Background and Related Concepts

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

ヘロト ヘヨト ヘヨト ヘヨト

э

Differentially 4-Uniform Permutations with the Best Known Nonlinearity from Butterflies

Shihui Fu, Xiutao Feng and Baofeng Wu

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

March 7, 2018

Background and	Related	Concepts
0000		
0000		
000		

The Sketch of Proof 0 00 000

Conclusion and Open Problems

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Background and Related Concepts

•**00** 0000 0000 Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Background

1 Background and Related Concepts

Background

- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

The Sketch of Proof O OO OOO

Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

3

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

◆□▶ ◆□▶ ★ □▶ ★ □▶ = 三 の < ↔

Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:

■ Defined over the finite field 𝔽_{2^{2k}} (for the easiness of implementation);

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

- Defined over the finite field 𝔽_{2^{2k}} (for the easiness of implementation);
- Permutation (to obtain the correctness of decryption);

The Sketch of Proof O OO OOO

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

- Defined over the finite field F_{2^{2k}} (for the easiness of implementation);
- Permutation (to obtain the correctness of decryption);
- Low differential uniformity (to resist differential attacks);

The Sketch of Proof O OO OOO

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

- Defined over the finite field F_{2^{2k}} (for the easiness of implementation);
- Permutation (to obtain the correctness of decryption);
- Low differential uniformity (to resist differential attacks);
- High nonlinearity (to resist linear attacks);

The Sketch of Proof O OO OOO

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

- Defined over the finite field F_{2^{2k}} (for the easiness of implementation);
- Permutation (to obtain the correctness of decryption);
- Low differential uniformity (to resist differential attacks);
- High nonlinearity (to resist linear attacks);
- Not too low algebraic degree (to resist higher order differential attacks or algebraic attacks).

The Sketch of Proof 0 00 000

Conclusion and Open Problems

A well-known example:

AES uses the inverse function, namely, x^{-1} over \mathbb{F}_{2^8} as its S-box for that it has very good cryptographic properties:

The Sketch of Proof OO OOO

Conclusion and Open Problems

э.

A well-known example:

AES uses the inverse function, namely, x^{-1} over \mathbb{F}_{2^8} as its S-box for that it has very good cryptographic properties:

its differential uniformity is 4;

The Sketch of Proof OO OOO

Conclusion and Open Problems

э -

A well-known example:

AES uses the inverse function, namely, x^{-1} over \mathbb{F}_{2^8} as its S-box for that it has very good cryptographic properties:

- its differential uniformity is 4;
- its nonlinearity is optimal (i.e., 112);

The Sketch of Proof OO OOO

Conclusion and Open Problems

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

= nar

A well-known example:

AES uses the inverse function, namely, x^{-1} over \mathbb{F}_{2^8} as its S-box for that it has very good cryptographic properties:

- its differential uniformity is 4;
- its nonlinearity is optimal (i.e., 112);
- its algebraic degree is optimal as well (i.e., 7).

Background and Related Concepts

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

э.

(Vectorial) Boolean Functions

- 1 Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Background and Related Concepts Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

(Vectorial) Boolean Functions

Definition (Vectorial Boolean Functions)

Let *n* and *m* be two positive integers, The functions from \mathbb{F}_2^n to \mathbb{F}_2^m are called (n, m)-functions or vectorial Boolean functions. Specially, when m = 1, we call these (n, 1)-functions Boolean functions.

Background and Related Concepts Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

(Vectorial) Boolean Functions

Definition (Vectorial Boolean Functions)

Let *n* and *m* be two positive integers, The functions from \mathbb{F}_2^n to \mathbb{F}_2^m are called (n, m)-functions or vectorial Boolean functions. Specially, when m = 1, we call these (n, 1)-functions Boolean functions.

An (n, m)-function has the following coordinate form:

$$F(x_1, x_2, \cdots, x_n) = (f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)),$$

where each coordinate $f_i(x_1, x_2, \dots, x_n), 1 \le i \le m$ is a Boolean function.

The Sketch of Proof	
000	
000	

Conclusion and Open Problems

(Vectorial) Boolean Functions

Algebraic Normal Form (ANF)

An (n, m)-function F can be uniquely represented as an element of $\mathbb{F}_2^m[x_1, x_2, \cdots, x_n]/\langle x_1^2 + x_1, x_2^2 + x_2, \cdots, x_n^2 + x_n \rangle$:

$$F(x) = \sum_{I \in \mathcal{P}(N)} a_I \left(\prod_{i \in I} x_i\right) = \sum_{I \in \mathcal{P}(N)} a_I x^I,$$

where $\mathcal{P}(N)$ denotes the power set of $N = \{1, 2, \cdots, n\}$, and $a_I \in \mathbb{F}_2^m$.

The Sketch of Proo	
000	
000	

Conclusion and Open Problems

(Vectorial) Boolean Functions

Algebraic Normal Form (ANF)

An (n, m)-function F can be uniquely represented as an element of $\mathbb{F}_2^m[x_1, x_2, \cdots, x_n]/\langle x_1^2 + x_1, x_2^2 + x_2, \cdots, x_n^2 + x_n \rangle$:

$$F(x) = \sum_{I \in \mathcal{P}(N)} a_I \left(\prod_{i \in I} x_i\right) = \sum_{I \in \mathcal{P}(N)} a_I x^I,$$

where $\mathcal{P}(N)$ denotes the power set of $N = \{1, 2, \cdots, n\}$, and $a_I \in \mathbb{F}_2^m$.

The algebraic degree of the function is by definition the global degree of its ANF:

$$\deg(F) = \max\{|I| : a_I \neq (0, 0, \cdots, 0); I \in \mathcal{P}(N)\}$$

Background and Related Concepts Metivation and Our Results The Sketch of Proof

Conclusion and Open Problems

(Vectorial) Boolean Functions

A second representation of (n, m)-functions when m = n

Any (n, n)-function *F* admits a unique univariate polynomial representation over $\mathbb{F}_{2^n}[x]/\langle x^{2^n} + x \rangle$, of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n}.$$

Rackground and Related Concepts Motivation and Our Results The Sketch of Pro

Conclusion and Open Problems

(Vectorial) Boolean Functions

A second representation of (n, m)-functions when m = n

Any (n, n)-function F admits a unique univariate polynomial representation over $\mathbb{F}_{2^n}[x]/\langle x^{2^n} + x \rangle$, of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n}.$$

The algebraic degree of *F* is equal to the maximum 2-weight $w_2(i)$ of *i* such that $c_i \neq 0$, where $w_2(l)$ is the number of nonzero coefficients $l_j \in \mathbb{F}_2$ in the binary expansion $l = \sum_{i=0}^{n-1} l_i 2^j$.

Background and Related Concepts

000 0000 0000 Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Differential Uniformity

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions

Differential Uniformity

- Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Differential Uniformity

Definition (Differential Uniformity)

For a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, the differential uniformity of F(x) is denoted as

$$\Delta_F = \max\{\delta_F(a,b): a\in \mathbb{F}_{2^n}^*, b\in \mathbb{F}_{2^n}\},$$

where $\delta_F(a, b) = |\{x \in \mathbb{F}_{2^n} : F(x + a) + F(x) = b\}|.$

The Sketch of Proof O OO OOO

Conclusion and Open Problems

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

Differential Uniformity

Definition (Differential Uniformity)

For a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, the differential uniformity of F(x) is denoted as

$$\Delta_F = \max\{\delta_F(a,b): a\in \mathbb{F}_{2^n}^*, b\in \mathbb{F}_{2^n}\},$$

where $\delta_F(a, b) = |\{x \in \mathbb{F}_{2^n} : F(x + a) + F(x) = b\}|.$

• The differential spectrum of F(x) is the multiset

$$\{* \delta_F(a,b): a \in \mathbb{F}_{2^n}^*, b \in \mathbb{F}_{2^n} *\}.$$

Conclusion and Open Problems

Obviously, if x_0 is a solution of F(x + a) + F(x) = b, so is $x_0 + a$. Thus the differential uniformity must be even. The smallest possible value is 2. These functions which achieve this bound are called *almost perfect nonlinear (APN)* functions.

Examples

...

Differential Uniformity

- Gold function $x^{2^{i+1}}$, $1 \le i \le \frac{n-1}{2}$, gcd(i, n) = 1 (Gold 1968);
- Kasami function $x^{2^{2i}-2^i+1}$, $1 \le i \le \frac{n-1}{2}$, gcd(i, n) = 1 (Kasami 1971);
- Welch function x^{2^t+3} , n = 2t + 1 (Niho 1972);

Background and Related Concepts ○○○ ○○○○ ○○○● ○○○	Motivation and Our Results 000000000 0000	The Sketch of Proof O OO OOO OOO	Conclusion and Open Problems
Differential Uniformity			

Since APN functions have the lowest differential uniformity, they are the most ideal choices for S-box.

▲□▶▲□▶▲臣▶▲臣▶ 臣 のQ@

Differential Uniformity

tivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

< ロ > < 同 > < 回 > < 回 > <

= nar

Since APN functions have the lowest differential uniformity, they are the most ideal choices for S-box.

However, all the known APN functions are not permutations when the extension degree is even except for one sporadic example over \mathbb{F}_{2^6} found by Dillon. (the BIG APN problem)

Differential Uniformity

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Since APN functions have the lowest differential uniformity, they are the most ideal choices for S-box.

However, all the known APN functions are not permutations when the extension degree is even except for one sporadic example over \mathbb{F}_{2^6} found by Dillon. (the BIG APN problem)

A natural tradeoff method is to use differentially 4-uniform permutations as S-boxes. It is interesting to construct more differentially 4-uniform permutations with high nonlinearity and algebraic degree.

Background and Related Concepts

000 0000 0000 Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Nonlinearity

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

The Sketch of Proof O OO OOO

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Walsh transform

For any function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, we define the *Walsh transform* of *F* as

$$\mathcal{W}_F(a,b) = \sum_{x\in\mathbb{F}_{2^n}} (-1)^{\mathrm{Tr}(bF(x)+ax)}, \quad a,b\in\mathbb{F}_{2^n},$$

where $\operatorname{Tr}(x) = x + x^2 + \cdots + x^{2^{n-1}}$ is the absolute trace function from \mathbb{F}_{2^n} to \mathbb{F}_2 .

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Walsh transform

For any function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, we define the *Walsh transform* of *F* as

$$\mathcal{W}_F(a,b) = \sum_{x\in\mathbb{F}_{2^n}} (-1)^{\mathrm{Tr}(bF(x)+ax)}, \quad a,b\in\mathbb{F}_{2^n},$$

where $\operatorname{Tr}(x) = x + x^2 + \cdots + x^{2^{n-1}}$ is the absolute trace function from \mathbb{F}_{2^n} to \mathbb{F}_2 .

The multiset $\Lambda_F = \{* W_F(a, b) : a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_{2^n}^* *\}$ is called the *Walsh spectrum* of the function *F*.

Background and Related Concepts	
000	
Nonlinearity	

The Sketch of Proof O OO OOO

Conclusion and Open Problems

∃ 990

Definition (Nonlinearity)

The nonlinearity of F is defined as

$$\mathcal{NL}(F) = 2^{n-1} - rac{1}{2} \max_{a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_{2^n}^*} |\mathcal{W}_F(a, b)|.$$

Background	and Related Concepts
0000	, in the start of
000	
Nonlinearity	

The Sketch of Proof O OO OOO

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Definition (Nonlinearity)

The nonlinearity of F is defined as

$$\mathcal{NL}(F)=2^{n-1}-rac{1}{2}\max_{a\in\mathbb{F}_{2^n},b\in\mathbb{F}_{2^n}^*}|\mathcal{W}_F(a,b)|.$$

If *n* is odd the nonlinearity of *F* satisfies the inequality
 NL(*F*) ≤ 2ⁿ⁻¹ − 2^{n-1/2}, and in case of equality *F* is called *almost bent* function.

Background and Related Concepts	
0000	
000	
Nonlinearity	

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Definition (Nonlinearity)

The nonlinearity of F is defined as

$$\mathcal{NL}(F)=2^{n-1}-rac{1}{2}\max_{a\in\mathbb{F}_{2^n},b\in\mathbb{F}_{2^n}^*}|\mathcal{W}_F(a,b)|.$$

- If *n* is odd the nonlinearity of *F* satisfies the inequality
 NL(*F*) ≤ 2ⁿ⁻¹ − 2^{n-1/2}, and in case of equality *F* is called *almost bent* function.
- While *n* is even, the known maximum nonlinearity is 2ⁿ⁻¹ 2^{n/2}. It is conjectured that NL(F) is upper bounded by 2ⁿ⁻¹ 2^{n/2}. These functions which meet this bound are usually called *optimal* (maximal) nonlinear functions.

Background and Related Concepts 000 0000 0000 000 Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

э.

Motivation

Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Background and Related Concepts	Motivation and Our Results
Butterflv Struc	tures
0000	

Motivation

The Sketch of Proof
000
000

Conclusion and Open Problems

Definition (Butterfly Structures)

Let *k* be a positive integer and $\alpha \in \mathbb{F}_{2^k}$, *e* be an integer such that the mapping $x \mapsto x^e$ is a permutation over \mathbb{F}_{2^k} and $R_z[e, \alpha](x) = (x + \alpha z)^e + z^e$ be a keyed permutation. The Butterfly Structures are defined as follows:

Background and Related Concepts Motivation and Our Results Butterfly Structures

The Sketch of Proof 0 00 000 Conclusion and Open Problems

Motivation

Definition (Butterfly Structures)

Let *k* be a positive integer and $\alpha \in \mathbb{F}_{2^k}$, *e* be an integer such that the mapping $x \mapsto x^e$ is a permutation over \mathbb{F}_{2^k} and $R_z[e, \alpha](x) = (x + \alpha z)^e + z^e$ be a keyed permutation. The Butterfly Structures are defined as follows:

the Open Butterfly Structure with branch size k, exponent e and coefficient α is the function denoted H^α_e defined by:

$$\mathsf{H}^{\alpha}_{e}(x,y) = \left(R_{R_{y}^{-1}[e,\alpha](x)}[e,\alpha](y), R_{y}^{-1}[e,\alpha](x) \right),$$
Background and Related Concepts Motivation and Our Results Butterfly Structures

The Sketch of Proof O OO OOO Conclusion and Open Problems

Motivation

Definition (Butterfly Structures)

Let *k* be a positive integer and $\alpha \in \mathbb{F}_{2^k}$, *e* be an integer such that the mapping $x \mapsto x^e$ is a permutation over \mathbb{F}_{2^k} and $R_z[e, \alpha](x) = (x + \alpha z)^e + z^e$ be a keyed permutation. The Butterfly Structures are defined as follows:

the Open Butterfly Structure with branch size k, exponent e and coefficient α is the function denoted H^α_e defined by:

$$\mathsf{H}^{\alpha}_{e}(x,y) = \left(R_{R_{y}^{-1}[e,\alpha](x)}[e,\alpha](y), R_{y}^{-1}[e,\alpha](x) \right),$$

the Closed Butterfly Structure with branch size k, exponent e and coefficient α is the function denoted V^α_e defined by:

$$\mathsf{V}_e^{\alpha}(x,y) = (\mathsf{R}_x[e,\alpha](y),\mathsf{R}_y[e,\alpha](x)) \,.$$

Motivation	and (Our	Results
noundation	and .	0.01	10004110

Background and Belated Concepts Motivation and O Butterfly Structures

The Sketch of Proof
000
000

Motivation

(a) Open butterfly H_{e}^{α} (bijective).

(b) Closed butterfly V_e^{α} .

<ロ> <同> <同> < 同> < 同> < □> < □> < ∃ 990

Motivation

Open Butterfly Structure

Closed Butterfly Structure

$$\mathsf{V}_e^{\alpha}(x,y) = ((\alpha x + y)^e + x^e, (x + \alpha y)^e + y^e)$$

<ロ> <同> <同> < 同> < 同>

э

The Sketch of Proof

Conclusion and Open Problems

Definition (Generalised Butterflies)

Motivation

Let *R* be a bivariate polynomials of \mathbb{F}_{2^k} such that $R_y : x \mapsto R(x, y)$ is a permutation of \mathbb{F}_{2^k} for all *y* in \mathbb{F}_{2^k} . The Generalised Butterfly Structures are defined as follows:

The Sketch of Proof

Conclusion and Open Problems

< ロ > < 同 > < 回 > < 回 >

Definition (Generalised Butterflies)

Motivation

Let *R* be a bivariate polynomials of \mathbb{F}_{2^k} such that $R_y : x \mapsto R(x, y)$ is a permutation of \mathbb{F}_{2^k} for all *y* in \mathbb{F}_{2^k} . The Generalised Butterfly Structures are defined as follows:

■ the *Open Generalised Butterfly Structure* with branch size *k* is the function denoted H_{*R*} defined by:

$$\mathsf{H}_{R}(x,y) = \left(R_{R_{y}^{-1}(x)}(y), R_{y}^{-1}(x) \right),$$

Conclusion and Open Problems

Definition (Generalised Butterflies)

Motivation

Let *R* be a bivariate polynomials of \mathbb{F}_{2^k} such that $R_y : x \mapsto R(x, y)$ is a permutation of \mathbb{F}_{2^k} for all *y* in \mathbb{F}_{2^k} . The Generalised Butterfly Structures are defined as follows:

■ the *Open Generalised Butterfly Structure* with branch size *k* is the function denoted H_{*R*} defined by:

$$\mathsf{H}_{R}(x, y) = \left(R_{R_{y}^{-1}(x)}(y), R_{y}^{-1}(x) \right),$$

the Closed Generalised Butterfly Structure with branch size k is the function denoted V_R defined by:

$$\mathsf{V}_R(x,y) = (R(x,y), R(y,x)) \, .$$

(b) Closed Generalised Butterfly V_R .

э

Figure: The Generalised Butterfly Structures.

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are called *extended affine equivalent (EA-equivalent)*, if $G(x) = A_1(F(A_2(x))) + A_3(x)$, where $A_1(x), A_2(x)$ are affine permutations over \mathbb{F}_{2^n} and $A_3(x)$ is an affine function over \mathbb{F}_{2^n} .

(ロ) (同) (E) (E) (E) (C)

- Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are called *extended affine equivalent (EA-equivalent)*, if $G(x) = A_1(F(A_2(x))) + A_3(x)$, where $A_1(x), A_2(x)$ are affine permutations over \mathbb{F}_{2^n} and $A_3(x)$ is an affine function over \mathbb{F}_{2^n} .
- They are called *CCZ-equivalent (Carlet-Charpin-Zinoviev equivalent)* if there exists an affine permutation over $\mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$ which maps \mathcal{G}_F to \mathcal{G}_G , where $\mathcal{G}_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ is the graph of *F*, and \mathcal{G}_G is the graph of *G*.

- Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are called *extended affine equivalent (EA-equivalent)*, if $G(x) = A_1(F(A_2(x))) + A_3(x)$, where $A_1(x), A_2(x)$ are affine permutations over \mathbb{F}_{2^n} and $A_3(x)$ is an affine function over \mathbb{F}_{2^n} .
- They are called *CCZ-equivalent (Carlet-Charpin-Zinoviev equivalent)* if there exists an affine permutation over $\mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$ which maps \mathcal{G}_F to \mathcal{G}_G , where $\mathcal{G}_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ is the graph of *F*, and \mathcal{G}_G is the graph of *G*.

• H_e^{α} (H_R) and V_e^{α} (V_R) are CCZ-equivalent.

Motivation

Conclusion and Open Problems

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

= 900

Theorem (Perrin et al. CRYPTO'16)

Let V_e^{α} and H_e^{α} respectively be the closed and open 2k-bit butterflies with exponent $e = 3 \times 2^t$ for some *t*, coefficient α not in $\{0, 1\}$ and *k* odd. Then:

- **1** V_e^{α} is quadratic, and half of the coordinates of H_e^{α} have algebraic degree *k*, the other half have algebraic degree *k* + 1;
- 2 The differential uniformity of both H_e^{α} and V_e^{α} are at most equal to 4.

Conclusion and Open Problems

Theorem (Perrin et al. CRYPTO'16)

Let V_e^{α} and H_e^{α} respectively be the closed and open 2k-bit butterflies with exponent $e = 3 \times 2^t$ for some *t*, coefficient α not in $\{0, 1\}$ and *k* odd. Then:

- **1** V_e^{α} is quadratic, and half of the coordinates of H_e^{α} have algebraic degree *k*, the other half have algebraic degree *k* + 1;
- 2 The differential uniformity of both H_e^{α} and V_e^{α} are at most equal to 4.

A Conjecture

Motivation

The nonlinearity of butterfly structures of H_e^{α} and V_e^{α} operating on 2k bits are equal to $2^{2k-1} - 2^k$ for every odd k, $e = 3 \times 2^t$ and $\alpha \neq 0, 1$.

Background and Related Concepts Conclusion and Our Results The Sketch of Proof Conclusion and Open Problems Open Problems Open Problems

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $V_{\alpha,\beta}$ and $H_{\alpha,\beta}$ which are based on functions $R : (x, y) \mapsto (x + \alpha y)^3 + \beta y^3$ with $\alpha, \beta \neq 0$ are as follows:

Background and Related Concepts Conclusion and Our Results The Sketch of Proof Conclusion and Open Problems Open Problems Butterflies

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $V_{\alpha,\beta}$ and $H_{\alpha,\beta}$ which are based on functions $R : (x, y) \mapsto (x + \alpha y)^3 + \beta y^3$ with $\alpha, \beta \neq 0$ are as follows:

ヘロン ヘビン ヘビン

1 the algebraic degree of $V_{\alpha,\beta}$ is always equal to 2;

Background and Related Concepts Conclusion and Oper Properties of Generalised Butterflies

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $V_{\alpha,\beta}$ and $H_{\alpha,\beta}$ which are based on functions $R : (x, y) \mapsto (x + \alpha y)^3 + \beta y^3$ with $\alpha, \beta \neq 0$ are as follows:

1 the algebraic degree of $V_{\alpha,\beta}$ is always equal to 2;

2 if k = 3, $\alpha \neq 0$, $\operatorname{Tr}(\alpha) = 0$ and $\beta \in \{\alpha^3 + \alpha, \alpha^3 + 1/\alpha\}$ then the butterflies are APN, have a nonlinearity equal to $2^{2k-1} - 2^k$ and the algebraic degree of $\mathsf{H}_{\alpha,\beta}$ is equal to k + 1;

Background and Related Concepts Conclusion and Our Results Conclusion and Our Results Conclusion and Our Results Conclusion and Our Results of Generalised Butterflies

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $V_{\alpha,\beta}$ and $H_{\alpha,\beta}$ which are based on functions $R : (x, y) \mapsto (x + \alpha y)^3 + \beta y^3$ with $\alpha, \beta \neq 0$ are as follows:

1 the algebraic degree of $V_{\alpha,\beta}$ is always equal to 2;

- 2 if k = 3, $\alpha \neq 0$, $\operatorname{Tr}(\alpha) = 0$ and $\beta \in \{\alpha^3 + \alpha, \alpha^3 + 1/\alpha\}$ then the butterflies are APN, have a nonlinearity equal to $2^{2k-1} 2^k$ and the algebraic degree of $\mathsf{H}_{\alpha,\beta}$ is equal to k + 1;
- 3 if $\beta = (1 + \alpha)^3$ then the differential uniformity is equal to 2^{k+1} , the nonlinearity is equal to $2^{2k-1} 2^{\frac{3k-1}{2}}$ and the algebraic degree of $H_{\alpha,\beta}$ is equal to *k*;

Background and Related Concepts Conclusion and Our Results Concents Conclusion and Open Concents Concents

Motivation

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $V_{\alpha,\beta}$ and $H_{\alpha,\beta}$ which are based on functions $R : (x, y) \mapsto (x + \alpha y)^3 + \beta y^3$ with $\alpha, \beta \neq 0$ are as follows:

1 the algebraic degree of $V_{\alpha,\beta}$ is always equal to 2;

- 2 if k = 3, $\alpha \neq 0$, $\operatorname{Tr}(\alpha) = 0$ and $\beta \in \{\alpha^3 + \alpha, \alpha^3 + 1/\alpha\}$ then the butterflies are APN, have a nonlinearity equal to $2^{2k-1} 2^k$ and the algebraic degree of $H_{\alpha,\beta}$ is equal to k + 1;
- 3 if $\beta = (1 + \alpha)^3$ then the differential uniformity is equal to 2^{k+1} , the nonlinearity is equal to $2^{2k-1} 2^{\frac{3k-1}{2}}$ and the algebraic degree of $H_{\alpha,\beta}$ is equal to *k*;
- 4 otherwise, the differential uniformity is equal to 4, the nonlinearity is equal to $2^{2k-1} 2^k$ and algebraic degree of $H_{\alpha,\beta}$ is either *k* or k + 1. It is equal to *k* if and only if $1 + \alpha\beta + \alpha^4 = (\beta + \alpha + \alpha^3)^2$.

Background and Related Concepts 000 0000 0000 000 Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

3

Our Results

- Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Background and Related Concepts

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

<ロ> <四> <四> <日> <日> <日> <日</p>

æ

Our Results

ackground and Belated Concepts Main Results	Motivation and Our Results ○○○○○○○○ ○●○○	The Sketch of Proof O OO OOO OOO	Conclusion and Open Problems
Our Results			

The differential uniformity of both H^α_e and V^α_e are at most equal to 4, where e = (2ⁱ + 1) × 2^t, coefficient α ≠ 0, 1, k odd and gcd(i, k) = 1;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background and Belated Concepts Main Results	Motivation and Our Results ○○○○○○○○ ○●○○	The Sk 0 00 000 000
000		000

Our Results

The Sketch of Proof O OO OOO Conclusion and Open Problems

- The differential uniformity of both H_e^{α} and V_e^{α} are at most equal to 4, where $e = (2^i + 1) \times 2^t$, coefficient $\alpha \neq 0, 1, k$ odd and gcd(i, k) = 1;
- We prove that the nonlinearity equality are true for every odd k, e = (2ⁱ + 1) × 2^t and α ≠ 0, which gives independently a solution to the conjecture by the way;

and Related Concepts	Motivation and Ou
n Results	00000000 0000

Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

The differential uniformity of both H_e^{α} and V_e^{α} are at most equal to 4, where $e = (2^i + 1) \times 2^t$, coefficient $\alpha \neq 0, 1, k$ odd and gcd(i, k) = 1;

Results

- We prove that the nonlinearity equality are true for every odd k, e = (2ⁱ + 1) × 2^t and α ≠ 0, which gives independently a solution to the conjecture by the way;
- We show that V_e^1 for $e = (2^i + 1) \times 2^i$ are permutations over $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$.

Background and Belated Concepts Main Results

Our Results

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Theorem (Nontrivial Case)

For any $0 \le t \le k-1$, $0 \le i \le k-1$, gcd(k,i) = 1, $\alpha \in \mathbb{F}_{2^k}$, and $\alpha \ne 0, 1$, let H_e^{α} and V_e^{α} be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^t$ and coefficient α . Then

Background and Belated Concepts

Our Results

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Theorem (Nontrivial Case)

For any $0 \le t \le k-1$, $0 \le i \le k-1$, gcd(k,i) = 1, $\alpha \in \mathbb{F}_{2^k}$, and $\alpha \ne 0, 1$, let H_e^{α} and V_e^{α} be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^t$ and coefficient α . Then

1 V_e^{α} has algebraic degree 2. The open butterfly H_e^{α} has algebraic degree k + 1;

Main Results

Our Results

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

Theorem (Nontrivial Case)

For any $0 \le t \le k-1$, $0 \le i \le k-1$, gcd(k,i) = 1, $\alpha \in \mathbb{F}_{2^k}$, and $\alpha \ne 0, 1$, let H_e^{α} and V_e^{α} be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^t$ and coefficient α . Then

- 1 V_e^{α} has algebraic degree 2. The open butterfly H_e^{α} has algebraic degree k + 1;
- 2 The differential uniformity of both H_e^{α} and V_e^{α} are at most equal to 4;

Main Results

Our Results

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

Theorem (Nontrivial Case)

For any $0 \le t \le k-1$, $0 \le i \le k-1$, gcd(k,i) = 1, $\alpha \in \mathbb{F}_{2^k}$, and $\alpha \ne 0, 1$, let H_e^{α} and V_e^{α} be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^t$ and coefficient α . Then

- 1 V_e^{α} has algebraic degree 2. The open butterfly H_e^{α} has algebraic degree k + 1;
- 2 The differential uniformity of both H_e^{α} and V_e^{α} are at most equal to 4;
- The nonlinearity of both H^α_e and V^α_e are equal to 2^{2k-1} 2^k, namely, optimal, and their extended Walsh spectrum are {0, 2^k, 2^{k+1}}.

Background and Belated Concepts Main Results

Our Results

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Theorem (Trivial Cases)

For any $0 \le t \le k-1$ and $0 \le i \le k-1$, gcd(i,k) = 1, let H_e^1 and V_e^1 be the open and closed 2*k*-bit butterfly structures with exponent $e = (2^i + 1) \times 2^t$ and coefficient $\alpha = 1$. then

Background and Belated Concepts Main Results

Our Results

Motivation and Our Results

The Sketch of Proof 0 00 000

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Theorem (Trivial Cases)

For any $0 \le t \le k-1$ and $0 \le i \le k-1$, gcd(i,k) = 1, let H_e^1 and V_e^1 be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^i$ and coefficient $\alpha = 1$. then

1 Both H_e^1 and V_e^1 are permutations over $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$;

Main Results

Our Results

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Theorem (Trivial Cases)

For any $0 \le t \le k-1$ and $0 \le i \le k-1$, gcd(i,k) = 1, let H_e^1 and V_e^1 be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^t$ and coefficient $\alpha = 1$. then

- **1** Both H_e^1 and V_e^1 are permutations over $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$;
- **2** The algebraic degree of H_e^1 and V_e^1 are equal to *k* and 2 respectively;

Background and Related Concepts Main Results

Our Results

Motivation and Our Results ○○○○○○○○ ○○○● The Sketch of Proof O OO OOO

Conclusion and Open Problems

Theorem (Trivial Cases)

For any $0 \le t \le k-1$ and $0 \le i \le k-1$, gcd(i,k) = 1, let H_e^1 and V_e^1 be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^i$ and coefficient $\alpha = 1$. then

- **1** Both H_e^1 and V_e^1 are permutations over $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$;
- **2** The algebraic degree of H_e^1 and V_e^1 are equal to *k* and 2 respectively;
- **3** The differential uniformity of both H_e^1 and V_e^1 are equal to 4 and their differential spectrums are $\{0,4\}$;

Background and Related Concepts Main Results

Our Results

Motivation and Our Results

The Sketch of Proof O OO OOO

Conclusion and Open Problems

Theorem (Trivial Cases)

For any $0 \le t \le k-1$ and $0 \le i \le k-1$, gcd(i,k) = 1, let H_e^1 and V_e^1 be the open and closed 2k-bit butterfly structures with exponent $e = (2^i + 1) \times 2^i$ and coefficient $\alpha = 1$. then

- **1** Both H_e^1 and V_e^1 are permutations over $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$;
- **2** The algebraic degree of H_e^1 and V_e^1 are equal to *k* and 2 respectively;
- **3** The differential uniformity of both H_e^1 and V_e^1 are equal to 4 and their differential spectrums are $\{0,4\}$;
- 4 The nonlinearity of both H¹_e and V¹_e are equal to 2^{2k-1} 2^k, namely, optimal, and their Walsh spectrums are {0, ±2^{k+1}}.

Background and Related Concepts	
000	
0000	
000	

Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

3

Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Background and Related Concepts Motivation and Our Results

The Sketch of Proof

00

Conclusion and Open Problems

Two Key Lemmas

The Sketch of	Pro
•	
00	
000	

Conclusion and Open Problems

Two Key Lemmas

Suppose k and i are two integers such that gcd(i,k) = 1. For any $c_1, c_2, c_3 \in \mathbb{F}_{2^k}$ with not all zero, then the following equation

$$c_1 x^{2^{2^i}} + c_2 x^{2^i} + c_3 x = 0$$

has at most 4 solutions in \mathbb{F}_{2^k} .

ckground and Related Concepts Motivation and Our Re-

The Sketch of Proof

Conclusion and Open Problems

Two Key Lemmas

Suppose k and i are two integers such that gcd(i, k) = 1. For any $c_1, c_2, c_3 \in \mathbb{F}_{2^k}$ with not all zero, then the following equation

$$c_1 x^{2^{2^i}} + c_2 x^{2^i} + c_3 x = 0$$

has at most 4 solutions in \mathbb{F}_{2^k} .

Suppose *k* is an odd integer and gcd(i, k) = 1. For any $c_1, c_2, c_3 \in \mathbb{F}_{2^k}$ with not all zero, then the following equation

$$c_1 x^{2^{4i}} + c_2 x^{2^{2i}} + c_3 x = 0$$

has at most 4 solutions in \mathbb{F}_{2^k} .

Background and Related Concepts 000 0000 0000 000 Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

3

The Proof of Differential Uniformity

- Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Conclusion and Open Problems

The Proof of Differential Uniformity

Let $u, v, a, b \in \mathbb{F}_{2^k}$ and $(u, v) \neq (0, 0)$. Then we need to prove that

$$\mathsf{V}_e^{\alpha}(x,y) + \mathsf{V}_e^{\alpha}(x+u,y+v) = (a,b),$$

has at most 4 solutions in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$,

Conclusion and Open Problems

The Proof of Differential Uniformity

Let $u, v, a, b \in \mathbb{F}_{2^k}$ and $(u, v) \neq (0, 0)$. Then we need to prove that

$$\mathsf{V}_{e}^{\alpha}(x,y) + \mathsf{V}_{e}^{\alpha}(x+u,y+v) = (a,b),$$

has at most 4 solutions in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$, which is equivalent to the following linear homogeneous system of equations

$$\begin{cases} \left(\alpha^{2^{i}}(\alpha u + v) + u\right)x^{2^{i}} + \left(\alpha(\alpha u + v)^{2^{i}} + u^{2^{i}}\right)x \\ + (\alpha u + v)y^{2^{i}} + (\alpha u + v)^{2^{i}}y = 0, \\ (\alpha v + u)x^{2^{i}} + (\alpha v + u)^{2^{i}}x + \left(\alpha^{2^{i}}(\alpha v + u) + v\right)y^{2^{i}} \\ + \left(\alpha(\alpha v + u)^{2^{i}} + v^{2^{i}}\right)y = 0 \end{cases}$$

has at most 4 solutions in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$.

Background and Related Concepts 000 0000 0000 000 Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

3

The Proof of Nonlinearity

- Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Conclusion and Open Problems

The Proof of Nonlinearity

Let $a, b, c, d \in \mathbb{F}_{2^k}$, and $(c, d) \neq (0, 0)$. Then we have

$$\mathcal{W}_{F}^{2}((a,b),(c,d)) = \sum_{x,y \in \mathbb{F}_{2^{k}}} (-1)^{F(x,y)} \cdot \sum_{u,v \in \mathbb{F}_{2^{k}}} (-1)^{F(x+u,y+v)}$$

- ◆ ロ ▶ ◆ 団 ▶ ◆ 臣 ▶ ◆ 臣 ・ うへで

The Sketch of Proof

Conclusion and Open Problems

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

∃ 990

The Proof of Nonlinearity

Let $a, b, c, d \in \mathbb{F}_{2^k}$, and $(c, d) \neq (0, 0)$. Then we have

$$\mathcal{W}_{F}^{2}((a,b),(c,d)) = \sum_{x,y \in \mathbb{F}_{2^{k}}} (-1)^{F(x,y)} \cdot \sum_{u,v \in \mathbb{F}_{2^{k}}} (-1)^{F(x+u,y+v)}$$
$$= \sum_{x,y,u,v \in \mathbb{F}_{2^{k}}} (-1)^{F(x,y)+F(x+u,y+v)}$$

The Sketch of Proof

Conclusion and Open Problems

The Proof of Nonlinearity

Let $a, b, c, d \in \mathbb{F}_{2^k}$, and $(c, d) \neq (0, 0)$. Then we have

$$\begin{split} \mathcal{W}_{F}^{2}((a,b),(c,d)) &= \sum_{x,y \in \mathbb{F}_{2^{k}}} (-1)^{F(x,y)} \cdot \sum_{u,v \in \mathbb{F}_{2^{k}}} (-1)^{F(x+u,y+v)} \\ &= \sum_{x,y,u,v \in \mathbb{F}_{2^{k}}} (-1)^{F(x,y)+F(x+u,y+v)} \\ &= 2^{2k} \cdot \sum_{u,v \in R(c,d)} (-1)^{f(u,v)}, \end{split}$$

where

$$f(x, y) = \operatorname{Tr} \left((\alpha^{2^{i}+1}c + c + d)x^{2^{i}+1} + (\alpha^{2^{i}+1}d + c + d)y^{2^{i}+1} + (\alpha^{2^{i}}c + \alpha d)x^{2^{i}}y + (\alpha c + \alpha^{2^{i}}d)xy^{2^{i}} + ax + by \right),$$

The Sketch of Proof ○ ○○ ○○● ○○○

Conclusion and Open Problems

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

3

The Proof of Nonlinearity

and R(c, d) is the solution set of the following system of equations with variables u, v

$$\begin{cases} \left(\alpha^{2^{i}+1}c+c+d\right)^{2^{i}}u^{2^{2i}} + \left(\alpha^{2^{i}+1}c+c+d\right)u \\ + \left(\alpha c + \alpha^{2^{i}}d\right)^{2^{i}}v^{2^{2i}} + \left(\alpha^{2^{i}}c + \alpha d\right)v = 0, \\ \left(\alpha^{2^{i}}c+\alpha d\right)^{2^{i}}u^{2^{2i}} + \left(\alpha c + \alpha^{2^{i}}d\right)u \\ + \left(\alpha^{2^{i}+1}d+c+d\right)^{2^{i}}v^{2^{2i}} + \left(\alpha^{2^{i}+1}d+c+d\right)v = 0. \end{cases}$$

The core part: $\dim_{\mathbb{F}_2} R(c, d) = 0$ or 2.

Background		Concepts
000		
0000		
000		

Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Trivial Case

- Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

For any $u, v \in \mathbb{F}_{2^k}$, where $(u, v) \neq (0, 0)$, it is sufficient to show that

$$V_e^1(x, y) + V_e^1(x + u, y + v) = (0, 0),$$

has no solution in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$.

For any $u, v \in \mathbb{F}_{2^k}$, where $(u, v) \neq (0, 0)$, it is sufficient to show that

$$\mathsf{V}_{e}^{1}(x,y) + \mathsf{V}_{e}^{1}(x+u,y+v) = (0,0),$$

has no solution in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$.

This is to say that the following system of equations

$$\begin{cases} vx^{2^{i}} + v^{2^{i}}x + (u+v)y^{2^{i}} + (u+v)^{2^{i}}y = (u+v)^{2^{i}+1} + u^{2^{i}+1}, \\ (u+v)x^{2^{i}} + (u+v)^{2^{i}}x + uy^{2^{i}} + u^{2^{i}}y = (u+v)^{2^{i}+1} + v^{2^{i}+1} \end{cases}$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э.

has no solution in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$.

Motivation and Our Results

The Sketch of Proof

Conclusion and Open Problems

< ロ > < 同 > < 回 > < 回 > < - > <

= 900

The proof procedure of the nonlinearity of trivial case is mainly based on the following lemma.

Lemma

Trivial Case

Let *i* be an integer such that $0 \le i \le k - 1$ and gcd(k, i) = 1. Then for any $(c, d) \in \mathbb{F}_{2^k}^2$ with $(c, d) \ne (0, 0)$, the following system of equations in variables *u* and *v*

$$\begin{cases} du^{2^{i}} + (du)^{2^{k-i}} + (c+d)v^{2^{i}} + ((c+d)v)^{2^{k-i}} = 0, \\ (c+d)u^{2^{i}} + ((c+d)u)^{2^{k-i}} + cv^{2^{i}} + (cv)^{2^{k-i}} = 0 \end{cases}$$

has exactly 4 solutions in $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$.

Background and Related Concepts 000 0000 0000 000 Motivation and Our Results

The Sketch of Proof 0 00 000 Conclusion and Open Problems

э.

Conclusion

- Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Background and	Related	d Concepts
െന്ന	liiei	on
	เนอเ	
0000		
000		

Conclusion

Motivation and Our Results

The Sketch of Proof O OO OOO Conclusion and Open Problems ○● ○○○

< 日 > < 圖 > < 国 > < 国 > -

æ –

Background and Related Concepts	
Conclusion	
000	

Conclusion

Motivation and Our Results

The Sketch of Proof O OO OOO Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э.

 We further study the butterfly structures and show that they always have very good cryptographic properties;

Background and	l Related	Concepts
്രവവ	US	ion
0000		
000		

Conclusion

Motivation and Our Results

The Sketch of Proof O OO OOO Conclusion and Open Problems

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

3

- We further study the butterfly structures and show that they always have very good cryptographic properties;
- We prove that their nonlinearities are optimal in a general case;

Background and Related Concepts Conclusion

Conclusion

Motivation and Our Results

The Sketch of Proof 0 00 000 Conclusion and Open Problems

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

3

- We further study the butterfly structures and show that they always have very good cryptographic properties;
- We prove that their nonlinearities are optimal in a general case;
- We prove that the closed butterfly structure with trivial coefficient is also a permutation.

Background and Related Concepts 000 0000 0000 000 Motivation and Our Results

The Sketch of Proof 0 00 000 Conclusion and Open Problems

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

3

Open Problems

- Background and Related Concepts
 - Background
 - (Vectorial) Boolean Functions
 - Differential Uniformity
 - Nonlinearity
- 2 Motivation and Our Results
 - Motivation
 - Our Results
- 3 The Sketch of Proof
 - The Proof of Differential Uniformity
 - The Proof of Nonlinearity
 - Trivial Case
- 4 Conclusion and Open Problems
 - Conclusion
 - Open Problems

Background and	Related Co	ncepts
Onen	Pro	hlems
	110	
000		

Motivation and Our Results

The Sketch of Proof O OO OOO Conclusion and Open Problems ○ ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Open Problems

■ The BIG APN problem: Is there a tuple k, R(x, y) where k > 3 is an integer, such that $H_R(x, y)$ operating on $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$ is APN?

Conclusion and Open Problems

(ロ) (同) (E) (E) (E) (C)

Open Problems

- The BIG APN problem: Is there a tuple k, R(x, y) where k > 3 is an integer, such that $H_R(x, y)$ operating on $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$ is APN?
- Find more k, e, α where e is an integer and α ∈ 𝔽_{2^k}, such that H^α_e operating on 𝔽_{2^k} × 𝔽_{2^k} for even k is differential 4-uniform. (E.g., in the case k = 6 there does exist α such that H^α₅ is differential 4-uniform)

Open Problems

Motivation and Our Results

The Sketch of Proof 0 00 000 Conclusion and Open Problems

- The BIG APN problem: Is there a tuple k, R(x, y) where k > 3 is an integer, such that $H_R(x, y)$ operating on $\mathbb{F}_{2^k} \times \mathbb{F}_{2^k}$ is APN?
- Find more k, e, α where e is an integer and α ∈ 𝔽_{2^k}, such that H^α_e operating on 𝔽_{2^k} × 𝔽_{2^k} for even k is differential 4-uniform. (E.g., in the case k = 6 there does exist α such that H^α₅ is differential 4-uniform)
- Find more classes of differentially 4-uniform permutations with the optimal nonlinearity and high algebraic degree from other functions over subfields or other structures.

Background and Related Concepts	Motivation and Our Results	The Sketch of Proof	Conclusion and Open Problems
000	00000000 0000	000	00 00●
000		000	
Open Problems			

Thanks!