

SUNDAE: Small Universal Deterministic Authenticated Encryption for the IoT

Subhadeep Banik 1,4 , Andrey Bogdanov 2 , Atul Luykx 3 , Elmar Tischhauser 2

 $f(x+\Delta x) = \sum_{i=1}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}$

¹LASEC, EPFL Switzerland
 ²Technical University of Denmark, Lyngby
 ³Visa Research, USA
 ⁴NTU, Singapore

Fast Software Encryption 2019, Paris

25th March 2018

Outline

- Introduction
- Specification
- Security
- Implementation

Introduction

Block Cipher based AE

- Block cipher is an efficient component for lightweight AE.
- SIV (Eurocrypt 2006) mode requires 2 independent keys.
- Some candidates:
 - \rightarrow COPA/E ℓ MD/COLM: Internal state size atleast 3 times of block length.
 - \rightarrow EAX: Multiple inital block cipher calls.
 - \rightarrow COFB/JAMBU: State size greater than block length.
- GCM-SIV proposed at CCS 2015 .
 - \rightarrow Multiplication in $GF(2^{128}):$ not efficient in hardware.

Contributions

SUNDAE

- Competes with CLOC/JAMBU in number of block cipher calls for short messages
- Improves COFB and other modes in terms of state size
- Simultaneously offers efficiency on lightweight and high-performance platforms
- Provides maximal robustness to a lack of proper randomness

Characteristics

SUNDAE

- Completely deterministic:
 - \rightarrow If input is unique, it maintains both data confidentiality and authenticity.
- \bullet Processes inputs of the form $({\cal A},{\cal M})$
 - \rightarrow If M is empty, the mode reduces to a MAC.
 - \rightarrow If nonce is required, the first x bits of A can serve the purpose.
- Structure is based on SIV, optimized for lightweight settings:
 - \rightarrow Uses one key, consists of a cascade of block cipher calls.
 - \rightarrow Only additional operations: XOR and multiplication by fixed constants.
- State size of n, where n is blocklength of underlying block cipher. \rightarrow CLOC requires 2n-bits, JAMBU 1.5n-bits, and COFB 1.5n-bits.

Characteristics

SUNDAE

• Rate 1/2 mode:

 \rightarrow 2 block cipher calls per message block.

- Efficient for short messages: for 1 block of nonce, plaintext, AD
 - \rightarrow COFB uses 3 block cipher calls, CLOC requires 4, JAMBU 5.
 - \rightarrow SUNDAE requires 5 calls (can be reduced to 4, if one call is precomputed).
- Hence efficient in settings where communication outweighs computational costs
 - \rightarrow If AD/plaintext is never repeated,
 - \rightarrow nonce is no longer needed, and
 - \rightarrow communication or synchronization costs are reduced,
 - \rightarrow in addition to reducing the block cipher calls to 4

Algorithm 1: $enc_K(A, M)$

Input: $K \in K, A \in \{0, 1\}^*, M \in \{0, 1\}^*$ 14 if |M| > 0 then **Output:** $C \in \{0, 1\}^{n+|M|}$ $M[1]M[2] \cdots M[\ell_M] \xleftarrow{n} M$ 15 $b_1 \leftarrow |A| > 0$? 1:0 for i = 1 to $\ell_M - 1$ do 16 $2 \ b_2 \leftarrow |M| > 0 ? 1 : 0$ $V \leftarrow \mathsf{E}_{K}(V \oplus M[i])$ 17 $V \leftarrow \mathsf{E}_{K}\left(b_{1} \| b_{2} \| 0^{n-2}\right)$ 18 end $X \leftarrow |M[\ell_M]| < n ? 2 : 4$ $T \leftarrow V$ // Initial tag 19 if |A| > 0 then 5 $V \leftarrow \mathsf{E}_K \left(X \times \left(V \oplus \mathsf{pad}(M[\ell_M]) \right) \right)$ 20 $A[1]A[2]\cdots A[\ell_A] \xleftarrow{n} A$ 6 $T \leftarrow V$ for i = 1 to $\ell_A - 1$ do 21 7 for i = 1 to ℓ_M do 22 $V \leftarrow \mathsf{E}_K (V \oplus A[i])$ 8 $V \leftarrow \mathsf{E}_{K}(V)$ 23 end 9 $C[i] \leftarrow |V|_{|M[i]|} \oplus M[i]$ $X \leftarrow |A[\ell_A]| < n ? 2 : 4$ 24 10 end 25 $V \leftarrow \mathsf{E}_K \left(X \times \left(V \oplus \mathsf{pad}(A[\ell_A]) \right) \right)$ 11 return $TC[1] \cdots C[\ell_M]$ 26 $T \leftarrow V$ 12 27 end 13 end 28 return T

Algorithm 2: $dec_K(A, C)$

```
Input: K \in K, A \in \{0,1\}^*, C \in \{0,1\}^n \times \{0,1\}^*
    Output: \perp or M \in \{0, 1\}^{|C|-n}
 1 C[1]C[2]\cdots C[\ell] \xleftarrow{n} C
 2 V \leftarrow C[1]
 3 for i = 2 to \ell do
    V \leftarrow E_K(V)
 4
      M[i-1] \leftarrow \lfloor V \rfloor_{M[i]} \oplus C[i] 
 5
 6 end
 7 M \leftarrow \ell > 1? M[1]M[2] \cdots M[\ell-1] : \varepsilon
 8 T \leftarrow |\operatorname{enc}_K(A, M)|_n
 9 if T \neq C[1] then
          return |
10
11 return M
```


Figure: SUNDAE encryption with associated and plaintext data. The box below the rightmost block cipher call represents truncation.

Figure: SUNDAE encryption with associated and plaintext data. The box below the rightmost block cipher call represents truncation.

Security Statement

Theorem

Let A be an adversary making at most $q \operatorname{enc}_K$ and $q_v \operatorname{dec}_K$ queries with block length costs of at most σ_A , σ_P , and σ_C for associated, plaintext, and ciphertext data, respectively, then

$$\mathsf{DAE}(\mathbf{A}) \leq \frac{N_{\mathsf{E}}^{2}}{2^{n+1}} + \frac{q_{v}}{2^{n}} + \frac{q^{2}}{2^{n}} + \frac{qq_{v}}{2^{n}} + \frac{(\sigma_{P} + \sigma_{C})^{2}}{2^{n+1}} + \frac{4(\sigma_{P} + \sigma_{C})}{2^{n}} + \frac{(4 + \sigma_{A} + \sigma_{P} + \sigma_{C})^{2}}{2^{n}} + \frac{4(q + q_{v})^{2}}{2^{n}} + \mathsf{PRP}_{\mathsf{E}}(\mathbf{A}_{\mathsf{E}}).$$
 (1)

where

$$N_{\mathsf{E}} := 4 + \sigma_A + 2\sigma_P + 2\sigma_C \tag{2}$$

Proof Intuition: Step 1 (Switching to URF)

$$\begin{split} \mathsf{DAE}(\mathbf{A}) &:= \mathop{\Delta}\limits_{\mathbf{A}} \left(\mathsf{enc}_K, \mathsf{dec}_K \, ; \, \$, \bot \right) \\ &:= \mathop{\Delta}\limits_{\mathbf{A}} \left(\mathsf{enc}[\rho], \mathsf{dec}[\rho] \, ; \, \$, \bot \right) + \frac{N_{\mathsf{E}}^2}{2^{n+1}} + \mathsf{PRP}_{\mathsf{E}}(\mathbf{A}_{\mathsf{E}}), \end{split}$$

Proof Intuition: Step 1 (Switching to URF)

- We use stream cipher OFB, unpredictable SIV \rightarrow confidentiality.
- Confidentiality will be maintained if the tag is unpredictable.
- AD/PT is processed similarly, we argue that the domain separation works.

Proof Intuition: Step 1 (Authenticity)

- Adversary forges $(C,T) \rightarrow$ output of MAC for dec(C,T)- call equals T
- By defn, C was never before output of previous enc query.
- Equivalent to producing pre-image/2nd pre-image of underlying MAC.

Proof Intuition: Step 2 (eliminate chopxor)

- $TC = enc(A,M) = chopxor_M \circ enc-stream(A,M)$
- M'=chopxor_C stream(T). Compute T'= 1st block of enc-stream(A,M')
- If T=T', dec-stream(A,TC)= stream(T) else \perp .
- $M = dec(A,TC) = chopxor_C \circ dec-stream(A,TC)$

Proof Intuition: Step 2 (eliminate chopxor)

- $\mathsf{DAE}(\mathbf{A}) := \Delta_{\mathbf{A}} \left(\mathsf{enc}[\rho], \mathsf{dec}[\rho]; \$, \bot\right) + \frac{N_{\mathsf{E}}^2}{2^{n+1}} + \mathsf{PRP}_{\mathsf{E}}(\mathbf{A}_{\mathsf{E}})$
- $\Delta_{\mathbf{A}}\left(\mathsf{enc}[\rho],\mathsf{dec}[\rho]\,;\,\$,\bot\right) \leq \Delta_{\mathbf{A}_{\mathsf{chopxor}}}\left(\mathsf{enc-stream},\mathsf{dec-stream}\,;\,\$^s,\bot\right)$
- Where $\s returns random string of length $(\ell_M + 1) * n$

Proof Intuition: Step 3 (introduce stream*/decstream*/decstream*/

- stream*(T) outputs completely random values of required length.
- If $T=T_i$ for some i, dec-stream*(A,TC) outputs stream*(T_i) else \perp

 $\Delta_{\text{chopxor}} \left(\text{enc-stream}, \text{dec-stream} \, ; \, \$^s, \bot \right) \leq \Delta_{\mathbf{A}_{\text{chopxor}}} \left(\text{enc-stream}, \text{dec-stream} \, ; \, \$^s, \text{dec-stream}^* \right) + \left(\sum_{i=1}^{n} (1 - i) \right)$

$$\Delta_{\mathsf{chopxor}}\left(\$^{s},\mathsf{dec}\text{-stream}^{*}\,;\,\$^{s},\bot\right)$$

Proof Intuition: Step 3 (introduce stream*/decstream*/decstream*/

- $\Delta_{\mathbf{A}_{chopxor}}(\$^s, dec-stream^*; \$^s, \bot) = \mathsf{prob} \text{ that decstream}^* \text{ outputs non}-\bot$
- Same as finding pre-image/second pre-image for $\lfloor \$^s
 floor_n$

$$\Delta_{\mathsf{A}_{\mathsf{chopxor}}}(\$^s, \mathsf{dec}\operatorname{-stream}^*; \$^s, \bot) \le \frac{q_v}{2^n} + \frac{q^2}{2^n} + \frac{qq_v}{2^n}.$$
(3)

Proof Intuition: Step 3 (introduce stream*/decstream*/decstream*/

- Remaining term $\Delta_{\mathbf{A}_{chopxor}}$ (enc-stream, dec-stream; $\s , dec-stream*)
- We will try to bound using H-coefficient technique.

Proof Intuition: Step 4 (message to function)

• Split A and M into blocks, if non-empty, to get

$$A[1] \cdots A[\ell_A] \stackrel{n}{\leftarrow} A \text{ and } M[1] \cdots M[\ell_M] \stackrel{n}{\leftarrow} M.$$
(4)

• Each block augmented with a bit to indicate if it is a final block or not.

$$((0, A[1]), \dots, (1, A[\ell_A]), (0, M[1]), \dots, (1, M[\ell_M])).$$
 (5)

• The augmented blocks are used as parameter in the function

$$f: \left(\{0,1\} \times \{0,1\}^{\leq n}\right) \times \mathsf{B} \to \mathsf{B},$$
(6)

where \boldsymbol{f} is defined as

$$f((\delta, X), Y) := \begin{cases} X \oplus Y & \text{if } \delta = 0\\ 2 \times (\mathsf{pad}(X) \oplus Y) & \text{if } \delta = 1 \text{ and } |X| < n \ . \end{cases}$$
(7)
$$4 \times (X \oplus Y) & \text{otherwise} \end{cases}$$

Proof Intuition: Step 4 (message to function)

• If $A \neq \varepsilon$ and $M \neq \varepsilon$, we have that $(f((\delta, X), Y) \text{ and } f_{\delta, X}(Y) \text{ are equiv})$

$$I(A, M) := \left(110^{n-2}, f_{0,A[1]}, \cdots, f_{0,A[\ell-1]}, f_{1,A[\ell_A]}, f_{0,M[1]}, \cdots, f_{0,M[\ell-1]}, f_{1,M[\ell_M]}\right), \quad (8)$$

where values $X \in \{0,1\}^n$ are interpreted as constant functions mapping any element in B to X.

• Given $\vec{x} = (x_1, x_2, \dots, x_\ell)$ where each x_i is a function, define

$$\widehat{\rho}(x_1, x_2, \dots, x_\ell) = \rho \circ x_\ell \circ \rho \circ x_{\ell-1} \circ \dots \circ \rho \circ x_3 \circ \rho \circ x_2 \circ \rho \circ x_1.$$
(9)

It is easy to see enc-stream $(A, M) := \operatorname{stream}_{\ell_M}(\widehat{\rho}(I(A, M)))$

- Convert transcript to a graph, respecting prefix rules.
- Output streams exist as independent, unconnected nodes.
- Very natural to transform values to functions.
- Each edge becomes application of ρ_i , each node has label χ_i . Subhadeep Banik 19

SUNDAE: Small Universal Deterministic Authenticated Encryption for the IoT 25.3.2019

- Define T_{bad} for all transcripts that lead to events 1,2
- Allows trivial forgery.
- Concentrate on T_{good}

- Structural collision: when two unequal values lead to same function.
- Natural isomorphism between the 2 graphs no longer maintained.
- This can never happen in SUNDAE. Mapping from $\delta, X \to f_{\delta,X}$ is injective.

- The next event is ρ-coll_t: if labels of 2 nodes become equal.
- May occur due to randomness introduced by the URF ρ.
- We use graph-theoretic arguments to bound prob of ρ-coll_t.

• Now straightforward to apply H-coeffs. Adding we get bound in Thm 1.

$$\Delta_{A_{\text{chopxor}}}(\text{enc-stream}, \text{dec-stream}^*) \leq \frac{(\sigma_P + \sigma_C)^2}{2^{n+1}} + \frac{4(\sigma_P + \sigma_C)}{2^n} + \frac{(4 + \sigma_A + \sigma_P + \sigma_C)^2}{2^n} + \frac{4(q + q_v)^2}{2^n} . \quad (10)$$
19 Subhadeep Banik SUNDAE: Small Universal Deterministic Authenticated Encryption for the IoT 25.3.2019

Performance

Software

- Platforms: Cortex-A57 core of a Samsung Exynos 7420 CPU (ARMv8 platform), Intel Core i7-6700 CPU (Skylake)
- Message lengths: $\ell = 2^b$ bytes, with $6 \le b \le 11$, with comb scheduling.
- On Intel, SUNDAE is around 3% slower than two passes of CBC; on ARM, 7%.
- \bullet For short messages only around 11% worse than for longer messages.
- \bullet Compared to the single-pass COFB, SUNDAE has an overhead of 60% for short and 80% for long messages on Intel
- And 35% for short and 80% for long messages on ARM.

Performance

		message length (bytes)					
Algorithm	64	128	256	512	1024	2048	mix
CBC (S)	2.69	2.54	2.39	2.30	2.26	2.25	2.38
CBC (P)	1.42	1.14	1.02	0.95	0.92	0.90	1.00
COFB (S)	3.99	3.34	2.96	2.78	2.72	2.71	2.98
COFB (P)	2.98	1.89	1.49	1.32	1.25	1.22	1.52
SUNDAE (S)	5.42	5.14	5.02	4.92	4.86	4.84	4.97
SUNDAE (P)	3.16	2.95	2.85	2.80	2.78	2.76	2.84

Table: ARMv8 platform (embedded)

Performance

		message length (bytes)					
Algorithm	64	128	256	512	1024	2048	mix
CBC (S)	2.90	2.75	2.68	2.63	2.60	2.59	2.67
CBC (P)	0.64	0.64	0.63	0.63	0.63	0.63	0.64
COFB (S)	3.71	3.32	3.12	3.02	2.97	2.96	3.12
COFB (P)	1.03	0.95	0.90	0.87	0.86	0.85	0.90
SUNDAE (S)	6.00	5.71	5.57	5.46	5.40	5.37	5.52
SUNDAE (P)	1.36	1.31	1.29	1.27	1.26	1.26	1.28

Table: Intel Skylake platform (server)

On ASIC

- Replace 2x on $GF(2^{128}) \rightarrow \text{eight } 2x \text{ over } GF(2^{16})/\langle x^{16} + x^5 + x^3 + x + 1 \rangle$
- If c_0, c_1, \ldots, c_{15} denote the individual bytes
- i^{th} bits of each byte is an element of $GF(2^{16})$

• We have: $f(c_0, \ldots, c_{15}) = c_1, c_2, \ldots, c_{11} \oplus c_0, c_{12}, c_{13} \oplus c_0, c_{14}, c_{15} \oplus c_0, c_0$

23 Subhadeep Banik SUNDAE: Small Universal Deterministic Authenticated Encryption for the IoT 25.3.2019

On ASIC

- Fits well into the bytewise AES circuit: only few gates required.
- Mapping from $\delta, X \to f_{\delta,X}$ is still injective.
- No change in security guarantees.
- No additional state needs to be stored/updated.
- 23 Subhadeep Banik SUNDAE: Small Universal Deterministic Authenticated Encryption for the IoT 25.3.2019

Mode	Underlying	Blocksize/	Area	Power
	Cipher	Keysize	(GE)	(μ W)
CLOC (A)	AES-128	128/128	3110	131.1
CLOC (C)	AES-128	128/128	4310	156.6
SILC (A)	AES-128	128/128	3110	131.0
SILC (C)	AES-128	128/128	4220	155.6
AES-OTR (A)	AES-128	128/128	4720	164.3
AES-OTR (C)	AES-128	128/128	6770	205.4
AES-SUNDAE	AES-128	128/128	2524	126.1
Present-SUNDAE	Present	64/80	1452	50.9

Table: Implementation results for CLOC, SILC, AES-OTR, and SUNDAE. (Power reported at 10 MHz, A: Aggressive, C: Conservative

THANK YOU