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Background

S-boxes

Many block ciphers use S-boxes to serve as the confusion
components. The S-boxes are usually needed to satisfy the following
conditions:

Defined over the finite field F22k (for the easiness of
implementation);

Permutation (to obtain the correctness of decryption);

Low differential uniformity (to resist differential attacks);

High nonlinearity (to resist linear attacks);

Not too low algebraic degree (to resist higher order differential
attacks or algebraic attacks).
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Background

An Example

A well-known example:

AES uses the inverse function, namely, x−1 over F28 as its S-box for
that it has very good cryptographic properties:

its differential uniformity is 4;

its nonlinearity is optimal (i.e., 112);

its algebraic degree is optimal as well (i.e., 7).
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(Vectorial) Boolean Functions

Vectorial Boolean Functions

Definition (Vectorial Boolean Functions)

Let n and m be two positive integers, The functions from Fn
2 to Fm

2 are
called (n,m)-functions or vectorial Boolean functions. Specially, when
m = 1, we call these (n, 1)-functions Boolean functions.

An (n,m)-function has the following coordinate form:

F(x1, x2, · · · , xn)

=(f1(x1, x2, · · · , xn), f2(x1, x2, · · · , xn), · · · , fm(x1, x2, · · · , xn)),

where each coordinate fi(x1, x2, · · · , xn), 1 ≤ i ≤ m is a Boolean
function.
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(Vectorial) Boolean Functions

Algebraic Normal Form

Algebraic Normal Form (ANF)

An (n,m)-function F can be uniquely represented as an element of
Fm

2 [x1, x2, · · · , xn]/〈x2
1 + x1, x2

2 + x2, · · · , x2
n + xn〉:

F(x) =
∑

I∈P(N)

aI

(∏

i∈I

xi

)
=

∑

I∈P(N)

aIxI ,

where P(N) denotes the power set of N = {1, 2, · · · , n}, and aI ∈ Fm
2 .

The algebraic degree of the function is by definition the global degree
of its ANF:

deg(F) = max{|I| : aI 6= (0, 0, · · · , 0); I ∈ P(N)}



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

(Vectorial) Boolean Functions

Algebraic Normal Form

Algebraic Normal Form (ANF)

An (n,m)-function F can be uniquely represented as an element of
Fm

2 [x1, x2, · · · , xn]/〈x2
1 + x1, x2

2 + x2, · · · , x2
n + xn〉:

F(x) =
∑

I∈P(N)

aI

(∏

i∈I

xi

)
=

∑

I∈P(N)

aIxI ,

where P(N) denotes the power set of N = {1, 2, · · · , n}, and aI ∈ Fm
2 .

The algebraic degree of the function is by definition the global degree
of its ANF:

deg(F) = max{|I| : aI 6= (0, 0, · · · , 0); I ∈ P(N)}



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

(Vectorial) Boolean Functions

Univariate Polynomial Representation

A second representation of (n,m)-functions when m = n

Any (n, n)-function F admits a unique univariate polynomial
representation over F2n [x]/〈x2n

+ x〉, of degree at most 2n − 1:

F(x) =

2n−1∑

i=0

cixi, ci ∈ F2n .

The algebraic degree of F is equal to the maximum 2-weight
w2(i) of i such that ci 6= 0, where w2(l) is the number of nonzero
coefficients lj ∈ F2 in the binary expansion l =

∑n−1
j=0 lj2j.
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Differential Uniformity

Differential Uniformity

Definition (Differential Uniformity)

For a function F : F2n → F2n , the differential uniformity of F(x) is
denoted as

∆F = max{δF(a, b) : a ∈ F∗2n , b ∈ F2n},

where δF(a, b) = |{x ∈ F2n : F(x + a) + F(x) = b}|.

The differential spectrum of F(x) is the multiset

{∗ δF(a, b) : a ∈ F∗2n , b ∈ F2n ∗}.
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Differential Uniformity

Differential Uniformity

Obviously, if x0 is a solution of F(x + a) + F(x) = b, so is x0 + a. Thus
the differential uniformity must be even. The smallest possible value
is 2. These functions which achieve this bound are called almost
perfect nonlinear (APN) functions.

Examples

Gold function x2i+1, 1 ≤ i ≤ n−1
2 , gcd(i, n) = 1 (Gold 1968);

Kasami function x22i−2i+1, 1 ≤ i ≤ n−1
2 , gcd(i, n) = 1 (Kasami

1971);

Welch function x2t+3, n = 2t + 1 (Niho 1972);

...



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Differential Uniformity

Since APN functions have the lowest differential uniformity, they are
the most ideal choices for S-box.

However, all the known APN functions are not permutations when the
extension degree is even except for one sporadic example over F26

found by Dillon. (the BIG APN problem)

A natural tradeoff method is to use differentially 4-uniform
permutations as S-boxes. It is interesting to construct more
differentially 4-uniform permutations with high nonlinearity and
algebraic degree.
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Nonlinearity

Nonlinearity

Walsh transform

For any function F : F2n → F2n , we define the Walsh transform of F as

WF(a, b) =
∑

x∈F2n

(−1)Tr(bF(x)+ax), a, b ∈ F2n ,

where Tr(x) = x + x2 + · · ·+ x2n−1
is the absolute trace function from

F2n to F2.

The multiset ΛF = {∗ WF(a, b) : a ∈ F2n , b ∈ F∗2n ∗} is called the Walsh
spectrum of the function F.



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Nonlinearity

Nonlinearity

Walsh transform

For any function F : F2n → F2n , we define the Walsh transform of F as

WF(a, b) =
∑

x∈F2n

(−1)Tr(bF(x)+ax), a, b ∈ F2n ,

where Tr(x) = x + x2 + · · ·+ x2n−1
is the absolute trace function from

F2n to F2.

The multiset ΛF = {∗ WF(a, b) : a ∈ F2n , b ∈ F∗2n ∗} is called the Walsh
spectrum of the function F.



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Nonlinearity

Nonlinearity

Definition (Nonlinearity)

The nonlinearity of F is defined as

NL(F) = 2n−1 − 1
2

max
a∈F2n ,b∈F∗

2n

|WF(a, b)|.

If n is odd the nonlinearity of F satisfies the inequality
NL(F) ≤ 2n−1 − 2

n−1
2 , and in case of equality F is called almost

bent function.

While n is even, the known maximum nonlinearity is 2n−1 − 2
n
2 . It

is conjectured that NL(F) is upper bounded by 2n−1 − 2
n
2 . These

functions which meet this bound are usually called optimal
(maximal) nonlinear functions.



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Nonlinearity

Nonlinearity

Definition (Nonlinearity)

The nonlinearity of F is defined as

NL(F) = 2n−1 − 1
2

max
a∈F2n ,b∈F∗

2n

|WF(a, b)|.

If n is odd the nonlinearity of F satisfies the inequality
NL(F) ≤ 2n−1 − 2

n−1
2 , and in case of equality F is called almost

bent function.

While n is even, the known maximum nonlinearity is 2n−1 − 2
n
2 . It

is conjectured that NL(F) is upper bounded by 2n−1 − 2
n
2 . These

functions which meet this bound are usually called optimal
(maximal) nonlinear functions.



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Nonlinearity

Nonlinearity

Definition (Nonlinearity)

The nonlinearity of F is defined as

NL(F) = 2n−1 − 1
2

max
a∈F2n ,b∈F∗

2n

|WF(a, b)|.

If n is odd the nonlinearity of F satisfies the inequality
NL(F) ≤ 2n−1 − 2

n−1
2 , and in case of equality F is called almost

bent function.

While n is even, the known maximum nonlinearity is 2n−1 − 2
n
2 . It

is conjectured that NL(F) is upper bounded by 2n−1 − 2
n
2 . These

functions which meet this bound are usually called optimal
(maximal) nonlinear functions.



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Motivation

1 Background and Related Concepts
Background
(Vectorial) Boolean Functions
Differential Uniformity
Nonlinearity

2 Motivation and Our Results
Motivation
Our Results

3 The Sketch of Proof
The Proof of Differential Uniformity
The Proof of Nonlinearity
Trivial Case

4 Conclusion and Open Problems
Conclusion
Open Problems



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Motivation

Butterfly Structures

Definition (Butterfly Structures)

Let k be a positive integer and α ∈ F2k , e be an integer such that the
mapping x 7→ xe is a permutation over F2k and
Rz[e, α](x) = (x + αz)e + ze be a keyed permutation. The Butterfly
Structures are defined as follows:

the Open Butterfly Structure with branch size k, exponent e and
coefficient α is the function denoted Hαe defined by:

Hαe (x, y) =
(

RR−1
y [e,α](x)[e, α](y),R−1

y [e, α](x)
)
,

the Closed Butterfly Structure with branch size k, exponent e and
coefficient α is the function denoted Vαe defined by:

Vαe (x, y) = (Rx[e, α](y),Ry[e, α](x)) .



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Motivation

Butterfly Structures

Definition (Butterfly Structures)

Let k be a positive integer and α ∈ F2k , e be an integer such that the
mapping x 7→ xe is a permutation over F2k and
Rz[e, α](x) = (x + αz)e + ze be a keyed permutation. The Butterfly
Structures are defined as follows:

the Open Butterfly Structure with branch size k, exponent e and
coefficient α is the function denoted Hαe defined by:

Hαe (x, y) =
(

RR−1
y [e,α](x)[e, α](y),R−1

y [e, α](x)
)
,

the Closed Butterfly Structure with branch size k, exponent e and
coefficient α is the function denoted Vαe defined by:

Vαe (x, y) = (Rx[e, α](y),Ry[e, α](x)) .



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Motivation

Butterfly Structures

Definition (Butterfly Structures)

Let k be a positive integer and α ∈ F2k , e be an integer such that the
mapping x 7→ xe is a permutation over F2k and
Rz[e, α](x) = (x + αz)e + ze be a keyed permutation. The Butterfly
Structures are defined as follows:

the Open Butterfly Structure with branch size k, exponent e and
coefficient α is the function denoted Hαe defined by:

Hαe (x, y) =
(

RR−1
y [e,α](x)[e, α](y),R−1

y [e, α](x)
)
,

the Closed Butterfly Structure with branch size k, exponent e and
coefficient α is the function denoted Vαe defined by:

Vαe (x, y) = (Rx[e, α](y),Ry[e, α](x)) .



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Motivation

Butterfly Structures

𝑥𝑒

𝑥1/𝑒

⊙𝛼

⊕

⊕

𝑥𝑒

𝑥𝑒

⊙
𝛼

⊕

⊕

𝛼(a) Open butterfly H𝑒  (bijective). 

⊙
𝛼

⊕
𝑥𝑒

𝑥𝑒 ⊕

⊙
𝛼

⊕
𝑥𝑒

𝑥𝑒 ⊕

(b) Closed butterfly V𝑒
𝛼.

Fig. 11: The two types of butterfly structure with coefficient 𝛼 and exponent 𝑒.

Furthermore, the permutation H𝛼
𝑒 and the function V𝛼

𝑒 are CCZ-equivalent.

Pictures representing such functions are given in Figure 11. Our decomposition
of the 6-bit APN permutation and its CCZ-equivalent function have butterfly
structures: 𝑆ℐ = H2

6 and 𝑄ℐ = V2
6 . In fact, the proof of the CCZ-equivalence

of open and closed butterfly is identical to that of Lemma 2. The properties of
such structures for 𝑛 > 3 are studied in Section 4.1, in particular in Theorem 4.
In this section, we focus on the case 𝑛 = 3.

3.3 Propagation of Affine Mappings through the Components

As we have seen, affine-equivalence and CCZ-equivalence are key concepts in
our analysis of 𝑆ℐ . In this context, it is natural to extend our analysis not only
to outer affine layers applied before and after the permutation but also to the
inner affine permutation itself: what modifications can we make to this function
while preserving the APN property of the structure? In this section, we study
the “propagation” of affine layers in the sense defined below. Our study will show
some interesting properties of the structure and why changing some components
can lead to an affine equivalent structure.

Definition 3 (Propagation of Affine Layers). We say that an affine trans-
formation 𝐴 propagates through a component 𝐶 if there exists an affine trans-
formation 𝐴′ such that 𝐶 ∘𝐴 = 𝐴′ ∘ 𝐶.

Note that this definition is another way of looking at self-equivalence: indeed,
𝐶 ∘𝐴 = 𝐴′ ∘ 𝐶 is equivalent to 𝐶 = 𝐴′−1 ∘ 𝐶 ∘𝐴.

Theorem 2. Consider the two permutations of F6
2 with structures shown in

Figure 12, where 𝐴,𝐵 : F3
2 → F3

2 are some linear bijections,

𝑀 =

[︂
𝑝 𝑞
𝑟 𝑠

]︂

is an invertible matrix operating on column-vectors, 𝑝, 𝑞, 𝑟, 𝑠 are 3 × 3 sub-
matrices over F2 and 𝑎, 𝑏, 𝑐, 𝑑 are constants of F23 . Assume also that 𝑞 is in-
vertible. Then both structures are affine-equivalent for any choice of 𝑀 (with 𝑞

15
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Motivation

The Algebraic Forms of Butterfly Structures

Open Butterfly Structure

Hαe (x, y)

=
((

y + α(x + ye)
1
e + α2y

)e
+
(

(x + ye)
1
e + αy

)e
, (x + ye)

1
e + αy

)

Closed Butterfly Structure

Vαe (x, y) = ((αx + y)e + xe, (x + αy)e + ye)
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Motivation

Generalised Butterfly Structures

Definition (Generalised Butterflies)

Let R be a bivariate polynomials of F2k such that Ry : x 7→ R(x, y) is a
permutation of F2k for all y in F2k . The Generalised Butterfly Structures
are defined as follows:

the Open Generalised Butterfly Structure with branch size k is
the function denoted HR defined by:

HR(x, y) =
(

RR−1
y (x)(y),R−1

y (x)
)
,

the Closed Generalised Butterfly Structure with branch size k is
the function denoted VR defined by:

VR(x, y) = (R(x, y),R(y, x)) .
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Motivation

Generalised Butterfly Structures

Definition 5 (CCZ-equivalence [CCZ98]). Two mappings 𝐹 and 𝐺 from F𝑚
2 into itself are said

to be CCZ-equivalent if there exists a linear permutation 𝐿 of F2𝑚
2 such that

{(𝑥, 𝐹 (𝑥)), ∀𝑥 ∈ F𝑚
2 } = {𝐿(𝑥,𝐺(𝑥)),∀𝑥 ∈ F𝑚

2 } .

CCZ-equivalence is the most relevant notion of equivalence with respect to the differential and
linear properties of a mapping since it preserves both the differential and the Walsh spectra. It is
worth noticing that neither the algebraic degree nor the fact that the mapping is a permutation
is invariant under CCZ-equivalence.

3 Generalised Butterflies

3.1 Definition
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(b) Closed Generalised Butterfly VR.

Figure: The Generalised Butterfly Structures.
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Motivation

Equivalence Relations

Two functions F,G : F2n → F2n are called extended affine
equivalent (EA-equivalent), if G(x) = A1(F(A2(x))) + A3(x), where
A1(x), A2(x) are affine permutations over F2n and A3(x) is an
affine function over F2n .

They are called CCZ-equivalent (Carlet-Charpin-Zinoviev
equivalent) if there exists an affine permutation over F2n × F2n

which maps GF to GG , where GF = {(x,F(x)) : x ∈ F2n} is the
graph of F, and GG is the graph of G.

Hαe (HR) and Vαe (VR) are CCZ-equivalent.
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The Motivation of This Research

Theorem (Perrin et al. CRYPTO’16)

Let Vαe and Hαe respectively be the closed and open 2k-bit butterflies
with exponent e = 3× 2t for some t, coefficient α not in {0, 1} and k
odd. Then:

1 Vαe is quadratic, and half of the coordinates of Hαe have algebraic
degree k, the other half have algebraic degree k + 1;

2 The differential uniformity of both Hαe and Vαe are at most equal to
4.

A Conjecture

The nonlinearity of butterfly structures of Hαe and Vαe operating on 2k
bits are equal to 22k−1 − 2k for every odd k, e = 3× 2t and α 6= 0, 1.
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Cryptographic Properties of Generalised Butterflies

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies Vα,β and
Hα,β which are based on functions R : (x, y) 7→ (x + αy)3 + βy3 with
α, β 6= 0 are as follows:

1 the algebraic degree of Vα,β is always equal to 2;

2 if k = 3, α 6= 0, Tr(α) = 0 and β ∈ {α3 + α, α3 + 1/α} then the
butterflies are APN, have a nonlinearity equal to 22k−1 − 2k and
the algebraic degree of Hα,β is equal to k + 1;

3 if β = (1 + α)3 then the differential uniformity is equal to 2k+1, the
nonlinearity is equal to 22k−1 − 2

3k−1
2 and the algebraic degree of

Hα,β is equal to k;

4 otherwise, the differential uniformity is equal to 4, the nonlinearity
is equal to 22k−1 − 2k and algebraic degree of Hα,β is either k or
k + 1. It is equal to k if and only if 1 + αβ + α4 = (β + α+ α3)2.
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Main Results

The differential uniformity of both Hαe and Vαe are at most equal to
4, where e = (2i + 1)× 2t, coefficient α 6= 0, 1, k odd and
gcd(i, k) = 1;

We prove that the nonlinearity equality are true for every odd k,
e = (2i + 1)× 2t and α 6= 0, which gives independently a solution
to the conjecture by the way;

We show that V1
e for e = (2i + 1)× 2t are permutations over

F2k × F2k .
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Main Results

Theorem (Nontrivial Case)

For any 0 ≤ t ≤ k − 1, 0 ≤ i ≤ k − 1, gcd(k, i) = 1, α ∈ F2k , and
α 6= 0, 1, let Hαe and Vαe be the open and closed 2k-bit butterfly
structures with exponent e = (2i + 1)× 2t and coefficient α. Then

1 Vαe has algebraic degree 2. The open butterfly Hαe has algebraic
degree k + 1;

2 The differential uniformity of both Hαe and Vαe are at most equal to
4;

3 The nonlinearity of both Hαe and Vαe are equal to 22k−1 − 2k,
namely, optimal, and their extended Walsh spectrum are
{0, 2k, 2k+1}.
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e and V1

e be
the open and closed 2k-bit butterfly structures with exponent
e = (2i + 1)× 2t and coefficient α = 1. then

1 Both H1
e and V1

e are permutations over F2k × F2k ;

2 The algebraic degree of H1
e and V1

e are equal to k and 2
respectively;

3 The differential uniformity of both H1
e and V1

e are equal to 4 and
their differential spectrums are {0, 4};

4 The nonlinearity of both H1
e and V1

e are equal to 22k−1 − 2k,
namely, optimal, and their Walsh spectrums are {0,±2k+1}.
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Two Key Lemmas

Suppose k and i are two integers such that gcd(i, k) = 1. For any
c1, c2, c3 ∈ F2k with not all zero, then the following equation

c1x22i
+ c2x2i

+ c3x = 0

has at most 4 solutions in F2k .

Suppose k is an odd integer and gcd(i, k) = 1. For any
c1, c2, c3 ∈ F2k with not all zero, then the following equation

c1x24i
+ c2x22i

+ c3x = 0

has at most 4 solutions in F2k .
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The Proof of Differential Uniformity

Let u, v, a, b ∈ F2k and (u, v) 6= (0, 0). Then we need to prove that

Vαe (x, y) + Vαe (x + u, y + v) = (a, b),

has at most 4 solutions in F2k × F2k ,

which is equivalent to the
following linear homogeneous system of equations




(
α2i

(αu + v) + u
)

x2i
+
(
α(αu + v)2i

+ u2i
)

x

+(αu + v)y2i
+ (αu + v)2i

y = 0,

(αv + u)x2i
+ (αv + u)2i

x +
(
α2i

(αv + u) + v
)

y2i

+
(
α(αv + u)2i

+ v2i
)

y = 0

has at most 4 solutions in F2k × F2k .
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The Proof of Nonlinearity

Let a, b, c, d ∈ F2k , and (c, d) 6= (0, 0). Then we have

W2
F((a, b), (c, d)) =

∑

x,y∈F2k

(−1)F(x,y) ·
∑

u,v∈F2k

(−1)F(x+u,y+v)

=
∑

x,y,u,v∈F2k

(−1)F(x,y)+F(x+u,y+v)

= 22k ·
∑

u,v∈R(c,d)

(−1)f (u,v),

where

f (x, y) =Tr
(

(α2i+1c + c + d)x2i+1 + (α2i+1d + c + d)y2i+1

+(α2i
c + αd)x2i

y + (αc + α2i
d)xy2i

+ ax + by
)
,
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The Proof of Nonlinearity

and R(c, d) is the solution set of the following system of equations
with variables u, v





(
α2i+1c + c + d

)2i

u22i
+
(
α2i+1c + c + d

)
u

+
(
αc + α2i

d
)2i

v22i
+
(
α2i

c + αd
)

v = 0,
(
α2i

c + αd
)2i

u22i
+
(
αc + α2i

d
)

u

+
(
α2i+1d + c + d

)2i

v22i
+
(
α2i+1d + c + d

)
v = 0.

The core part: dimF2 R(c, d) = 0 or 2.



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Trivial Case

1 Background and Related Concepts
Background
(Vectorial) Boolean Functions
Differential Uniformity
Nonlinearity

2 Motivation and Our Results
Motivation
Our Results

3 The Sketch of Proof
The Proof of Differential Uniformity
The Proof of Nonlinearity
Trivial Case

4 Conclusion and Open Problems
Conclusion
Open Problems



Background and Related Concepts Motivation and Our Results The Sketch of Proof Conclusion and Open Problems

Trivial Case

The bijective of closed butterfly structure

For any u, v ∈ F2k , where (u, v) 6= (0, 0), it is sufficient to show that

V1
e(x, y) + V1

e(x + u, y + v) = (0, 0),

has no solution in F2k × F2k .

This is to say that the following system of equations

{
vx2i

+ v2i
x + (u + v)y2i

+ (u + v)2i
y = (u + v)2i+1 + u2i+1,

(u + v)x2i
+ (u + v)2i

x + uy2i
+ u2i

y = (u + v)2i+1 + v2i+1

has no solution in F2k × F2k .
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Trivial Case

The Nonlinearity

The proof procedure of the nonlinearity of trivial case is mainly based
on the following lemma.

Lemma

Let i be an integer such that 0 ≤ i ≤ k − 1 and gcd(k, i) = 1. Then for
any (c, d) ∈ F2

2k with (c, d) 6= (0, 0), the following system of equations
in variables u and v

{
du2i

+ (du)2k−i
+ (c + d)v2i

+ ((c + d)v)2k−i
= 0,

(c + d)u2i
+ ((c + d)u)2k−i

+ cv2i
+ (cv)2k−i

= 0

has exactly 4 solutions in F2k × F2k .
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Conclusion

We further study the butterfly structures and show that they
always have very good cryptographic properties;

We prove that their nonlinearities are optimal in a general case;

We prove that the closed butterfly structure with trivial coefficient
is also a permutation.
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Open Problems

The BIG APN problem: Is there a tuple k,R(x, y) where k > 3 is
an integer, such that HR(x, y) operating on F2k × F2k is APN?

Find more k, e, α where e is an integer and α ∈ F2k , such that Hαe
operating on F2k × F2k for even k is differential 4-uniform. (E.g., in
the case k = 6 there does exist α such that Hα5 is differential
4-uniform)

Find more classes of differentially 4-uniform permutations with
the optimal nonlinearity and high algebraic degree from other
functions over subfields or other structures.
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Thanks!
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