
2K-LightMAC_Plus[E](q, `, t) ≤ 2Advprp

E (`q, t′) + 21q3

22n + q

2n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q times and
` < 2n−1/3.

Proof. As there is no set of bad hash keys, εbh = 0 and the rest of the proof follows from
Theorem 6 and part (ii) of Theorem 2.

5.3 PRF Security of PMAC_Plus and LightMAC_Plus
PMAC_Plus and LightMAC_Plus are two instantiations of the three-keyed DbHtS. Although,
these constructions are existing ones, as proposed by Yasuda [Yas11] and Naito [Nai17]
respectively, for the sake of completeness of this paper, we state and prove the security of
these two constructions in our setting. We recall these two constructions in Fig. 5.3.

PMAC_Plus(K1,K2,K3,M)

1 : (Σ′, Λ′)← PMAC_Plus-Hash(K1, M);
2 : T ← EK2 (Σ′)⊕ EK3 (Λ′);

return T ;

LightMAC_Plus(K1,K2,K3,M)

1 : (Σ′, Λ′)← LightMAC_Plus-Hash(K1, M);
2 : T ← EK2 (Σ′)⊕ EK3 (Λ′);

return T ;

Figure 5.3: Algorithm for PMAC_Plus and LightMAC_Plus.

The following two results show the PRF security bound of PMAC_Plus and LightMAC_Plus.

Theorem 10 (PRF-Security of PMAC_Plus). Let K andM be two non-empty finite
sets. Let E : K×{0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with running
time at most t, making q tuple of distinct messages each of at most ` blocks long, can
distinguish PMAC_Plus[E] from a n-bit uniform random function by,

Advprf
PMAC_Plus[E](q, `, t) ≤ 3Advprp

E (`q + 2, t′) + 7q3`

22n + q2`2

22n + 5q`
2n + 12q3

22n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q + 2 times
and ` < 2n−1/3.

Proof. Proof of the theorem follows from Eqn. (20), Theorem 7 and part (iii) of Theorem 2.
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Theorem 11 (PRF-Security of LightMAC_Plus). Let K and M be two non-empty
finite sets. Let E : K × {0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with
running time at most t, making q tuple of distinct messages each of at most ` blocks long,
can distinguish LightMAC_Plus[E] from a n-bit uniform random function by,

Advprf
LightMAC_Plus[E](q, `, t) ≤ 3Advprp

E (`q, t′) + 9q3

22n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q times and
` < 2n−1/3.

Proof. Proof of the theorem follows from Theorem 7, part (iii) of Theorem 2 and the
fact that εbh = 0 (as there is no set of bad hash keys).

Note. The original security bound of the PMAC_Plus, as proven by Yasuda [Yas11], is
roughly q3`3/22n (we only mention the dominating term of the security bound). But,
according to Theorem 10, the dominating term of the security bound of the PMAC_Plus
is q3`/22n, a substantial improvement of the security bound over its existing one. A
similar improvement in the security bound is also done in 1k-PMAC_Plus [DDN+17] over
PMAC_Plus. However, we are not gaining any security improvement for LightMAC_Plus.

5.4 Proof of Theorem 6 and Theorem 7
In this section, we mainly prove Theorem 6. In particular, we bound the cover-free advan-
tage and the block-wise universal advantage of 2K-PMAC_Plus-Hash and 2K-LightMAC_Plus-
Hash. Using parts of these analysis, we prove Theorem 7.

5.4.1 Cover-free and Block-wise universal Advantage of 2K-PMAC_Plus-Hash

We bound the cover-free and the block-wise universal advantage of 2K-PMAC_Plus-Hash.

Bounding Cover-free-advantage. We fix three distinct messages Mi,Mj and Mk

and define the event CollXijk := Xi1
α = Xi2

β
6, where i1, i2 ∈ {i, j, k} are distinct and

α ∈ {li1 ,minNEQi1,i2 ,min2 NEQi1,i2}, β ∈ [li2 ] are distinct.
For brevity, let us introduce the following notations:

• Eb,b′ := (Σi ⊕ Σj = b,Λi ⊕ Λk = b′).

• Kg := Perm \ Kpp
bad.

• Good := 3CollX ∧ ZeroOneX ∧ ZeroY.

Now we denote the probability of the joint event that CFijk holds and Π ∈ Kg by Pcf .
Acording to the definition of cover-free advantage (see Definition 1), we have

Pcf :=
∑

b,b′∈{0,1}

Pr[Eb,b′ ,Π ∈ Kg]

=
∑

b,b′∈{0,1}

∑
(δ0,δ1):Good

Pr[Eb,b′ , (∆0,∆1) = (δ0, δ1),Π ∈ Kg]︸ ︷︷ ︸
εb,b′

=
∑

(δ0,δ1):Good

ε1,0︸ ︷︷ ︸
µ

+
∑

b,b′∈{0,1},
(b,b′) 6=(1,0)

∑
(δ0,δ1):Good

εb,b′︸ ︷︷ ︸
ν

(21)

6Although the event CollXijk involves only two indices, we define it over three indices as the set of bad
hash keys are themselves defined over three indices.
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Bounding µ: We bound µ as follows:

µ =
∑

(δ0,δ1):Good

Pr[E1,0,Π ∈ Kg | (∆0,∆1) = (δ0, δ1)]︸ ︷︷ ︸
ψ

·Pr[(∆0,∆1) = (δ0, δ1)]

By conditioning (∆0,∆1) to a fixed (δ0, δ1), we fix all the Xi
α values. This gives a collision

relation ∼ among the Xi
α values: (i, α) ∼ (j, β) iff Xi

α = Xj
β . Since, (δ0, δ1) is a good

pair 7, Xi
α /∈ {0,1}, and hence Y iα (the corresponding permutation output of Xi

α) values
are wor sampled from {0, 1}n \ {δ0, δ1}. Now the event (Σi ⊕Σj = 1,Λi ⊕Λk = 0) gives a
system of two linear equations in Y variables

E =
{
L1 := Y i1 ⊕ . . . Y ili ⊕ Y

j
1 ⊕ . . .⊕ Y

j
lj

= 1,
L2 := 2liY i1 ⊕ . . . 2Y ili ⊕ 2ljY j1 ⊕ . . .⊕ 2Y jlj = 0.

By applying the collision relation ∼ over L1 and L2, we obtain a reduced system of
equations, denoted as E∼. It is easy to see that the rank of E∼ is 2 and hence, by applying
Lemma 1, we have ψ ≤ 1

(2n−3`+1)2
. Therefore,

µ ≤
∑

(δ0,δ1):Good

1
(2n − 3`+ 1)2

· Pr[(∆0,∆1) = (δ0, δ1)] ≤ 4
22n , where ` ≤ (2n−1 + 1)/3.

(22)
Bounding ν: Here we have

ν =
∑

(δ0,δ1):Good
∧CollXijk

εb,b′ +
∑

(δ0,δ1):Good
∧CollXijk

εb,b′

=
∑

(δ0,δ1):Good
∧CollXijk

Pr[Eb,b′ ,Π ∈ Kg | (∆0,∆1) = (δ0, δ1)] · Pr[(∆0,∆1) = (δ0, δ1)]

+
∑

(δ0,δ1):Good
∧CollXijk

Pr[Eb,b′ ,Π ∈ Kg | (∆0,∆1) = (δ0, δ1)] · Pr[(∆0,∆1) = (δ0, δ1)] (23)

Now, we follow the similar approach as in the previous case. Here, we argue that (i) if
CollXijk occurs, then the rank of the reduced system of equations E∼ is at least 1 and (ii)
else (i.e. CollXijk does not occur) the rank of the reduced system of equations E∼ is 2 (see
Claim 5, [DDN+17]). Note that, for b = 0, b′ = 0, we need the event ZeroY as otherwise
the rank of the reduced system of equations E∼ (when CollXijk occurs) would have been 1
(say there are two messages M1 and M1‖M2, then Y2 = 0 makes the first equation trivial).
Hence, we have

Pr[Eb,b′ ,Π ∈ Kg | (∆0,∆1) = (δ0, δ1)] =
{

1
(2n−3`−1)1

if CollXijk occurs
1

(2n−3`−1)2
else

Both these bounds follow from Lemma 1. Therefore, from Eqn.(23)

ν ≤
∑

(δ0,δ1):Good∧CollXijk

Pr[(∆0,∆1) = (δ0, δ1)]
(2n − 3`− 1)1

+
∑

(δ0,δ1):Good∧CollXijk

Pr[(∆0,∆1) = (δ0, δ1)]
(2n − 3`− 1)2

Putting the inequalities (i) Pr[(∆0,∆1) = (δ0, δ1)] = 1
2n(2n−1) , (ii) |(δ0, δ1) : Good ∧

CollXijk| ≤ 2n · 3` and (iii) |(δ0, δ1) : Good ∧ CollXijk| ≤ 2n(2n − 1), we have

ν ≤ 2n · 3`
2n(2n − 1) ·

1
(2n − 3`− 1) + 2n(2n − 1)

2n(2n − 1) ·
1

(2n − 3`− 1)2
≤ 6(`+ 1)

22n , (24)

7(δ0, δ1) is said to be a good pair if none of the three events 3CollX, ZeroY or ZeroOneX occur.
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where ` ≤ (2n−1 − 1)/3.
Combining Eqn.(21), Eqn.(22) and Eqn.(24), we obtain Pcf ≤ 18`+22

22n , where ` ≤ (2n−1 −
1)/3, and hence we can set

εcf(3, `) = 18`+ 22
22n , assuming ` ≤ (2n−1 − 1)/3. (25)

Bounding Block-wise-universal advantage. We fix two distinct messages Mi and
Mj and define the event CollXij := Xi1

α = Xi2
β , where i1, i2 ∈ {i, j} are distinct and

α ∈ {li1 ,minNEQi1,i2 , min2 NEQi1,i2}, β ∈ [li2 ] are distinct. With a similar argument as
used in the case of bounding the cover-free advantage, one can see that the number of
(∆0,∆1) for which CollXij holds is at most to 2n · 2`.
For brevity, let us introduce the notation:
• E1

b := Σi ⊕ Σj = b.

• E2
b := Λi ⊕ Λk = b.

Now we denote the probability of the joint event that UNIVij holds and Π ∈ Kg by Puniv.
According to the definition of block-wise universal advantage (see Definition 3), we have

Puniv :=
∑

b∈{0,1}

max
(

Pr[E1
b ,Π ∈ Kg], Pr[E2

b ,Π ∈ Kg]
)

Using similar approach as used in case of the cover-free case, here we have,∑
b∈{0,1}

Pr[E1
b ,Π ∈ Kg] = Pr[E1

1,Π ∈ Kg] + Pr[E1
0,Π ∈ Kg]

≤
∑

(δ0,δ1):Good

Pr[(∆0,∆1) = (δ0, δ1)]
(2n − 2`− 1)1

+
∑

(δ0,δ1):Good∧CollXij

Pr[(∆0,∆1) = (δ0, δ1)]

+
∑

(δ0,δ1):Good∧CollXij

Pr[(∆0,∆1) = (δ0, δ1)]
(2n − 2`− 1)1

Putting the inequalities (i) Pr[(∆0,∆1) = (δ0, δ1)] = 1
2n(2n−1) , (ii) |(δ0, δ1) : Good| ≤

2n(2n − 1), (iii) |(δ0, δ1) : Good ∧ CollXij | ≤ 2n · 2` and (iv) |(δ0, δ1) : Good ∧ CollXij | ≤
2n(2n − 1), we have∑
b∈{0,1}

Pr[E1
b ,Π ∈ Kg] ≤

1
(2n − 2`− 1) + 2n · 2`

2n(2n − 1)(2n − 2`− 1) + 2n(2n − 1)
2n(2n − 1)(2n − 2`− 1)

≤ 2`+ 5
2n ,

assuming ` ≤ 2n−2. Here use the fact that (i) if b = 1 or (ii) b = 0 and CollXij doesn’t
occurs, then the rank of the reduced system of equations E1

b given a fixed value of (∆0,∆1)
is at least 1. With a similar argument, one can show that∑

b∈{0,1}

Pr[E2
b ,Π ∈ Kg] ≤

2`+ 5
2n ,

and hence we can set

εuniv(2, `) = 2`+ 5
2n , assuming ` ≤ 2n−2. (26)

The first part of Theorem 6 follows from Eqn. (25) and Eqn. (26).
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5.4.2 Cover-free and Block-wise universal Advantage of 2K-LightMAC_Plus-Hash

In this section, we bound the cover-free and the block-wise universal advantage of 2K-
LightMAC_Plus-Hash. Recall that, for 2K-LightMAC_Plus-Hash, we have considered an
empty set of bad hash keys.
Bounding Cover-free-advantage. Since there is an empty set of bad hash keys, we
sample the hash key, i.e., the random permutation Π, from the set of all permutations for
bounding the cover-free advantage. First, we fix three distinct messages Mi,Mj and Mk.
Similar to the previous analysis, for two fixed b, b′ ∈ {0,1}, we write the two equations
Σi ⊕ Σj = b and Λi ⊕ Λk = b′ in terms of the Y -variables as follows:

E =
{

(Y i1 ⊕ . . .⊕ Y ili)⊕ (Y j1 ⊕ . . .⊕ Y
j
lj

) = b

(2liY i1 ⊕ . . .⊕ 2Y ili)⊕ (2lkY k1 ⊕ . . .⊕ 2Y klk ) = b′.

Given the two equations are consistent, one can always find two random variables Y i1α and
Y i2β , where i1, i2 ∈ {i, j, k} and distinct α ∈ NEQij , β ∈ NEQik such that the rank of E is
2. Again we use the notation Pcf to denote Pr[CFijk holds, Π ∈ Perm]. Therefore, we have

Pcf =
∑

b,b′∈{0,1}

Pr[Σi ⊕ Σj = b,Λi ⊕ Λk = b′,Π ∈ Perm]

(1)
≤

∑
b,b′∈{0,1}

1
(2n − 3`+ 2)2

≤ 16
22n , (27)

where (1) follows by applying Lemma 1 and we assume that ` ≤ 2n−1/3. Hence, we can set

εcf(3, `) = 16
22n . (28)

Bounding Block-wise-universal-advantage. To bound the block-wise-universal
advantage, we first fix two distinct messages Mi and Mj . By definition, we need to bound

Puniv = max
( ∑
b∈{0,1}

Pr[Σi⊕Σj = b,Π ∈ Perm],
∑

b∈{0,1}

Pr[Λi⊕Λj = b,Π ∈ Perm]
)
, (29)

where Puniv is a shorthand notation for Pr[UNIVij holds, Π ∈ Perm]. Now, we bound these
terms case by case as follows:

Bounding Pr[Σi ⊕ Σj = 1,Π ∈ Perm]: Σi ⊕ Σj = 1 implies the following non-trivial
equation:

(Y i1 ⊕ . . . Y ili)⊕ (Y j1 ⊕ . . .⊕ Y
j
lj

) = 1.

From Lemma 1, the above equation holds with probability at most 1
2n−2`+1 ≤

2
2n , when

` ≤ 2n−2.
Bounding Pr[Σi ⊕ Σj = 0,Π ∈ Perm]: This is proven in the following sub-cases:

• We first consider the case li = lj . Observe that, |NEQi,j | ≥ 1, otherwise the
probability would have been zero. Therefore, let us assume |NEQi,j | = s > 1. Now,
Σi = Σj implies the following equation:

(Y iα1
⊕ . . .⊕ Y iαs

)⊕ (Y jα1
⊕ . . .⊕ Y jαs

) = 0,

where α1, . . . , αs ∈ NEQi,j . Since, |NEQi,j | > 1, we obtain at least one random
variable Y ?α , where α ∈ NEQi,j for which the rank of the above equation is 1
and hence from Lemma 1, the above equations holds with probability at most

1
2n−2`+1 ≤

2
2n , when ` ≤ 2n−2.



68 Double-block Hash-then-Sum: A Paradigm for Constructing BBB Secure PRF

• Now, we consider the case when li 6= lj . W.l.o.g we assume that li > lj . Then
lj + 1, . . . , li ∈ NEQi,j . Let NEQ′i,j := NEQi,j \{lj + 1, . . . , li} and let us also consider
that |NEQ′i,j | = s. Note that, s can also be zero. Therefore, Σi = Σj implies

(Y ilj+1 ⊕ . . .⊕ Y ili)⊕ (Y iα1
⊕ . . .⊕ Y iαs

)⊕ (Y jα1
⊕ . . .⊕ Y jαs

) = 0,

where α1, . . . , αs ∈ NEQ′i,j . The above equation is non-trivial and hence its rank is
1. Therefore, from Lemma 1, the above equation holds with probability at most

1
2n−2`+1 ≤

2
2n , when ` ≤ 2n−2.

Bounding Pr[Λi ⊕ Λj = 1,Π ∈ Perm]: Λi ⊕ Λj = 1 gives rise to the following non-trivial
equation:

(2liY i1 ⊕ . . . 2Y ili)⊕ (2ljY j1 ⊕ . . .⊕ 2Y jlj ) = 1,

which holds with probability at most 1
2n−2`+1 ≤

2
2n , when ` ≤ 2n−2.

Bounding Pr[Λi ⊕ Λj = 0,Π ∈ Perm]: Similar to the earlier analysis, we bound the
probability of the event in different sub-cases as follows:

• Similar to the previous argument, if li = lj and |NEQi,j | = 1, then the probability
would have been zero. Hence, we assume that |NEQi,j | = s > 1. Then, Λi = Λj
implies the following equation:

2li−α1−1(Y iα1
⊕ Y jα1

)⊕ . . .⊕ 2li−αs−1(Y iαs
⊕ Y jαs

) = 0,

where α1, . . . , αs ∈ NEQi,j . Since, the above equation is non-trivial, from Lemma 1,
the probability that the above equation holds is at most 1

2n−2`+1 ≤
2

2n , when ` ≤ 2n−2.

• For the case of li 6= lj (w.l.o.g we assume li > lj), then lj + 1, . . . , li ∈ NEQi,j .
Moreover, NEQ′i,j := NEQi,j \ {lj + 1, . . . , li} and let us also consider |NEQ′i,j | = s.
Therefore, the event Λi = Λj implies(

2li−ljY ilj+1 ⊕ . . .⊕ 2Y ili
)
⊕
(

2li−α1−1Y iα1
⊕ . . .⊕ 2li−αs−1Y iαs

)
⊕
(

2lj−α1−1Y jα1
⊕ . . .⊕ 2lj−αs−1Y jαs

)
= 0,

where α1, . . . , αs ∈ NEQ′i,j . Since, the rank of the above equation is 1, from Lemma 1,
the probability that the above equation holds is at most 1

2n−2`+1 ≤
2

2n .

Therefore, we have∑
b∈{0,1}

Pr[Σi ⊕ Σj = b,Π ∈ Perm] ≤ 4
2n ,

∑
b∈{0,1}

Pr[Λi ⊕ Λj = b,Π ∈ Perm] ≤ 4
2n . (30)

Therefore, from Eqn. (29) and Eqn. (30) we have Puniv ≤ 4
2n , and hence we can set

εuniv(2, `) = 4
2n . (31)

The second part of Theorem 6 follows from Eqn. (28) and Eqn. (31).
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5.4.3 Weak-cover-free and Weak-block-wise-universal Advantage of PMAC_Plus-
Hash

For PMAC_Plus-Hash, we have

Pwcf = Pr[Σi = Σj ,Λi = Λk,Π ∈ Perm \ Kpp
bad] ≤ 6(`+ 1)

22n ,

Pwuniv = max
(

Pr[Σi = Σj ,Π ∈ Perm \ Kpp
bad],Pr[Λi = Λj ,Π ∈ Perm \ Kpp

bad]
)
≤ 2`+ 3

2n

The bound for Pwcf follows directly from the cover-free analysis of PMAC_Plus-Hash with
b = b′ = 0 and the bound for Pwuniv follows directly from the universal analysis with b = 0.

Hence, we have

εwcf(3, `) = 6(`+ 1)
22n , εwuniv(2, `) = 2`+ 3

2n . (32)

The first part of Theorem 7 follows from Eqn. (32).

5.4.4 Weak-cover-free and Weak-block-wise-universal Advantage of LightMAC_Plus-
Hash

For LightMAC_Plus-Hash, we have

Pwcf = Pr[Σi = Σj ,Λi = Λk,Π ∈ Perm] ≤ 4
22n ,

Pwuniv = max
(

Pr[Σi = Σj ,Π ∈ Perm],Pr[Λi = Λj ,Π ∈ Perm]
)
≤ 2

2n

The bounds are directly derived from the bound for Pwcf and Pwuniv used in 2K-LightMAC_Plus-
Hash with the restriction that b = b′ = 0 in the first case and b = 0 in the second.
Hence, we have

εwcf(3, `) = 4
22n , εwuniv(2, `) = 2

2n . (33)

The second part of Theorem 7 follows from Eqn. (33).

6 Sequential Block Cipher Evaluation
In this section, we instantiate the DbH function using block ciphers that operate in
sequential mode, results in a sequential block cipher based DbHtS construction. We
analyze the underlying hash function of the SUM-ECBC and the 3kf9 construction, which
we refer to as ECBC-Hash and f9-Hash respectively and we also make a little twist in their
design to construct the two-keyed variant of the SUM-ECBC and the 3kf9. As a result,
we propose a two-keyed variant of the SUM-ECBC and the 3kf9, which we refer to as
2K-ECBC_Plus and 2Kf9 respectively and prove their PRF security using our generalized
security result for the two-keyed DbHtS construction.

We refer to the DbH function for 2K-ECBC_Plus and 2Kf9 as 2K-ECBC-Hash and f9-Hash
(for 2Kf9, we use the same DbH function as used for 3kf9) respectively. 2K-ECBC-Hash is
structurally very similar to the ECBC-Hash, except the following that 2K-ECBC-Hash uses
fix0 and fix1 functions to incorporate the block-separated feature, which are absent in the
ECBC-Hash.
The algorithms of the DbH function for 2K-ECBC_Plus and 2Kf9 is depicted in Figure 6.1.
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ECBC-Hash(K,K?,M)

1 : M ′ ←M‖10∗; M ′
1‖ . . . ‖M ′

l � M ′;
2 : (Y, Y ′)← (0, 0);
3 : for j = 1 to l;
4 : X = M ′

j ⊕ Y ; X ′ = M ′
j ⊕ Y ′;

5 : (Y, Y ′)← (EK(X), EK? (X ′));
6 : (Σ′Λ′)← (Y, Y ′);

return (Σ′, Λ′);

2K-ECBC-Hash(K,K?,M)

1 : (Σ′, Λ′)← ECBC-Hash(K, K?, M);
2 : Σ← fix0(Σ′); Λ← fix1(Θ′);

return (Σ, Λ);

f9-Hash(K,M)

1 : M ′ ←M‖10∗; M ′
1‖ . . . ‖M ′

l � M ′;
2 : (Y, Y ′)← (0, 0);
3 : for j = 1 to l;
4 : X = M ′

j ⊕ Y ; Y ← EK(X);
5 : Y ′ ← Y ⊕ Y ′;
6 : (Σ′, Λ′) = (Y, Y ′);

return (Σ′, Λ′);

Figure 6.1: Left: ECBC-Hash and 2K-ECBC-Hash; Right: f9-Hash. M ′1‖ . . . ‖M ′l � M ′

denotes the parsing of the message M ′ into l many n bit blocks.

6.1 Bounding Cover-free and Universal Advantages
In this section, we bound the cover-free and universal advantages for 2K-ECBC-Hash,
2K-LightMAC_Plus-Hash, PMAC_Plus-Hash and LightMAC_Plus-Hash. To do so, we first
need to identify the set of bad hash keys for 2K-ECBC-Hash and f9-Hash. Note that, for
both of the DbH functions, the underlying set of bad hash keys is nothing but the set of
permutations Π or the set of pair of independent permutations (Π1,Π2) (for 2K-ECBC-
Hash). We consider only the information theoretic setting as switching to the computational
setting from the information theoretic one is done by a standard hybrid argument. To
identify the set of bad hash keys, we revisit to an important notion called structure
graph [BPR05, GPR14, DNP16, JN16] and some of its important results which will help
us in bounding the cover-free and the block-wise universal advantage of 2K-ECBC-Hash
and f9-Hash, when the hash key is sampled outside from the set of bad hash keys.
Revisiting the Structure Graph. Here we briefly revisit the structure graphs, intro-
duced by Bellare et al. [BPR05] and recall some of their results which would be required in
the security analysis of 2K-ECBC-Hash and f9-Hash. Let M be a message and without loss
of generality, we assume that the size of M (in number of bits) is a multiple of n. Thus,
we partition M as a sequence of l many n-bit blocks as M = M [1]‖M [2]‖ . . . ‖M [l]. Now,
we apply CBC-MAC [BKR00], based on an n-bit uniform random permutation Π, on M
and let the intermediate chaining values of CBC-MAC(M) be as follows:

Y0 = 0n, and Yi = Π(Yi−1 ⊕M [i]) for i = 1, . . . , l,

where M [i] is the i-th block of message M .
Informally, for any two fixed distinct messages M,M ′ and a uniformly chosen random

permutation Π, we construct the structure graph GΠ(M,M ′) with the set of nodes {0, 1}n
as follows: We follow the CBC-MAC computations for M followed by those of M ′ by
creating nodes which are labeled by the intermediate chaining variables Yi. In this process,
if we arrive at a vertex already labeled, while not following an existing edge, we call
this event a collision.8 The sequence of alternating vertices and edges corresponding to
the computations for a message M is called a message walk of M . Like for two distinct

8We use the term collision and accident interchangeably.
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messages, we can similarly construct a structure graph corresponding to a q tuple of
distinct messages, where q ≥ 3. It is needless to say that the structure graph constructed
for a tuple of q distinct messages is a union of q message walks for each message Mi, i ∈ [q].

LetM := (M1, . . . ,Mq) denotes a tuple of q distinct messages and let G(M) denotes
the set of all structure graphs corresponding to the tuple of messages M (by varying
Π over Perm). For a fixed structure graph V ∈ G(M), let Coll(V ) denote the set of all
collisions in V . Now, we state the following two folklore results.

Proposition 1 (Lemma 2, [GPR14]). For a fixed structure graph V ∈ G(M), Pr[G←$G(M) :
G = V ] ≤ 2−n|Coll(V )|.

Proposition 2 (Corollary 1, [JN16]). Pr[G $←− G(M) : |Coll(G)| ≥ a] ≤ ( `
2

2n )a, where ` is
the maximum number of message blocks in a single message among all messages inM.

Now, we define the following events: for a fixed tuple of q-distinct messages M :=
(M1, . . . ,Mq), such that each message is at most ` blocks long, we sample a permutation
Π uniformly at random from Perm and construct the structure graph GΠ(M). Now we
define three events as follows:

• Coll1: ∃i ∈ [q] such that the number of accidents in the i-th message walk in GΠ(M)
is at least 1.

• Coll2: ∃{i, j} ⊆ [q] such that the number of accidents between the i-th and the j-th
message walk in GΠ(M) is at least 2.

• Coll3: ∃{i, j, k} ⊆ [q] susch that the number of accidents between the i-th, the j-th
and the k-th message walk in GΠ(M) is at least 2.

It is easy to see that Coll2 ⇒ Coll3. We need the event Coll2 in the analysis of 2K-ECBC-Hash
and Coll3 for the analysis of f9-Hash.
Using Proposition 2, we can easily bound the probabilities of each of these events as
follows:

Pr[Coll1] ≤ q`2

2n , Pr[Coll2] ≤ q2`4

22n , Pr[Coll3] ≤ q3`4

22n . (34)

Bad Hash Keys for 2K-ECBC-Hash. Recall that a hash key for 2K-ECBC-Hash is a pair
of independent random permutations (Π1,Π2). Therefore, evaluation of 2K-ECBC-Hash on
a fixed tuple of q distinct messagesM := (M1, . . . ,Mq) gives two structure graphs; one
that is induced from the permutation Π1, denoted as G1 := GΠ1(M), and the other is
induced from the permutation Π2, denoted as G2 := GΠ2(M). Now, we say a hash key
(Π1,Π2) is bad, if either of the following holds:

(a) Coll1 holds in either of G1 or G2.

(b) Coll2 holds in either of G1 or G2.

We denote the set of all bad hash keys as Kecbc
bad ⊆ Perm×Perm. Therefore, from Eqn. (34)

we bound the probability of Bad-Hash as follows:

εbh := Pr[Bad-Hash] ≤ 2
(q2`4

22n + q`2

2n
)
. (35)

Bad Hash Keys for f9-Hash. Recall that a hash key for f9-Hash is a uniform random
permutation Π. Therefore, evaluation of f9-Hash on a fixed tuple of q distinct messages
M := (M1, . . . ,Mq) gives a structure graph, that is induced from the permutation Π,
denoted as G := GΠ(M). Now, we say a hash key Π is bad if either of the following holds:
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(a) Coll1 holds in G.

(b) Coll3 holds in G.

We denote the set of all bad hash keys as Kf9
bad ⊆ Perm. Therefore, from Eqn. (34), we

bound the probability of Bad-Hash := Coll1 ∨ Coll3 as follows:

εbh := Pr[Bad-Hash] ≤ q`2

2n + q3`4

22n . (36)

In the following, we bound the cover-free and block-wise universal advantage of 2K-ECBC-
Hash and f9-Hash.

Theorem 12. 2K-ECBC-Hash is a (Kecbc
bad , 144`2/22n)-cover-free and (Kecbc

bad , 12`2/22n))-
block-wise universal DbH function, assuming ` ≤ (2n−1 + 1)/2. On the other hand, f9-Hash
is a (Kf9

bad, 84`2/22n)-cover-free, (Kf9
bad, 3`2/2n)-block-wise universal and (Kf9

bad, 2/2n)-
colliding DbH function, assuming ` ≤ (2n−1 + 2)/3.

Similarly, we bound the weak-cover-free and the weak-block-wise universal advantage of
ECBC-Hash and f9-Hash and collision of f9-hash as follows:

Theorem 13. ECBC-Hash is a (Kecbc
bad , 4/22n)-weak-cover-free and (Kecbc

bad , 2/2n)-weak-
block-wise universal DbH function, assuming ` ≤ (2n−1 + 1)/2. On the other hand, f9-Hash
is a (Kf9

bad, 18`2/22n)-weak-cover-free and (Kf9
bad, 3`2/2n)-weak-block-wise universal DbH

function, assuming ` ≤ (2n−1 + 2)/3.

Proofs of Theorem 12 and Theorem 13 are deferred to Sect. 6.4. Assuming that these
theorems hold, we now prove the PRF security of 2K-ECBC_Plus and 2Kf9 in Sect. 6.2
and that of ECBC_Plus and 3Kf9 in Sect. 6.3 respectively.

6.2 PRF Security of 2K-ECBC_Plus and 2Kf9
2K-ECBC_Plus and 2Kf9 are two sequential mode of block cipher based instantiations
of two-keyed DbHtS. Algorithmic description of these two constructions are depicted in
Fig. 6.2. The following two results show the PRF security bound of 2K-ECBC_Plus and
2Kf9.

2K-ECBC_Plus(K1,K2,K3,M)

1 : (Σ, Λ)← 2K-ECBC-Hash(K1, K2, M);
2 : T ← EK3 (Σ)⊕ EK3 (Λ);

return T ;

2Kf9(K1,K2,M)

1 : (Σ′, Λ′)← f9-Hash(K1, M);
2 : T ← EK2 (Σ′)⊕ EK2 (Λ′);

return T ;

Figure 6.2: Algorithm for 2K-ECBC_Plus 2Kf9.

Theorem 14 (PRF-Security of 2K-ECBC_Plus). Let K and M be two non-empty
finite sets. Let E : K × {0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with
running time at most t, making q tuple of distinct messages each of at most ` blocks long,
can distinguish 2K-ECBC_Plus[E] from an n-bit uniform random function by,

Advprf
2K-ECBC_Plus[E](q, `, t) ≤ 3Advprp

E (`q, t′) + 2q2`4

22n + 2q`2

2n + 6q3

22n + 60q3`2

22n + q

2n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q times and
` ≤ (2n−1 + 1)/2.
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Proof of this theorem directly follows from part (ii) of Theorem 2, Theorem 12 and
Eqn. (35).

Theorem 15 (PRF-Security of 2Kf9). Let K andM be two non-empty finite sets. Let
E : K × {0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with running time at
most t, making q tuple of distinct messages each of at most ` blocks long, can distinguish
2Kf9[E] from an n-bit uniform random function by,

Advprf
2Kf9[E](q, `, t) ≤ 2Advprp

E (`q, t′) + q`2

2n + q3`4

22n + 23q3`2

22n + 6q3

22n + 3q
2n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q times
` ≤ (2n−1 + 2)/3.

Proof of this theorem directly follows from part (i) of Theorem 2, Theorem 12 and
Eqn. (36).

6.3 PRF Security of SUM-ECBC and 3kf9
SUM-ECBC and 3kf9 are two instantiations of the three-keyed DbHtS. Although, these con-
structions are the existing ones, as proposed by Yasuda [Yas10] and Zhang et al. [ZWSW12]
respectively, for the sake of completeness of this paper, we state and prove the security of
these two constructions in our setting. We recall these two constructions in Fig. 6.3. The
following two results show the PRF security bound of SUM-ECBC and 3kf9.

SUM-ECBC(K1,K2,K3,K4,M)

1 : (Σ′, Λ′)← ECBC-Hash(K1, K2, M);
2 : T ← EK3 (Σ′)⊕ EK4 (Λ′);

return T ;

3kf9(K1,K2,K3,M)

1 : (Σ′, Λ′)← f9-Hash(K1, M);
2 : T ← EK2 (Σ′)⊕ EK3 (Λ′);

return T ;

Figure 6.3: Algorithm for SUM-ECBC and 3kf9.

Theorem 16 (PRF-Security of SUM-ECBC). Let K andM be two non-empty finite
sets. Let E : K×{0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with running
time at most t, making q tuple of distinct messages each of at most ` blocks long, can
distinguish SUM-ECBC[E] from an n-bit uniform random function by,

Advprf
SUM-ECBC[E](q, `, t) ≤ 4Advprp

E (`q, t′) + 2q2`4

22n + 2q`2

2n + 9q3

22n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q times and
` ≤ (2n−1 + 1)/2.

Proof of this theorem directly follows from part (iii) of Theorem 2, Theorem 13 and
Eqn. (35).

Theorem 17 (PRF-Security of 3kf9). Let K andM be two non-empty finite sets. Let
E : K × {0, 1}n → {0, 1}n be a block cipher. Then, any distinguisher with running time at
most t, making q tuple of distinct messages each of at most ` blocks long, can distinguish
3kf9[E] from an n-bit uniform random function by,

Advprf
3kf9[E](q, `, t) ≤ 3Advprp

E (`q, t′) + q`2

2n + q3`4

22n + 12q3`2

22n + 2q3

22n ,

where t′ is about t plus a time complexity necessary to compute E for `q + 2q times and
` ≤ (2n−1 + 2)/3.
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Proof of this theorem directly follows from part (iii) of Theorem 2, Theorem 13 and
Eqn. (36).
Remark 6. The original security bound of the SUM-ECBC, as proven by Yasuda [Yas10],
is roughly q3`4/22n (we only mention the dominating term of the security bound). But,
according to Theorem 16, the dominating term of the security bound of the SUM-ECBC
is q`2/2n + q3/22n, a substantially improved security bound than the existing one. On
the other hand, for 3kf9, our proven security bound, i.e., roughly q3`4/22n, is infact worse
than the existing one(q3`3/22n) [ZWSW12]. However, we have identified that the existing
bound of 3kf9 is flawed one and the root cause of the fallacy is discussed in details in the
following subsection.

6.4 Proof of Theorem 12 and 13
In this section, we prove Theorem 12. In particular, we bound the cover-free and the block-
wise universal advantage of 2K-ECBC-Hash and f9-Hash along with the maximum collision
probability of f9-Hash. Before doing that, we state a technical result in the following,
which will be useful for us to bound the cover-free advantage and the block-wise-universal
advantage of 2K-ECBC-Hash and f9-Hash along with the maximum collision probability of
f9-Hash when the hash key is sampled outside from the set of bad hash keys.

6.4.1 A Technical Result

Let Y1, . . . , Yt be t many variables which take values from some set Y ⊆ {0, 1}n and L be a
set of system of linear equations {L1, . . . , Ls} over {0, 1}n. For any i ∈ [s], Li represents a
linear (or affine) equation of the form ai,1Y1 ⊕ . . .⊕ ai,tYt ⊕ ci = 0, where ci, ai,j ∈ {0, 1}n
for all i, j. Let the rank of the system of equations L is r; maximum number of linearly
independent equations present in L.

Now, we know that if the system of equations L is consistent (i.e., at least one solution
exists), then the probabilty that the system of equations holds is at most |Y|−r. Moreover,
if Y1, . . . , Yt be t many wor variables which take values from Y ⊆ {0, 1}n, the due to
Lemma1, the above probability becomes at most 1/(|Y| − t+ r)r.
Now, we want to estimate the probability of a given system of linear equations L along
with a given collision relation ∼. In other words, we want to estimate the number of
solutions (Y1, . . . , Yt) that satisfy L and inducing the given collision relation ∼. Unlike
before, in this case the rank of L does not help us to give a good estimation on the number
of such solutions. As an example, we consider the following:
Example 1. Suppose ∼ is an equivalence relation over {1, . . . , 6} which partitions the
index set as {{1, 4}, {2}, {3, 5, 6}}, i.e., 1 ∼ 4, 3 ∼ 5 ∼ 6. Now, we want to compute the
number of solutions (Y1, . . . , Y6) which satisfy the following system of linear equations E
for some fixed constant c and the above defined equivalence relation ∼.

E =


L1 := Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5 ⊕ c = 0,
L2 := Y1 ⊕ Y2 ⊕ c = 0,
E [∼] :=∼Y =∼

Note that E [∼] actually represents a system of equations of the form Y1⊕Y4 = 0, Y3⊕Y5 = 0,
Y5 ⊕ Y6 = 0 and some non-equations saying that Y1, Y2 and Y3 are distinct. Even though
L1 and L2 are linearly independent, we see that given these equalities of E [∼], L1 and L2
are not linearly independent. Therefore, to obtain a solution, we choose (Y1, Y2, Y3) in such
a way so that Y1, Y2 and Y3 are distinct to each other. Once we choose a triplet (Y1, Y2, Y3)
such that Y1, Y2 and Y3 are distinct, the rest of the Yi’s are defined by the equalities of
E [∼]. So, we write equations L1 and L2 in terms of Y1, Y2 and Y3 (by eliminating the
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other Y variables). After applying these substitutions, both L1 and L2 represents the
same equation:

Y1 ⊕ Y2 ⊕ c = 0.
We call the above equation a reduced equation. Therefore, we see that the reduced
form of L1 and L2 are not linearly independent even though those were before reduction.

Let ∼ be an equivalence relation over the set [t] and thus partitions [t] into the following
disjoint classes: C1, . . . , Cv. From each class Ci, we choose an element xi = minCi. To
each x ∈ [t], we associate a variable Yx. Now, given any linear equation L over Yx variables,
we can replace every variable Yx present in L by Yxi

where x ∈ Ci and then simplify the
equation. The modified equation is called a reduced equation, denoted as L∼. Observe
that the system of equations and non-equations E [∼] ∪ {L} is equivalent to the system of
equations and non-equations E [∼]∪{L∼}. Applying the above said reduction for more than
one linear equations yields us a reduced system of linear equations L∼ = {L∼ : L ∈ L}.
In other words, we apply the reduction to every equation individually and the above
observation can be easily extended to multiple linear equations. More precisely, for a
system of linear equations L, (E [∼] ∪ L) is equivalent to (E [∼] ∪ L∼). One can also easily
observe that the tuple Y := (Y1, . . . , Yt) satisfies E [∼] ∪ L is equivalent to the tuple Y ∼
satisfies L∼, where Y ∼ is the reduced tuple of Y after applying the relation ∼ on Yi
variables. Therefore, we have
Lemma 5. Let L be a system of linear equations in variables (Yx)x∈[t] and ∼ be an
equivalence relation over [t] with v many classes. If rank(L∼) = r, then

|{Y ∼ : Y ∼ satisfies L∼}| ≤ (|Y|)v−r.

Proof of the lemma directly follows from the proof of Lemma 1 where the number of
variables is now v instead of t.
Structure Graph and Collision Relation. For a fixed q tuple of distinct messages
M := (M1, . . .Mq), a structure graph G(M) gives a collision relation ∼ between the Y
variables, where Y variables are the intermediate chaining values of CBC-MAC computation.
In specific, whenever there is an accident in a single message walk or between more than
one message walks, the corresponding Y variables are said to be related. This relation
is called the collision relation, which one can easily see to be an equivalence relation.
Let G(M) denotes the set of all possible structure graphs (by varying the underlying
permutation Π).

Now, let us consider a system of linear equations L over (Y1, . . . , Yt) variables and with
respect to a tuple of q distinct messages M, we fix a structure graph G(M), which is
realized through these Yi variables. The structure graph G(M) yields a collision relation
∼ between the Yi variables. Applying the collision relation ∼ to all the equations of L
gives a reduced system of linear equations, denoted as L∼. Moreover, each accident 9

in the structure graph G(M) yields a linear equation of the form Ya ⊕ Yb = c, and all
such linear equations induced by the accidents in G(M), are linearly independent. Let a
be the total number of accidents in G(M) and r be the rank of the system of equations
L∼ ∪ {Ya ⊕ Yb = c}, where {Ya ⊕ Yb = c} is the set of all such linearly independent
equations which are induced from the accidents in G(M). We call this rank as the joint
rank. Now, following Lemma 5, we have the following result.
Lemma 6. Let us consider a structure graph G(M) ∈ G(M) with respect to a fixed tuple
of q distinct messages M, realized through (Y1, . . . , Yt) variables. Let L be a system of
linear equations in variables Y := (Y1, . . . , Yt) and ∼ be a collision relation over [1, t] with
v many classes, induced by G(M). If the joint rank of L∼ ∪ {Ya ⊕ Yb = c} is r, then

Pr[Y satisfies L, G = G(M)] ≤ 1
(|Y| − v + r)r

.

9We use the term collision and accident interchangebaly.
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Proof. To prove this result, the total number of solutions that satisfy L∼ and all the
linearly independent a many equations induced by the accidents in G(M), are at most
(|Y|)v−r (follows from Lemma 5). Moreover, the total number of ways we can choose the
variables are (|Y|)v (keeping the distinctness of the variables). Dividing the former one by
the latter yields the result.

6.4.2 Cover-free and Block-wise universal Advantage of 2K-ECBC-Hash

We bound the cover-free and the block-wise universal advantage of 2K-ECBC-Hash when
the hash key, i.e., the pair of independent random permutation (Π1,Π2), is sampled outside
from Kecbc

bad .

Bounding Cover-free-advantage. To bound the cover-free advantage of 2K-ECBC-
Hash, we first fix three distinct messages Mi, Mj and Mk. For brevity, we write
Pr[CFijk holds, (Π1,Π2) ∈ (Perm × Perm) \ Kecbc

bad ] as Pcf . Now, we consider the two
subsets of G(M): (i) G0(M), which is the set of all structure graphs of G(M) such that
there is no accident in between the i-th and the j-th message walks and (ii) G1(M), which
is the set of all structure graphs of G(M) such that there is exactly one accident in between
the i-th and the j-th message walks. Now, by definition we have,

Pcf =
∑

b,b′∈{0,1}

(
Pr[Σi ⊕ Σj = b,Λi ⊕ Λk = b′, G1 ∈ G0(M), G2 ∈ G0(M)]

+ Pr[Σi ⊕ Σj = b,Λi ⊕ Λk = b′, G1 ∈ G0(M), G2 ∈ G1(M)]
+ Pr[Σi ⊕ Σj = b,Λi ⊕ Λk = b′, G1 ∈ G1(M), G2 ∈ G0(M)]

+ Pr[Σi ⊕ Σj = b,Λi ⊕ Λk = b′, G1 ∈ G1(M), G2 ∈ G1(M)]
)
,

where G1 and G2 are two independent structure graphs (when viewed as random variables
defined over the sample space G(M)). In other words, we may view that G1 is induced
by a random permutation Π1 whereas G2 is induced by an another random permutation
Π2, which is independent of Π1. Moreover, the event Σi ⊕ Σj = b is independent over
Λi ⊕ Λk = b′ as the first event is induced by the randomness of Π1 and the second event
is induced by the randomness of Π2, where Π1 and Π2 are two independent random
permutations. Therefore, we write

Pcf =
∑

b,b′∈{0,1}

(
Pr[Σi ⊕ Σj = b,G1 ∈ G0(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G0(M)]

+ Pr[Σi ⊕ Σj = b,G1 ∈ G0(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G1(M)]
+ Pr[Σi ⊕ Σj = b,G1 ∈ G1(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G0(M)]

+ Pr[Σi ⊕ Σj = b,G1 ∈ G1(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G1(M)]
)
.(37)

Analysis of Cases: Now, we analyze different cases. Basically, we will bound the following
four probabilities:

(A) Pr[Σi ⊕ Σj = 0, G1 ∈ G0(M)], (B) Pr[Σi ⊕ Σj = 1, G1 ∈ G0(M)],
(C) Pr[Σi ⊕ Σj = 0, G1 ∈ G1(M)], (D) Pr[Σi ⊕ Σj = 1, G1 ∈ G1(M)].

Bounding Case (A): It is easy to see that the event Σi ⊕ Σj = 0, G1 ∈ G0(M) is an
impossible event. Because we are considering those structure graphs in which there is no
accident in between the i-th and the j-th message walks. But at the same time we are
considering the event Σi = Σj , which itself is an accident between the i-th and the j-th
message walks. Hence, the probability in this case is zero.
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Bounding Case (B): Σi ⊕ Σj = 1 is a non-trivial linear equation over Y variables. In
specific, the equation is:

Y ili ⊕ Y
j
lj

= 1,

which holds with probability 1/(2n − 2`+ 1), when there is no accident in between the
i-th and the j-th message walks. Moreover, the number of such structure graphs is only
one, which is uniquely determined by the message tuple. Hence, the probability in this
case is at most 1/(2n − 2`+ 1) ≤ 2/2n when ` ≤ (2n−1 + 1)/2.
Bounding Case (C): To compute this probability, we write

Pr[Σi ⊕ Σj = 0, G1 ∈ G1(M)] =
∑

V ∈G1(M)

Pr[Σi ⊕ Σj = 0, G1 = V ]

The joint rank of the system of equations Σi ⊕ Σj = 0 along with the equation induced
from the accident, is at least 1. Therefore, from Lemma 6, we have

Pr[Σi ⊕ Σj = 0, G1 = V ] ≤ 1
2n − 2`+ 1 .

Moreover, in this case the number of structure graphs with exactly one accident is 1.
Therefore, the probability in this case is at at most 1

2n−2`+1 ≤
2

2n , with the assumption
that ` ≤ (2n−1 + 1)/2.
Bounding Case (D): To compute this probability, we write

Pr[Σi ⊕ Σj = 1, G1 ∈ G1(M)] =
∑

V ∈G1(M)

Pr[Σi ⊕ Σj = 1, G1 = V ]

The joint rank of the system of equations Σi ⊕ Σj = 1 along with the equation induced
from the accident, is exactly 2 as the linear equation induced from the accident is linearly
independent over the equation Σi ⊕ Σj = 1. Therefore, from Lemma 6, we have

Pr[Σi ⊕ Σj = 1, G1 = V ] ≤ 1
(2n − 2`+ 2)2

.

Moreover, in this case the number of structure graphs with exactly one accident is
(2`

2
)
≤ 2`2.

Therefore, the probability in this case is at most 2`2

(2n−2`+2)2
≤ 2`2

(2n−2`+1)2 ≤ 8`2

22n with the
assumption ` ≤ (2n−1 + 1)/2.
All the above result equally holds when Σi and Σj are replaced by Λi and Λk respectively.
Now, we split up Eqn. (37) and write as follows:

Pcf =
∑

b,b′∈{0,1}

Pr[Σi ⊕ Σj = b,G1 ∈ G0(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G0(M)]

+
∑

b,b′∈{0,1}

Pr[Σi ⊕ Σj = b,G1 ∈ G0(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G1(M)]

+
∑

b,b′∈{0,1}

Pr[Σi ⊕ Σj = b,G1 ∈ G1(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G0(M)]

+
∑

b,b′∈{0,1}

Pr[Σi ⊕ Σj = b,G1 ∈ G1(M)] · Pr[Λi ⊕ Λk = b′, G2 ∈ G1(M)]. (38)

By varying over all possible choices of b and b′ and plugging-in the above derived bound
in Eqn. (38), we have the following result:

Pcf ≤
16
22n + 64`2

23n + 64`4

24n ≤
144`2

22n , (39)
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assuming ` ≤ 2n−3. Hence we can set

εcf(3, `) = 144`2

22n . (40)

Bounding Block-wise-universal advantage. To bound the block-wise universal
advantage of 2K-ECBC-Hash, we first fix two distinct messages Mi and Mj . For brevity,
we write Pr[UNIVij holds, (Π1,Π2) ∈ (Perm× Perm) \ Kecbc

bad ] as Puniv. Now, as before we
consider the two subsets of G(M): (i) G0(M) and (ii) G1(M). Now, by definition we can
write,

Puniv = max
( ∑
b∈{0,1}

Pr[Σi⊕Σj = b,G1 ∈ G01(M)],
∑

b∈{0,1}

(
Pr[Λi⊕Λj = b,G2 ∈ G01(M)]

)
,

(41)
where G01(M) denotes the set G0(M) ∪ G1(M). Now, by varying all possible choices of
b and b′ and plugging-in the above bound of Case (A)-Case (D) into Eqn. (41), we have
Puniv ≤ 4

2n + 16`2

22n and hence we have

εuniv(2, `) = 4
2n + 8`2

22n ≤
12`2

2n . (42)

The first part of Theorem 12 follows from Eqn. (40) and Eqn. (42).

6.4.3 Collision, Cover-free and Block-wise universal Advantage of f9-Hash

In this section, we bound the maximum collision probability, the cover-free advantage
and the block-wise universal advantage of f9-Hash. Recall that, f9-Hash is not a block-
separated DbH function and thus we require to bound its maximum collision probability
(or equivalently the collision advantage) along with its cover-free and block-wise universal
advantage.
Bounding Collision advantage. To bound this event, we first fix a message Mi and
for brevity, we write Pr[COLLi holds, Π ∈ Perm \ Kf9

bad] as Pcoll. Let G̃0(M) be the set
of all structure graphs of G(M) such that the number of accidents in the i-th message
walk is zero, i.e., in a stucture graph of G̃0(M), there contains no accident within the i-th
message walk. This says that, we need to bound the probability of the event when number
of accidents in the message walk of Mi is zero. Now, by definition we have,

Pcoll = Pr[Σ′i = Λ′i, G ∈ G̃0(M)] =
∑

V ∈G̃0(M)

Pr[Σ′i = Λ′i, G = V ] (43)

As there is no accident in the i-th message walk of V , it does not induce any linear equation.
Therefore, the only linear equation we have due to Σ′i = Λ′i, which is non-trivial and hence
the rank of the system of linear equations is one. In other words, the event Σ′i = Λ′i implies
the following non-trivial equation:

Y i1 ⊕ . . . Y ili−1 = 0,

which holds with probability at most 1
2n−` ≤

2
2n , with the assumption that ` ≤ 2n−1.

Moreover, the number of structure graphs with no accident in the i-th message walk is 1.
Therefore, from Eqn. (43), we have Pcoll ≤ 2

2n and hence we have,

εcoll = 2
2n . (44)

Bounding Cover-free-advantage. Fix three distinct messages Mi,Mj and Mk. As
before, for brevity, we write Pr[CFijk holds, Π ∈ Perm\Kf9

bad] as Pcf . Now, we consider the
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two subsets of G(M): (i) G2(M), which is the set of all structure graphs of G(M) such that
the there is no accident in the i-th, the j-th and the k-th message walks and (ii) G3(M),
which is the set of all structure graphs of G(M) such that the there is exactly one accident
in the i-th, the j-th and the k-th message walks. Let us denote G2(M)∪G3(M) by G23(M)
and recall that G01(M) denotes the set G0(M) ∪ G1(M) where G0(M) is the set of all
structure graphs of G(M) such that there is no accident in the i-th and the j-th message
walks and G1(M) is the set of all structure graphs of G(M) such that there is exactly one
accident in the i-th and the j-th message walks.Now, by definition we have,

Pcf = Pr[Σ′i = Σ′j ,Λ′i = Λ′k, G ∈ G23(M)] + Pr[Σ′i = Λ′j ,Λ′i = Λ′k, G ∈ G23(M)]
+ Pr[Σ′i = Σ′j ,Λ′i = Σ′k, G ∈ G23(M)] + Pr[Σ′i = Λ′j ,Λ′i = Σ′k, G ∈ G23(M)]
+ Pr[Σ′i = Σ′j ,Λ′i = Λ′j , G ∈ G01(M)] (45)

Note that, unlike all the earlier constructions, f9-Hash is not block separated and hence to
analyze its cover-free advantage, we need to consider all the possible ways that the cover
free event can occur, as described in Sect. 3.3. Now, to bound Pcf , we state the following
claim, the proof of which is given in Appendix A.
Claim 2. Let Mi,Mj and Mk be any three distinct messages such that the maximum
number of message blocks among all these three messages is `. Then, we have,

(a) Pr[Σ′i = Σ′j ,Λ′i = Λ′k, G ∈ G23(M)] ≤ 18`2

22n ; (b) Pr[Σ′i = Λ′j ,Λ′i = Λ′k, G ∈ G23(M)] ≤ 20`2

22n ;

(c) Pr[Σ′i = Σ′j ,Λ′i = Σ′k, G ∈ G23(M)] ≤ 18`2

22n ; (d) Pr[Σ′i = Λ′j ,Λ′i = Σ′k, G ∈ G23(M)] ≤ 20`2

22n .

Moreover, we also have Pr[Σ′i = Σ′j ,Λ′i = Λ′j , G ∈ G01(M)] ≤ 8`2

22n , where we assume
` ≤ (2n−1 + 2)/3.
Following Eqn. (45) and Claim 2 we have, Pcf ≤ 84`2

22n and hence

εcf(3, `) = 84`2

22n . (46)

Bounding Block-wise-universal advantage. Fix two distinct messages Mi and Mj .
According to the definition of block-wise universal advantage for a pair of distinct messages
we have the following:

Puniv = max
(

Pr[Σ′i = Σ′j , G ∈ G01(M)], Pr[Λ′i = Λ′j , G ∈ G01(M)],

Pr[Σ′i = Λ′j , G ∈ G01(M)]
)
, (47)

where Puniv is the shorthand notation for Pr[UNIVij holds, Π ∈ Perm \ Kf9
bad] and G01(M)

denotes G0(M) ∪ G1(M). Now, to bound Puniv, we state the following claim, proof of
which is given in Appendix B.
Claim 3. Let Mi,Mj be any two distinct messages such that the maximum number of
message blocks among these two messages is `. Then, we have,

(a) Pr[Σ′i = Λ′j , G ∈ G01(M)] ≤ 3`2

2n ; (b) Pr[Σ′i = Σ′j , G ∈ G01(M)] ≤ `2

2n ;

(c) Pr[Λ′i = Λ′j , G ∈ G01(M)] ≤ 3`2

2n ,

where we assume ` ≤ (2n−1 + 1)/2.
From Eqn. (47) and Claim 3, we have Puniv ≤ 3`2

2n and hence we have

εuniv(2, `) = 3`2

2n . (48)
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Remark 7. Unlike 2K-PMAC_Plus-Hash, 2K-LightMAC_Plus-Hash and 2K-ECBC-Hash, for
the analysis of f9-Hash, we have avoided the use of fix0 and fix1 functions to make its DbH
function block-separated. Hence, we dealt with all the cross collision events (among Σ
and Λ) while analysing its cover-free and block-wise universal advantage along with the
maximum collision probability. This is an example to show that we could have proved the
beyond birthday bound security of all the ealier two-keyed variants without using fix0 and
fix1 functions, but then the analysis would have been more involved and tedious.

6.4.4 Weak-cover-free and Weak-block-wise-universal Advantage of ECBC-Hash

To bound the weak cover-free advantage of ECBC-Hash, we only need the case Σ′i =
Σ′j ,Λ′i = Λ′k, probability of which is bounded by 4

22n . Similarly, to bound the block-wise
universal advantage, we only need the case that Σ′i = Σ′j or Λ′i = Λ′j , probability of each of
them is bounded by 2

2n .
Hence, we have

εcf(3, `) = 4
22n , εuniv(2, `) = 2

2n . (49)

6.4.5 Weak cover-free and Weak-block-wise-universal Advantage of f9-Hash

Since the DbH function for 3kf9 and 2Kf9 is same, we have εbh = q3`4

22n + q`2

2n . Similar
to ECBC-Hash, bounding the cover-free advantage requires us to analyze only the case
Σ′i = Σ′j ,Λ′i = Λ′k, probability of which is bounded by 18`2

22n (see (a) of Claim 2). Similarly,
to bound the block-wise universal advantage, we only need the case that Σ′i = Σ′j or
Λ′i = Λ′j , the maximum probability of these two is atmost 3`2

2n (see (b) and (c) of Claim 3).
Hence, we have

εcf(3, `) = 18`2

22n , εuniv(2, `) = 3`2

2n .

6.5 Incorrectness of the Existing Security Bound of 3kf9
We have found that the existing bound of 3kf9 (i.e., O(q3`3/22n + q`/2n)) proven in
[ZWSW12] is incorrect. The main flaw of the security proof lies in bounding the cover-
free advantage (Case D, [ZWSW12]) of the underlying DbH function (See Lemma 1
of [ZWSW12]) while making a flawed assumption about the probability of Σi = Σj is at
most 1/2n. But, this assumption is not true. Σi = Σj is essentially the collision event of
the CBC-MAC and the authors have assumed that the probability of this collision is at
most 1/2n, missing many accidents from considerations. The correct bound of the collision
probability of the CBC-MAC is d(`)/2n as shown in [BPR05], where d(`) is the maximum
number of divisors of l for any l ≤ `.

Observe that, the security bound of 3kf9 proven in this paper (i.e., O(q3`4/22n)) is
beyond birthday in terms of q only (not in terms of both q and ` 10). We believe that it
would be very difficult, if not impossible, to show the beyond birthday security of 3kf9 and
its reduced keyed variant, in terms of both q and `. In our analysis, the term q3`4/22n

arises as we allow at most one accident for any choice of three messages. Hence, it makes
the security bound to be beyond birthday in terms of q, but not in terms of `. Generically,
if one goes up to allowing a many accidents in any triplet of messages, then one needs
to bound the probability for the number of accidents greater than equal to a+ 1 in any
triplet of messages, which gives the bound O(q3`2(a+1)/2(a+1)n); not beyond birthday

10As an example, if the security advantage happens to be 2−10, then with block length n = 128 and
q = 250, it limits the maximum value of the message length to 224 blocks.



Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul 81

secure in terms of both q and `. Henceforth, to avoid the bound which is beyond birthday
only in terms of q, one needs to allow n many accidents for three distinct messages and
then analyze the probability of its cover-free advantage. This seems really difficult as the
number of possibilities of having n many accidents in three messages is huge (e.g., one
may try to enumerate the number of cases for allowing only 3 accidents in three distinct
messages).

6.6 Importance of the Set of Bad Hash Keys
We have seen that for some constructions, we have analyzed their cover-free and the
block-wise universal advantage when the hash key was sampled from outside of the set of
all bad hash keys. The importance of drawing the hash key from a good key space while
analyzing the cover-free and block-wise universal advantage lies in obtaining an improved
security bound for those constructions. For example, in the analysis of the cover-free
advantage of the 2K-PMAC_Plus-Hash, if we had sampled the hash key from the set of all
hash keys, we would have obtained a bound O(q3`2/22n). This is because, to bound its
cover-free advantage for a triplet of distinct messages, we would have to consider the 3CollX
event among the chosen three messages, which would happen with probability `2/22n.
This would get multiplied with q3, makes the resultant bound of the order of q3`2/22n, a
blow up of an extra ` factor in the security bound.

A much serious degradation of bound takes place for 2K-ECBC_Plus. If we had sample
the hash key from the entire hash key space, then we would have obtained the bound
O(q3`4/22n). This is because, to bound its cover-free advantage for a triplet of distinct
messages, we would have to consider the Coll2 event among the chosen three messages,
which would happen with probability `4/22n. This would get multiplied with q3, makes
the resultant bound of the order of q3`4/22n, a blow up of an extra q factor in the security
bound.

7 Conclusion and Future Work
With a rapid growth of computing power, birthday attacks gradually become a practical
threat to cryptographic algorithms. Therefore, designing modes that guarantees security
beyond the birthday bound is active and promising. In this paper, we give a generic
treatment of constructing the two-keyed and the three-keyed beyond birthday bound secure
PRFs with an actual concrete instantiations, backed up with a proper security proof. This
work immediately opens up two different directions of possible future works:
Open Problem I: A trivial question that comes to the mind is, whether it is possible to
extend this work to analyze the security of the single-keyed DbHtS, where the hash key would
be same as the block cipher key used in the sum function? It is well known that any generic
composition result demands independent keys for each module, and whether the security
holds even with the same key is non-trivial and requires a different approach. In the same
line of reasoning, the security analysis of the single-keyed DbHtS would require a different
approach and the proof may become quite complex and involved. Technically speaking,
the analysis of the single-keyed DbHtS would require one to bound the collision between
hash values and the intermediate block inputs (during the internal hash computation)
along with the usual hash collisions. This enforces many more bad events. Analyzing these
bad events and obtaining a generic result is non-trivial and is left as an open problem. In
this regard, we would like to mention that Datta et al. [DDN+17] have shown the BBB
security of single-keyed PMAC_Plus. We believe that using a similar approach, one can also
prove BBB security of the single-keyed version of LightMAC_Plus. However, we think that
proving the beyond birthday bound security of single-keyed version of 3kf9 is challenging
and one needs to employ extreme care in analyzing the security of this construction.
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Open Problem II: In a very recent work of Leurent et al. [LNS18], SUM-ECBC,
PMAC_Plus, 3kf9, LightMAC_Plus and their reduced keyed-variant have been attacked
with the query complexity 23n/4. We believe that all these constructions can also be
proven secured upto 23n/4, and hence establishing the tightness of the bound. But to prove
that, one needs to analyze (i) the rank of three linear equations (instead of two), which
we believe is cumbersome and non-trivial to do and (ii) uplift the security of the sum of
permutation result to 23n/4.
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A Proof of Claim 2
In this section, we prove claim 2, where we analyse the probability of the events according
to the structure graph notion. First we recall the statement of the claim:

Claim 2. Let Mi,Mj and Mk be any three distinct messages such that the maximum
number of message blocks among all these three messages is `. Then, we have,

(a) Pr[Σ′i = Σ′j ,Λ′i = Λ′k, G ∈ G23(M)] ≤ 18`2

22n ; (b) Pr[Σ′i = Λ′j ,Λ′i = Λ′k, G ∈ G23(M)] ≤ 20`2

22n ;

(c) Pr[Σ′i = Σ′j ,Λ′i = Σ′k, G ∈ G23(M)] ≤ 18`2

22n ; (d) Pr[Σ′i = Λ′j ,Λ′i = Σ′k, G ∈ G23(M)] ≤ 20`2

22n .

Moreover, we also have Pr[Σ′i = Σ′j ,Λ′i = Λ′j , G ∈ G01(M)] ≤ 8`2

22n , where we assume
` ≤ (2n−1 + 2)/3.
We bound the events as stated in claim 2 based on the randomness of the underlying
permutation Π. We would like to first set up the following notational convention, which
will be used in our subsequent analysis:
Notational Convention: Number of message blocks of i-th message Mi is denoted by
li and the α-th message block of i-th message is denoted by Mi[α]. Moreover, the block
cipher output of α-th block of i-th message is denoted by Y iα. ` denotes the maximum
number of message blocks among all q queries.

A.1 Bound of Pr[Σ′
i = Σ′

j, Λ′
i = Λ′

k, G ∈ G23(M)]
We have fixed three distinct messages Mi,Mj and Mk each of the length at most ` blocks.
Let G(Mi,Mj ,Mk) denotes the set of all structure graphs corresponding to the fixed triple
of messages Mi,Mj and Mk. Now, we write
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Pr[Σ′i = Σ′j ,Λ′i = Λ′k, G ∈ G23(M)] = Pr[Σ′i = Σ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 0]
+ Pr[Σ′i = Σ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 1]. (50)

Now, we analyse the probability of Σ′i = Σ′j ,Λ′i = Λ′k, when number of accident in the
structure graph is 0 and 1 as follows:

Number of Accident =0. When the number of accidents in the structure graph is 0,
then the probability of Σ′i = Σ′j is 0 as the event itself implies either (a) at least one
collision between a pair of messages or (b) a collision in either of the message walk of Mi

or Mj . But since the number of accident is zero, Σ′i = Σ′j is an impossible event and hence
the probability of the joint event Σ′i = Σ′j and Λ′i = Λ′k is also 0. Therefore,

Pr[Σ′i = Σ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 0] = 0. (51)

Number of Accident = 1. Let α be the length of the common suffix of Mi and Mj and
β be the length of the common prefix of Mi and Mk. Then we have,

Σ′i = Σ′j ⇒ Y ili−α−1 ⊕ Y
j
lj−α−1 = Mi[li − α]⊕Mj [lj − α]. (52)

Moreover, Λ′i = Λ′k implies the following equation:

Y iβ+1 ⊕ . . .⊕ Y ili ⊕ Y
k
β+1 ⊕ . . .⊕ Y klk = 0. (53)

Note that, the rank of Eqn. (52) and Eqn. (53) along with the equation induced from the
accident is atleast 2. Therefore, from Lemma 6 we have

Pr[Σ′i = Σ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 1] ≤ 9`2

2(2n − 3`+ 2)2
≤ 18`2

22n , (54)

where we assume ` ≤ (2n−1 + 2)/3 and the number of structure graphs with exactly
one accident among a triplet of messages is at most

(3`
2
)
≤ 9`2/2. Plug-in the bound of

Eqn. (51) and Eqn. (54) into Eqn. (50), we have

Pr[Σ′i = Σ′j ,Λ′i = Λ′k, G ∈ G23(M)] ≤ 0 + 18`2

22n ≤
18`2

22n ,

with the assumption ` ≤ (2n−1 + 2)/3.

A.2 Bound of Pr[Σ′
i = Λ′

j, Λ′
i = Λ′

k, G ∈ G23(M)]

We bound the event in a similar way as we did in bounding Pr[Σ′i = Σ′j ,Λ′i = Λ′k, G ∈
G23(M)]. Let G(Mi,Mj ,Mk) denotes the set of all structure graphs corresponding to the
fixed triple of messages Mi,Mj and Mk. Now, we write

Pr[Σ′i = Λ′j ,Λ′i = Λ′k, G ∈ G23(M)] = Pr[Σ′i = Λ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 0]
+ Pr[Σ′i = Λ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 1]. (55)

Now, we analyse the probability of Σ′i = Λ′j ,Λ′i = Λ′k, when number of accident in the
structure graph is 0 and 1 as follows:
Number of Accident = 0. When number of accident is 0, then Σ′i = Λ′j and Λ′i = Λ′k
implies the following two system of equations:{

Y ili ⊕ Y
j
1 ⊕ . . .⊕ Y

j
lj

= 0
Y iα+1 ⊕ . . .⊕ Y ili ⊕ Y

k
α+1 ⊕ . . .⊕ Y klk = 0,
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where α be the length of the common prefix of Mi and Mk. Now, if li 6= α + 1, then
the rank of the above system of equations is 2 for two random variables Y ili and Y iα+1. If
α+1 = li, then also the rank of the above system of equations is 2 for two random variables
Y jlj and Y klk . Thefore, in each of the cases, the rank is 2 and hence from Lemma 6, the
probability that the above system of equations hold is 1

(2n−3`+2)2
. Moreover, the number

of structure graphs with no accident is exactly 1. Therefore,

Pr[Σ′i = Λ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 0] ≤ 1
(2n − 3`+ 2)2

≤ 4
22n , (56)

with the assumption ` ≤ (2n−1 + 2)/3.
Number of Accident = 1. Let α be the length of the common prefix of Mi and Mk.
Then we have,

Σ′i = Λ′j ⇒ Y ili ⊕ Y
j
1 ⊕ . . .⊕ Y

j
lj

= 0. (57)

Moreover, Λ′i = Λ′k implies the following equation:

Y iα+1 ⊕ . . .⊕ Y ili ⊕ Y
k
α+1 ⊕ . . .⊕ Y klk = 0. (58)

Note that, if the accident occurs in between the message walk of Mi and Mj then Eqn. (57)
is non-trivial. Similarly, if the accident occurs in between the message walk of Mi and Mk

then Eqn. (58) is non-trivial. Otherwise accident occurs in the message walk of Mj and
Mk and in that case Eqn. (57) is non-trivial. Therefore, in either of the three cases the
rank of system of equations Eqn. (57) and Eqn. (58) along with the equation induced from
the accident is at least 2. Hence, from Lemma 6, the probability that the above system
of equations hold is at most 1

(2n−3`+2)2
. Moreover, the number of structure graphs with

exactly one accident in a triplet of messages is at most
(3`

2
)
≤ 9`2/2. Therefore,

Pr[Σ′i = Λ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 1] ≤ 9`2

2(2n − 3`+ 2)2
≤ 18`2

22n , (59)

with the assumption ` ≤ (2n−1 + 2)/3. Plug-in the bound of Eqn. (56) and Eqn. (59) into
Eqn. (55), we have

Pr[Σ′i = Λ′j ,Λ′i = Λ′k, G ∈ G23(M)] ≤ 4
22n + 18`2

22n ≤
2(9`2 + 2)

22n ≤ 20`2

22n ,

with the assumption ` ≤ (2n−1 + 2)/3.

A.3 Bound of Pr[Σ′
i = Σ′

j, Λ′
i = Σ′

k, G ∈ G23(M)]

As before, we consider G(Mi,Mj ,Mk) denotes the set of all structure graphs corresponding
to the fixed triple of messages Mi,Mj and Mk. Now, we write

Pr[Σ′i = Σ′j ,Λ′i = Σ′k, G ∈ G23(M)] = Pr[Σ′i = Σ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 0]
+ Pr[Σ′i = Σ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 1]. (60)

Now, we analyse the probability of Σ′i = Σ′j ,Λ′i = Σ′k, when number of accident in the
structure graph is 0 and 1 as follows:
Number of Accident = 0. When number of accident is 0, then we have seen in Sect. A.1
that probability of Σ′i = Σ′j is 0 unless Mi = Mj but this is not possible as Mi and Mj are
distinct. Therefore, when the number of accident is 0, then the probability of the joint
event Σ′i = Σ′j and Λ′i = Σ′k is also 0. Therefore,

Pr[Σ′i = Σ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 0] = 0. (61)
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Number of Accident = 1. Let α be the length of the common suffix of Mi and Mj .
Then we have,

Σ′i = Σ′j ⇒ Y ili−α−1 ⊕ Y
j
lj−α−1 = Mi[li − α]⊕Mj [lj − α]. (62)

Moreover, Λ′i = Σ′k implies the following equation:

Y i1 ⊕ . . .⊕ Y ili ⊕ Y
k
lk

= 0. (63)

Note that, the rank of Eqn. (62) and Eqn. (63) along with the equation induced from the
accident is atleast 2. Therefore, from Lemma 6 we have,

Pr[Σ′i = Σ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 1] ≤ 9`2

2(2n − 3`+ 2)2
≤ 18`2

22n , (64)

where we assume ` ≤ (2n−1 + 2)/3 and the number of structure graphs with exactly one
accident in a triplet of messages is at most 9`2/2. Plug-in the bound of Eqn. (61) and
Eqn. (64) into Eqn. (60), we have

Pr[Σ′i = Σ′j ,Λ′i = Σ′k, G ∈ G23(M)] ≤ 0 + 18`2

22n ≤
18`2

22n ,

with the assumption ` ≤ (2n−1 + 2)/3.

A.4 Bound of Pr[Σ′
i = Λ′

j, Λ′
i = Σ′

k, G ∈ G23(M)]

As before, we consider G(Mi,Mj ,Mk) denotes the set of all structure graphs corresponding
to the fixed triple of messages Mi,Mj and Mk. Now, we write

Pr[Σ′i = Λ′j ,Λ′i = Σ′k, G ∈ G23(M)] = Pr[Σ′i = Λ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 0]
+ Pr[Σ′i = Λ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 1]. (65)

Now, we analyse the probability of Σ′i = Λ′j ,Λ′i = Σ′k, when number of accident in the
structure graph is 0 and 1 as follows:
Number of Accident = 0. When number of accident is 0, then Σ′i = Λ′j and Λ′i = Σ′k
implies the following two system of equations:{

Y ili ⊕ Y
j
1 ⊕ . . .⊕ Y

j
lj

= 0
Y klk ⊕ Y

i
li
⊕ . . .⊕ Y ili = 0.

Note that, the rank of the above system of equations is 2 for random variables Y ili and
Y klk . Thefore, due to Lemma 6, the probability that the above system of equations hold is

1
(2n−3`+2)2

. Moreover, the number of structure graphs with no accident is exactly 1. As a
result, we have,

Pr[Σ′i = Λ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 0] ≤ 1
(2n − 3`+ 2)2

≤ 4
22n , (66)

with the assumption ` ≤ (2n−1 + 2)/3.
The argument for bounding the event when number of accident is one is similar to that of
in Sect. A.2 while bounding Pr[Σ′i = Λ′j ,Λ′i = Λ′k ∧ |Coll(G)| = 1]. If the accident occurs in
the message walk of Mi and Mj or in between of Mj and Mk then Y ili ⊕ Y

j
1 ⊕ . . .⊕ Y

j
lj

= 0
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is a non-trivial equation. Similarly, if the accident is between message walk of Mi and
Mk then Y klk ⊕ Y

i
li
⊕ . . .⊕ Y ili = 0 is a non-trivial one. Therefore, in each cases the above

system of equations along with the equation induced from the accident has rank at least 2
and hence, from Lemma 6, the probability of the event when number of accident is one
is bounded by 1

(2n−3`+2)2
. Moreover, the number of structure graphs with exactly one

accident among a triplet of messages is at most 9`2/2. Therefore,

Pr[Σ′i = Λ′j ,Λ′i = Σ′k ∧ |Coll(G)| = 1] ≤ 9`2

2(2n − 3`+ 2)2
≤ 18`2

22n , (67)

with the assumption ` ≤ (2n−1 + 2)/3. Plug-in the bound of Eqn. (66) and Eqn. (67) into
Eqn. (65), we have

Pr[Σ′i = Λ′j ,Λ′i = Σ′k, G ∈ G23(M)] ≤ 4
22n + 18`2

22n ≤
2(9`2 + 2)

22n ≤ 20`2

22n ,

with the assumption ` ≤ (2n−1 + 2)/3.

A.5 Bound of Pr[Σ′
i = Σ′

j, Λ′
i = Λ′

j, G ∈ G01(M)]

We have fixed two distinct messages Mi,Mj and Mk each of the length at most ` blocks.
Let G(Mi,Mj) denotes the set of all structure graphs corresponding to the fixed pair of
messages Mi and Mj . Now, we write

Pr[Σ′i = Σ′j ,Λ′i = Λ′j , G ∈ G01(M)] = Pr[Σ′i = Σ′j ,Λ′i = Λ′j ∧ |Coll(G)| = 0]
+ Pr[Σ′i = Σ′j ,Λ′i = Λ′j ∧ Coll(G)| = 1]. (68)

As argued before that when the number of accidents in the structure graph is zero, then
Σ′i = Σ′j is an impossible event and therefore, the probability of Σ′i = Σ′j ,Λ′i = Λ′j is zero.
Number of Accident = 1. Let α and β be the length of the common suffix and prefix
of Mi and Mj respectively. Then we have,

Σ′i = Σ′j ⇒ Y ili−α−1 ⊕ Y
j
lj−α−1 = Mi[li − α]⊕Mj [lj − α]. (69)

Moreover, Λ′i = Λ′j implies the following equation:

Y iβ+1 ⊕ . . .⊕ Y ili ⊕ Y
j
β+1 ⊕ . . .⊕ Y

j
lj

= 0. (70)

Note that, the rank of Eqn. (69) and Eqn. (70) along with the equation induced from the
accident is atleast 2. Therefore, from Lemma 6 we have

Pr[Σ′i = Σ′j ,Λ′i = Λ′j ∧ |Coll(G)| = 1] ≤ 2`2

(2n − 3`+ 2)2
≤ 8`2

22n , (71)

where we assume ` ≤ (2n−1 + 2)/3 and the number of structure graphs with exactly one
accident among a pair of messages is at most 2`2. Plug-in the bound of Eqn. (71) into
Eqn. (68), we have

Pr[Σ′i = Σ′j ,Λ′i = Λ′j , G ∈ G01(M)] ≤ 0 + 8`2

22n ≤
8`2

22n ,

with the assumption ` ≤ (2n−1 + 2)/3.
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B Proof of Claim 3
In this section, we prove claim 3. Again, we first recall the statement of the claim:

Claim 3. Let Mi,Mj be any two distinct messages such that the maximum number of
message blocks among these two messages is `. Then, we have,

(a) Pr[Σ′i = Λ′j , G ∈ G01(M)] ≤ 3`2

2n ; (b) Pr[Σ′i = Σ′j , G ∈ G01(M)] ≤ `2

2n ;

(c) Pr[Λ′i = Λ′j , G ∈ G01(M)] ≤ 3`2

2n ,

where we assume ` ≤ (2n−1 + 1)/2.
Like proof of claim 2, we analyse the probability of the events according to the structure
graph notion. Hence, we bound the events as stated in claim 3 based on the randomness
of the underlying permutation Π. Using the same notational convention as developed in
Sect. A, we bound the following:

B.1 Bound of Pr[Σ′
i = Λ′

j, G ∈ G01(M)]
We fix two distinct messages Mi and Mj . We denote the set of all structure graphs
corresponding to Mi and Mj . by G(Mi,Mj). Now, we write

Pr[Σ′i = Λ′j , G ∈ G01(M)] = Pr[Σ′i = Λ′j ∧ |Coll(G)| = 0] + Pr[Σ′i = Λ′j ∧ |Coll(G)| = 1]
≤ Pr[Σ′i = Λ′j ∧ |Coll(G)| = 0] + Pr[|Coll(G)| = 1]

≤ Pr[Σ′i = Λ′j ∧ |Coll(G)| = 0] + `2

2n , (72)

where the last inequality follows from Proposition 2. Now, we analyse the probability of
Σ′i = Λ′j , when number of accident in the structure graph is 0 as follows:
Number of Accident = 0. We analyse this case into different subcases as follows:
- (i) Without loss of generality we assume Mj is a prefix of Mi. In this case, the event
Σ′i = Λ′j implies the following non-trivial equation:

Y i1 ⊕ . . . Y ilj ⊕ Y
i
li = 0,

which holds with probability at most 1
2n−2`+1 ≤

2
2n , follows from Lemma 1, with the

assumption ` ≤ (2n−1 + 1)/2.
- (ii) When none of the messages is a prefix of another. Without loss of generality, we
assume li ≥ lj and p be the length of the common prefix of Mi and Mj . Now, the event
Σ′i = Λ′j implies the following non-trivial equation:

Y i1 ⊕ . . . Y ip ⊕ Y
j
p+1 ⊕ Y

j
lj
⊕ Y ili = 0,

which holds with probability at most 1
2n−2`+1 ≤

2
2n , follows from Lemma 1, with the

assumption ` ≤ (2n−1 + 1)/2.
Plug-in the bound into Eqn. (72) we obtain

Pr[Σ′i = Λ′j , G ∈ G01(M)] ≤ 1
2n − 2`+ 1 + `2

2n ≤
`2 + 2

2n ≤ 3`2

2n ,

where we assume ` ≤ (2n−1 + 1)/2.
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B.2 Bound of Pr[Σ′
i = Σ′

j, G ∈ G01(M)]

Let us fix two distinct messages Mi and Mj . Let G(Mi,Mj) denotes the set of all structure
graphs corresponding to Mi and Mj . Now, we write

Pr[Σ′i = Σ′j , G ∈ G01(M)] = Pr[Σ′i = Σ′j ∧ |Coll(G)| = 0] + Pr[Σ′i = Σ′j ∧ |Coll(G)| = 1]
≤ Pr[Σ′i = Σ′j ∧ |Coll(G)| = 0] + Pr[|Coll(G)| = 1]

≤ Pr[Σ′i = Σ′j ∧ |Coll(G)| = 0] + `2

2n , (73)

where the last inequality follows from Proposition 2. Now, we analyse the probability
of Σ′i = Σ′j , when number of accident in the structure graph is 0 as follows:
Number of Accident = 0. As argued in Sect. A.1, when the number of accident is
0, then the probability of Σ′i = Σ′j is 0 as the event itself implies either (a) at least one
collision between a pair of messages or (b) a collision in either of the message walk of Mi

or Mj . But since we condition on the number of accident is zero, Σ′i = Σ′j is an impossible
event. Therefore,

Pr[Σ′i = Σ′j , G ∈ G01(M)] ≤ 0 + `2

2n ≤
`2

2n .

B.3 Bound of Pr[Λ′
i = Λ′

j, G ∈ G01(M)]

We follow the similar analysis as we did for bounding Pr[Σ′i = Σ′j , G ∈ G01(M)]. G(Mi,Mj)
denotes the set of all structure graphs corresponding to the fixed pair of messages Mi and
Mj . Now, we write

Pr[Λ′i = Λ′j , G ∈ G01(M)] = Pr[Λ′i = Λ′j ∧ |Coll(G)| = 0] + Pr[Λ′i = Λ′j ∧ |Coll(G)| = 1]
≤ Pr[Λ′i = Λ′j ∧ |Coll(G)| = 0] + Pr[|Coll(G)| = 1]

≤ Pr[Λ′i = Λ′j ∧ |Coll(G)| = 0] + `2

2n , (74)

where the last inequality follows from Proposition 2. Now, we analyse the probability of
Λ′i = Λ′j , when number of accident in the structure graph is 0 as follows:
Number of Accident = 0. We analyse this case into different subcases as follows:
- (i) Without loss of generality we assume that Mj is a prefix of Mi. Then the event
Λ′i = Λ′j implies the following non-trivial equation:

Y ilj+1 ⊕ . . .⊕ Y ili = 0,

probability of which is bounded by 1
2n−2`+1 , follows from Lemma 1, with the assumption

` ≤ (2n−1 + 1)/2.
- (ii) when none of the message is a prefix of another. Let us assume li ≥ lj . Let us assume,
p is the length of the common prefix of Mi and Mj . Now, the event Λ′i = Λ′j implies the
following non-trivial equation

Y jp+1 ⊕ . . .⊕ Y
j
lj
⊕ Y ip+1 . . .⊕ Y ili = 0,

probability of which is bounded by 1
2n−2` , follows from Lemma 1, with the assumption

` ≤ (2n−1 + 1)/2. Note that, if li = lj then p < lj − 1 otherwise the probaility would
become zero.
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Plug-in the bound into Eqn. (74) we obtain

Pr[Λ′i = Λ′j , G ∈ G01(M)] ≤ 1
2n − 2`+ 1 + `2

2n ≤
`2 + 2

2n ≤ 3`2

2n ,

where we assume ` ≤ (2n−1 + 1)/2.
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