Differentially 4-Uniform Permutations with the Best Known Nonlinearity from Butterflies

Shihui Fu, Xiutao Feng and Baofeng Wu

因
Key Laboratory of Mathematics Mechanization,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences
March 7, 2018

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions

■ Differential Uniformity
■ Nonlinearity
2 Motivation and Our Results
■ Motivation
■ Our Results
3 The Sketch of Proof
■ The Proof of Differential Uniformity
■ The Proof of Nonlinearity
■ Trivial Case
4 Conclusion and Open Problems

- Conclusion
- Open Problems

1 Background and Related Concepts
■ Background

- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:
Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:
■ Defined over the finite field $\mathbb{F}_{2^{2 k}}$ (for the easiness of implementation);

Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:

■ Defined over the finite field $\mathbb{F}_{2^{2 k}}$ (for the easiness of implementation);
■ Permutation (to obtain the correctness of decryption);

Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:

■ Defined over the finite field $\mathbb{F}_{2^{2 k}}$ (for the easiness of implementation);
■ Permutation (to obtain the correctness of decryption);
■ Low differential uniformity (to resist differential attacks);

Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:

■ Defined over the finite field $\mathbb{F}_{2^{2 k}}$ (for the easiness of implementation);
■ Permutation (to obtain the correctness of decryption);
■ Low differential uniformity (to resist differential attacks);
■ High nonlinearity (to resist linear attacks);

Many block ciphers use S-boxes to serve as the confusion components. The S-boxes are usually needed to satisfy the following conditions:

■ Defined over the finite field $\mathbb{F}_{2^{2 k}}$ (for the easiness of implementation);

- Permutation (to obtain the correctness of decryption);

■ Low differential uniformity (to resist differential attacks);
■ High nonlinearity (to resist linear attacks);
■ Not too low algebraic degree (to resist higher order differential attacks or algebraic attacks).

A well-known example:

AES uses the inverse function, namely, x^{-1} over $\mathbb{F}_{2^{8}}$ as its S-box for that it has very good cryptographic properties:

A well-known example:

AES uses the inverse function, namely, x^{-1} over $\mathbb{F}_{2^{8}}$ as its S-box for that it has very good cryptographic properties:

■ its differential uniformity is 4 ;

A well-known example:

AES uses the inverse function, namely, x^{-1} over $\mathbb{F}_{2^{8}}$ as its S-box for that it has very good cryptographic properties:

■ its differential uniformity is 4;
■ its nonlinearity is optimal (i.e., 112);

A well-known example:

AES uses the inverse function, namely, x^{-1} over $\mathbb{F}_{2^{8}}$ as its S-box for that it has very good cryptographic properties:

■ its differential uniformity is 4 ;
■ its nonlinearity is optimal (i.e., 112);
■ its algebraic degree is optimal as well (i.e., 7).

1 Background and Related Concepts

- Background

■ (Vectorial) Boolean Functions

- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof

- The Proof of Differential Uniformity

■ The Proof of Nonlinearity

- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Definition (Vectorial Boolean Functions)

Let n and m be two positive integers, The functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m} are called (n, m)-functions or vectorial Boolean functions. Specially, when $m=1$, we call these ($n, 1$)-functions Boolean functions.

Definition (Vectorial Boolean Functions)

Let n and m be two positive integers, The functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m} are called (n, m)-functions or vectorial Boolean functions. Specially, when $m=1$, we call these ($n, 1$)-functions Boolean functions.

■ An (n, m)-function has the following coordinate form:

$$
\begin{aligned}
& F\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
= & \left(f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \cdots, f_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right),
\end{aligned}
$$

where each coordinate $f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right), 1 \leq i \leq m$ is a Boolean function.

Algebraic Normal Form (ANF)

An (n, m)-function F can be uniquely represented as an element of $\mathbb{F}_{2}^{m}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{1}^{2}+x_{1}, x_{2}^{2}+x_{2}, \cdots, x_{n}^{2}+x_{n}\right\rangle:$

$$
F(x)=\sum_{I \in \mathcal{P}(N)} a_{I}\left(\prod_{i \in I} x_{i}\right)=\sum_{I \in \mathcal{P}(N)} a_{I} x^{I}
$$

where $\mathcal{P}(N)$ denotes the power set of $N=\{1,2, \cdots, n\}$, and $a_{I} \in \mathbb{F}_{2}^{m}$.

Algebraic Normal Form (ANF)

An (n, m)-function F can be uniquely represented as an element of $\mathbb{F}_{2}^{m}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{1}^{2}+x_{1}, x_{2}^{2}+x_{2}, \cdots, x_{n}^{2}+x_{n}\right\rangle:$

$$
F(x)=\sum_{I \in \mathcal{P}(N)} a_{I}\left(\prod_{i \in I} x_{i}\right)=\sum_{I \in \mathcal{P}(N)} a_{I} x^{I}
$$

where $\mathcal{P}(N)$ denotes the power set of $N=\{1,2, \cdots, n\}$, and $a_{I} \in \mathbb{F}_{2}^{m}$.
The algebraic degree of the function is by definition the global degree of its ANF:

$$
\operatorname{deg}(F)=\max \left\{|I|: a_{I} \neq(0,0, \cdots, 0) ; I \in \mathcal{P}(N)\right\}
$$

A second representation of (n, m)-functions when $m=n$
Any (n, n)-function F admits a unique univariate polynomial representation over $\mathbb{F}_{2^{n}}[x] /\left\langle x^{2^{n}}+x\right\rangle$, of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

A second representation of (n, m)-functions when $m=n$

Any (n, n)-function F admits a unique univariate polynomial representation over $\mathbb{F}_{2^{n}}[x] /\left\langle x^{2^{n}}+x\right\rangle$, of degree at most $2^{n}-1$:

$$
F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

■ The algebraic degree of F is equal to the maximum 2-weight $w_{2}(i)$ of i such that $c_{i} \neq 0$, where $w_{2}(l)$ is the number of nonzero coefficients $l_{j} \in \mathbb{F}_{2}$ in the binary expansion $l=\sum_{j=0}^{n-1} l_{2^{2}}{ }^{j}$.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions

■ Differential Uniformity

- Nonlinearity

2 Motivation and Our Results
■ Motivation

- Our Results

3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Definition (Differential Uniformity)

For a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, the differential uniformity of $F(x)$ is denoted as

$$
\Delta_{F}=\max \left\{\delta_{F}(a, b): a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}\right\},
$$

where $\delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}}: F(x+a)+F(x)=b\right\}\right|$.

Definition (Differential Uniformity)

For a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, the differential uniformity of $F(x)$ is denoted as

$$
\Delta_{F}=\max \left\{\delta_{F}(a, b): a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}\right\},
$$

where $\delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}}: F(x+a)+F(x)=b\right\}\right|$.

■ The differential spectrum of $F(x)$ is the multiset

$$
\left\{* \delta_{F}(a, b): a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}} *\right\} .
$$

Obviously, if x_{0} is a solution of $F(x+a)+F(x)=b$, so is $x_{0}+a$. Thus the differential uniformity must be even. The smallest possible value is 2 . These functions which achieve this bound are called almost perfect nonlinear (APN) functions.

Examples

■ Gold function $x^{2^{i}+1}, 1 \leq i \leq \frac{n-1}{2}, \operatorname{gcd}(i, n)=1$ (Gold 1968);

- Kasami function $x^{2^{2 i}-2^{i}+1}, 1 \leq i \leq \frac{n-1}{2}, \operatorname{gcd}(i, n)=1$ (Kasami 1971);
- Welch function $x^{2^{2}+3}, n=2 t+1$ (Niho 1972);

■ ...

Since APN functions have the lowest differential uniformity, they are the most ideal choices for S-box.

Since APN functions have the lowest differential uniformity, they are the most ideal choices for S-box.

However, all the known APN functions are not permutations when the extension degree is even except for one sporadic example over $\mathbb{F}_{2^{6}}$ found by Dillon. (the BIG APN problem)

Since APN functions have the lowest differential uniformity, they are the most ideal choices for S-box.

However, all the known APN functions are not permutations when the extension degree is even except for one sporadic example over $\mathbb{F}_{2^{6}}$ found by Dillon. (the BIG APN problem)

A natural tradeoff method is to use differentially 4-uniform permutations as S-boxes. It is interesting to construct more differentially 4 -uniform permutations with high nonlinearity and algebraic degree.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation

■ Our Results
3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Walsh transform

For any function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, we define the Walsh transform of F as

$$
\mathcal{W}_{F}(a, b)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}(b F(x)+a x)}, \quad a, b \in \mathbb{F}_{2^{n}},
$$

where $\operatorname{Tr}(x)=x+x^{2}+\cdots+x^{2^{n-1}}$ is the absolute trace function from $\mathbb{F}_{2^{n}}$ to \mathbb{F}_{2}.

Walsh transform

For any function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, we define the Walsh transform of F as

$$
\mathcal{W}_{F}(a, b)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{Tr}(b F(x)+a x)}, \quad a, b \in \mathbb{F}_{2^{n}},
$$

where $\operatorname{Tr}(x)=x+x^{2}+\cdots+x^{2^{n-1}}$ is the absolute trace function from $\mathbb{F}_{2^{n}}$ to \mathbb{F}_{2}.

The multiset $\Lambda_{F}=\left\{* \mathcal{W}_{F}(a, b): a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}^{*} *\right\}$ is called the Walsh spectrum of the function F.

Definition (Nonlinearity)

The nonlinearity of F is defined as

$$
\mathcal{N L}(F)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}^{*}}\left|\mathcal{W}_{F}(a, b)\right| .
$$

Definition (Nonlinearity)

The nonlinearity of F is defined as

$$
\mathcal{N L}(F)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}^{*}}\left|\mathcal{W}_{F}(a, b)\right| .
$$

- If n is odd the nonlinearity of F satisfies the inequality $\mathcal{N} \mathcal{L}(F) \leq 2^{n-1}-2^{\frac{n-1}{2}}$, and in case of equality F is called almost bent function.

Definition (Nonlinearity)

The nonlinearity of F is defined as

$$
\mathcal{N L}(F)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}^{*}}\left|\mathcal{W}_{F}(a, b)\right| .
$$

- If n is odd the nonlinearity of F satisfies the inequality $\mathcal{N} \mathcal{L}(F) \leq 2^{n-1}-2^{\frac{n-1}{2}}$, and in case of equality F is called almost bent function.
\square While n is even, the known maximum nonlinearity is $2^{n-1}-2^{\frac{n}{2}}$. It is conjectured that $\mathcal{N} \mathcal{L}(F)$ is upper bounded by $2^{n-1}-2^{\frac{n}{2}}$. These functions which meet this bound are usually called optimal (maximal) nonlinear functions.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results
■ Motivation

- Our Results

3 The Sketch of Proof
■ The Proof of Differential Uniformity

- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Definition (Butterfly Structures)

Let k be a positive integer and $\alpha \in \mathbb{F}_{2^{k}}, e$ be an integer such that the mapping $x \mapsto x^{e}$ is a permutation over $\mathbb{F}_{2^{k}}$ and
$R_{z}[e, \alpha](x)=(x+\alpha z)^{e}+z^{e}$ be a keyed permutation. The Butterfly Structures are defined as follows:

Definition (Butterfly Structures)

Let k be a positive integer and $\alpha \in \mathbb{F}_{2^{k}}, e$ be an integer such that the mapping $x \mapsto x^{e}$ is a permutation over $\mathbb{F}_{2^{k}}$ and
$R_{z}[e, \alpha](x)=(x+\alpha z)^{e}+z^{e}$ be a keyed permutation. The Butterfly Structures are defined as follows:

- the Open Butterfly Structure with branch size k, exponent e and coefficient α is the function denoted H_{e}^{α} defined by:

$$
\mathrm{H}_{e}^{\alpha}(x, y)=\left(R_{R_{y}^{-1}[e, \alpha](x)}[e, \alpha](y), R_{y}^{-1}[e, \alpha](x)\right),
$$

Definition (Butterfly Structures)

Let k be a positive integer and $\alpha \in \mathbb{F}_{2^{k}}, e$ be an integer such that the mapping $x \mapsto x^{e}$ is a permutation over $\mathbb{F}_{2^{k}}$ and
$R_{z}[e, \alpha](x)=(x+\alpha z)^{e}+z^{e}$ be a keyed permutation. The Butterfly Structures are defined as follows:

- the Open Butterfly Structure with branch size k, exponent e and coefficient α is the function denoted H_{e}^{α} defined by:

$$
\mathrm{H}_{e}^{\alpha}(x, y)=\left(R_{R_{y}^{-1}[e, \alpha](x)}[e, \alpha](y), R_{y}^{-1}[e, \alpha](x)\right),
$$

- the Closed Butterfly Structure with branch size k, exponent e and coefficient α is the function denoted V_{e}^{α} defined by:

$$
\mathrm{V}_{e}^{\alpha}(x, y)=\left(R_{x}[e, \alpha](y), R_{y}[e, \alpha](x)\right)
$$

(a) Open butterfly H_{e}^{α} (bijective).

(b) Closed butterfly V_{e}^{α}.

Background and Related Concepts . Motivation and Our Results The Sketch of Proof Conclusion and Open Problems The Algebraic Forms'of Butterfly Structures $\%$
 000

■ Open Butterfly Structure

$$
\begin{aligned}
& \mathrm{H}_{e}^{\alpha}(x, y) \\
= & \left(\left(y+\alpha\left(x+y^{e}\right)^{\frac{1}{e}}+\alpha^{2} y\right)^{e}+\left(\left(x+y^{e}\right)^{\frac{1}{e}}+\alpha y\right)^{e},\left(x+y^{e}\right)^{\frac{1}{e}}+\alpha y\right)
\end{aligned}
$$

■ Closed Butterfly Structure

$$
\mathrm{V}_{e}^{\alpha}(x, y)=\left((\alpha x+y)^{e}+x^{e},(x+\alpha y)^{e}+y^{e}\right)
$$

Definition (Generalised Butterflies)

Let R be a bivariate polynomials of $\mathbb{F}_{2^{k}}$ such that $R_{y}: x \mapsto R(x, y)$ is a permutation of $\mathbb{F}_{2^{k}}$ for all y in $\mathbb{F}_{2^{k}}$. The Generalised Butterfly Structures are defined as follows:

Definition (Generalised Butterflies)

Let R be a bivariate polynomials of $\mathbb{F}_{2^{k}}$ such that $R_{y}: x \mapsto R(x, y)$ is a permutation of $\mathbb{F}_{2^{k}}$ for all y in $\mathbb{F}_{2^{k}}$. The Generalised Butterfly Structures are defined as follows:

- the Open Generalised Butterfly Structure with branch size k is the function denoted H_{R} defined by:

$$
\mathrm{H}_{R}(x, y)=\left(R_{R_{y}^{-1}(x)}(y), R_{y}^{-1}(x)\right),
$$

Definition (Generalised Butterflies)

Let R be a bivariate polynomials of $\mathbb{F}_{2^{k}}$ such that $R_{y}: x \mapsto R(x, y)$ is a permutation of $\mathbb{F}_{2^{k}}$ for all y in $\mathbb{F}_{2^{k}}$. The Generalised Butterfly Structures are defined as follows:

- the Open Generalised Butterfly Structure with branch size k is the function denoted H_{R} defined by:

$$
\mathrm{H}_{R}(x, y)=\left(R_{R_{y}^{-1}(x)}(y), R_{y}^{-1}(x)\right),
$$

- the Closed Generalised Butterfly Structure with branch size k is the function denoted V_{R} defined by:

$$
\mathrm{V}_{R}(x, y)=(R(x, y), R(y, x))
$$

(a) Open Generalised Butterfly H_{R}.

(b) Closed Generalised Butterfly V_{R}.

Figure: The Generalised Butterfly Structures.

■ Two functions $F, G: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called extended affine equivalent (EA-equivalent), if $G(x)=A_{1}\left(F\left(A_{2}(x)\right)\right)+A_{3}(x)$, where $A_{1}(x), A_{2}(x)$ are affine permutations over $\mathbb{F}_{2^{n}}$ and $A_{3}(x)$ is an affine function over $\mathbb{F}_{2^{n}}$.

■ Two functions $F, G: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called extended affine equivalent (EA-equivalent), if $G(x)=A_{1}\left(F\left(A_{2}(x)\right)\right)+A_{3}(x)$, where $A_{1}(x), A_{2}(x)$ are affine permutations over $\mathbb{F}_{2^{n}}$ and $A_{3}(x)$ is an affine function over $\mathbb{F}_{2^{n}}$.

■ They are called CCZ-equivalent (Carlet-Charpin-Zinoviev equivalent) if there exists an affine permutation over $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ which maps \mathcal{G}_{F} to \mathcal{G}_{G}, where $\mathcal{G}_{F}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\}$ is the graph of F, and \mathcal{G}_{G} is the graph of G.

■ Two functions $F, G: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called extended affine equivalent (EA-equivalent), if $G(x)=A_{1}\left(F\left(A_{2}(x)\right)\right)+A_{3}(x)$, where $A_{1}(x), A_{2}(x)$ are affine permutations over $\mathbb{F}_{2^{n}}$ and $A_{3}(x)$ is an affine function over $\mathbb{F}_{2^{n}}$.

■ They are called CCZ-equivalent (Carlet-Charpin-Zinoviev equivalent) if there exists an affine permutation over $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ which maps \mathcal{G}_{F} to \mathcal{G}_{G}, where $\mathcal{G}_{F}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\}$ is the graph of F, and \mathcal{G}_{G} is the graph of G.

- $\mathrm{H}_{e}^{\alpha}\left(\mathrm{H}_{R}\right)$ and $\mathrm{V}_{e}^{\alpha}\left(\mathrm{V}_{R}\right)$ are CCZ-equivalent.

Theorem (Perrin et al. CRYPTO'16)

Let V_{e}^{α} and H_{e}^{α} respectively be the closed and open $2 k$-bit butterflies with exponent $e=3 \times 2^{t}$ for some t, coefficient α not in $\{0,1\}$ and k odd. Then:
$1 \mathrm{~V}_{e}^{\alpha}$ is quadratic, and half of the coordinates of H_{e}^{α} have algebraic degree k, the other half have algebraic degree $k+1$;
2 The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4.

Theorem (Perrin et al. CRYPTO'16)

Let V_{e}^{α} and H_{e}^{α} respectively be the closed and open $2 k$-bit butterflies with exponent $e=3 \times 2^{t}$ for some t, coefficient α not in $\{0,1\}$ and k odd. Then:
$1 \mathrm{~V}_{e}^{\alpha}$ is quadratic, and half of the coordinates of H_{e}^{α} have algebraic degree k, the other half have algebraic degree $k+1$;
2 The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4.

A Conjecture

The nonlinearity of butterfly structures of H_{e}^{α} and V_{e}^{α} operating on $2 k$ bits are equal to $2^{2 k-1}-2^{k}$ for every odd $k, e=3 \times 2^{t}$ and $\alpha \neq 0,1$.

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $\mathrm{V}_{\alpha, \beta}$ and $\mathrm{H}_{\alpha, \beta}$ which are based on functions $R:(x, y) \mapsto(x+\alpha y)^{3}+\beta y^{3}$ with $\alpha, \beta \neq 0$ are as follows:

Cryptographic Prepperties of Generalised Butterflies
 000

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $\mathrm{V}_{\alpha, \beta}$ and $\mathrm{H}_{\alpha, \beta}$ which are based on functions $R:(x, y) \mapsto(x+\alpha y)^{3}+\beta y^{3}$ with $\alpha, \beta \neq 0$ are as follows:

1 the algebraic degree of $\mathrm{V}_{\alpha, \beta}$ is always equal to 2;

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $\mathrm{V}_{\alpha, \beta}$ and $\mathrm{H}_{\alpha, \beta}$ which are based on functions $R:(x, y) \mapsto(x+\alpha y)^{3}+\beta y^{3}$ with $\alpha, \beta \neq 0$ are as follows:
1 the algebraic degree of $\mathrm{V}_{\alpha, \beta}$ is always equal to 2;
2 if $k=3, \alpha \neq 0, \operatorname{Tr}(\alpha)=0$ and $\beta \in\left\{\alpha^{3}+\alpha, \alpha^{3}+1 / \alpha\right\}$ then the butterflies are APN, have a nonlinearity equal to $2^{2 k-1}-2^{k}$ and the algebraic degree of $\mathrm{H}_{\alpha, \beta}$ is equal to $k+1$;

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $\mathrm{V}_{\alpha, \beta}$ and $\mathrm{H}_{\alpha, \beta}$ which are based on functions $R:(x, y) \mapsto(x+\alpha y)^{3}+\beta y^{3}$ with $\alpha, \beta \neq 0$ are as follows:
1 the algebraic degree of $\mathrm{V}_{\alpha, \beta}$ is always equal to 2;
2 if $k=3, \alpha \neq 0, \operatorname{Tr}(\alpha)=0$ and $\beta \in\left\{\alpha^{3}+\alpha, \alpha^{3}+1 / \alpha\right\}$ then the butterflies are APN, have a nonlinearity equal to $2^{2 k-1}-2^{k}$ and the algebraic degree of $\mathrm{H}_{\alpha, \beta}$ is equal to $k+1$;
3 if $\beta=(1+\alpha)^{3}$ then the differential uniformity is equal to 2^{k+1}, the nonlinearity is equal to $2^{2 k-1}-2^{\frac{3 k-1}{2}}$ and the algebraic degree of $\mathrm{H}_{\alpha, \beta}$ is equal to k;

000

Theorem (Canteaut-Duval-Perrin, 2017, TIT)

The cryptographic properties of the generalised butterflies $\mathrm{V}_{\alpha, \beta}$ and $\mathrm{H}_{\alpha, \beta}$ which are based on functions $R:(x, y) \mapsto(x+\alpha y)^{3}+\beta y^{3}$ with $\alpha, \beta \neq 0$ are as follows:
1 the algebraic degree of $\mathrm{V}_{\alpha, \beta}$ is always equal to 2;
2 if $k=3, \alpha \neq 0, \operatorname{Tr}(\alpha)=0$ and $\beta \in\left\{\alpha^{3}+\alpha, \alpha^{3}+1 / \alpha\right\}$ then the butterflies are APN, have a nonlinearity equal to $2^{2 k-1}-2^{k}$ and the algebraic degree of $\mathrm{H}_{\alpha, \beta}$ is equal to $k+1$;
3 if $\beta=(1+\alpha)^{3}$ then the differential uniformity is equal to 2^{k+1}, the nonlinearity is equal to $2^{2 k-1}-2^{\frac{3 k-1}{2}}$ and the algebraic degree of $\mathrm{H}_{\alpha, \beta}$ is equal to k;
4 otherwise, the differential uniformity is equal to 4, the nonlinearity is equal to $2^{2 k-1}-2^{k}$ and algebraic degree of $\mathrm{H}_{\alpha, \beta}$ is either k or $k+1$. It is equal to k if and only if $1+\alpha \beta+\alpha^{4}=\left(\beta+\alpha+\alpha^{3}\right)^{2}$.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation

■ Our Results
3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

■ The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4 , where $e=\left(2^{i}+1\right) \times 2^{t}$, coefficient $\alpha \neq 0,1, k$ odd and $\operatorname{gcd}(i, k)=1$;

■ The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4 , where $e=\left(2^{i}+1\right) \times 2^{t}$, coefficient $\alpha \neq 0,1, k$ odd and $\operatorname{gcd}(i, k)=1$;

- We prove that the nonlinearity equality are true for every odd k, $e=\left(2^{i}+1\right) \times 2^{t}$ and $\alpha \neq 0$, which gives independently a solution to the conjecture by the way;

■ The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4 , where $e=\left(2^{i}+1\right) \times 2^{t}$, coefficient $\alpha \neq 0,1, k$ odd and $\operatorname{gcd}(i, k)=1$;
■ We prove that the nonlinearity equality are true for every odd k, $e=\left(2^{i}+1\right) \times 2^{t}$ and $\alpha \neq 0$, which gives independently a solution to the conjecture by the way;
\square We show that V_{e}^{1} for $e=\left(2^{i}+1\right) \times 2^{t}$ are permutations over $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$.

Theorem (Nontrivial Case)

For any $0 \leq t \leq k-1,0 \leq i \leq k-1, \operatorname{gcd}(k, i)=1, \alpha \in \mathbb{F}_{2^{k}}$, and $\alpha \neq 0,1$, let H_{e}^{α} and V_{e}^{α} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient α. Then

Theorem (Nontrivial Case)

For any $0 \leq t \leq k-1,0 \leq i \leq k-1, \operatorname{gcd}(k, i)=1, \alpha \in \mathbb{F}_{2^{k}}$, and $\alpha \neq 0,1$, let H_{e}^{α} and V_{e}^{α} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient α. Then
$1 \mathrm{~V}_{e}^{\alpha}$ has algebraic degree 2. The open butterfly H_{e}^{α} has algebraic degree $k+1$;

Theorem (Nontrivial Case)

For any $0 \leq t \leq k-1,0 \leq i \leq k-1, \operatorname{gcd}(k, i)=1, \alpha \in \mathbb{F}_{2^{k}}$, and $\alpha \neq 0,1$, let H_{e}^{α} and V_{e}^{α} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient α. Then
$1 \mathrm{~V}_{e}^{\alpha}$ has algebraic degree 2. The open butterfly H_{e}^{α} has algebraic degree $k+1$;
2 The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4;

Theorem (Nontrivial Case)

For any $0 \leq t \leq k-1,0 \leq i \leq k-1, \operatorname{gcd}(k, i)=1, \alpha \in \mathbb{F}_{2^{k}}$, and $\alpha \neq 0,1$, let H_{e}^{α} and V_{e}^{α} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient α. Then
$1 \mathrm{~V}_{e}^{\alpha}$ has algebraic degree 2. The open butterfly H_{e}^{α} has algebraic degree $k+1$;
2 The differential uniformity of both H_{e}^{α} and V_{e}^{α} are at most equal to 4;

3 The nonlinearity of both H_{e}^{α} and V_{e}^{α} are equal to $2^{2 k-1}-2^{k}$, namely, optimal, and their extended Walsh spectrum are $\left\{0,2^{k}, 2^{k+1}\right\}$.

Theorem (Trivial Cases)

For any $0 \leq t \leq k-1$ and $0 \leq i \leq k-1$, $\operatorname{gcd}(i, k)=1$, let H_{e}^{1} and V_{e}^{1} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient $\alpha=1$. then

Theorem (Trivial Cases)

For any $0 \leq t \leq k-1$ and $0 \leq i \leq k-1$, $\operatorname{gcd}(i, k)=1$, let H_{e}^{1} and V_{e}^{1} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient $\alpha=1$. then
1 Both H_{e}^{1} and V_{e}^{1} are permutations over $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$;

Theorem (Trivial Cases)

For any $0 \leq t \leq k-1$ and $0 \leq i \leq k-1$, $\operatorname{gcd}(i, k)=1$, let H_{e}^{1} and V_{e}^{1} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient $\alpha=1$. then
1 Both H_{e}^{1} and V_{e}^{1} are permutations over $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$;
2 The algebraic degree of H_{e}^{1} and V_{e}^{1} are equal to k and 2 respectively;

Theorem (Trivial Cases)

For any $0 \leq t \leq k-1$ and $0 \leq i \leq k-1$, $\operatorname{gcd}(i, k)=1$, let H_{e}^{1} and V_{e}^{1} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient $\alpha=1$. then
1 Both H_{e}^{1} and V_{e}^{1} are permutations over $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$;
2 The algebraic degree of H_{e}^{1} and V_{e}^{1} are equal to k and 2 respectively;
3 The differential uniformity of both H_{e}^{1} and V_{e}^{1} are equal to 4 and their differential spectrums are $\{0,4\}$;

Theorem (Trivial Cases)

For any $0 \leq t \leq k-1$ and $0 \leq i \leq k-1$, $\operatorname{gcd}(i, k)=1$, let H_{e}^{1} and V_{e}^{1} be the open and closed $2 k$-bit butterfly structures with exponent $e=\left(2^{i}+1\right) \times 2^{t}$ and coefficient $\alpha=1$. then
1 Both H_{e}^{1} and V_{e}^{1} are permutations over $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$;
2 The algebraic degree of H_{e}^{1} and V_{e}^{1} are equal to k and 2 respectively;
3 The differential uniformity of both H_{e}^{1} and V_{e}^{1} are equal to 4 and their differential spectrums are $\{0,4\}$;
4 The nonlinearity of both H_{e}^{1} and V_{e}^{1} are equal to $2^{2 k-1}-2^{k}$, namely, optimal, and their Walsh spectrums are $\left\{0, \pm 2^{k+1}\right\}$.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof
■ The Proof of Differential Uniformity

- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Two Key Lemmas

Two Key Lemmas

■ Suppose k and i are two integers such that $\operatorname{gcd}(i, k)=1$. For any $c_{1}, c_{2}, c_{3} \in \mathbb{F}_{2^{k}}$ with not all zero, then the following equation

$$
c_{1} x^{2^{2 i}}+c_{2} x^{x^{i}}+c_{3} x=0
$$

has at most 4 solutions in $\mathbb{F}_{2^{k}}$.

Two Key Lemmas

- Suppose k and i are two integers such that $\operatorname{gcd}(i, k)=1$. For any $c_{1}, c_{2}, c_{3} \in \mathbb{F}_{2^{k}}$ with not all zero, then the following equation

$$
c_{1} x^{2^{2 i}}+c_{2} x^{2^{i}}+c_{3} x=0
$$

has at most 4 solutions in $\mathbb{F}_{2^{k}}$.

- Suppose k is an odd integer and $\operatorname{gcd}(i, k)=1$. For any $c_{1}, c_{2}, c_{3} \in \mathbb{F}_{2^{k}}$ with not all zero, then the following equation

$$
c_{1} x^{x^{4 i}}+c_{2} x^{2^{2 i}}+c_{3} x=0
$$

has at most 4 solutions in $\mathbb{F}_{2^{k}}$.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof
■ The Proof of Differential Uniformity

- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Let $u, v, a, b \in \mathbb{F}_{2^{k}}$ and $(u, v) \neq(0,0)$. Then we need to prove that

$$
\mathrm{V}_{e}^{\alpha}(x, y)+\mathrm{V}_{e}^{\alpha}(x+u, y+v)=(a, b)
$$

has at most 4 solutions in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$,

Let $u, v, a, b \in \mathbb{F}_{2^{k}}$ and $(u, v) \neq(0,0)$. Then we need to prove that

$$
\mathrm{V}_{e}^{\alpha}(x, y)+\mathrm{V}_{e}^{\alpha}(x+u, y+v)=(a, b)
$$

has at most 4 solutions in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$, which is equivalent to the following linear homogeneous system of equations

$$
\left\{\begin{aligned}
&\left(\alpha^{2^{i}}(\alpha u+v)+u\right) x^{2^{i}}+\left(\alpha(\alpha u+v)^{2^{i}}\right.\left.+u^{2^{i}}\right) x \\
&+(\alpha u+v) y^{2^{i}}+(\alpha u+v)^{2^{i}} y=0 \\
&(\alpha v+u) x^{2^{i}}+(\alpha v+u)^{2^{i}} x+\left(\alpha^{2^{i}}(\alpha v+u)+v\right) y^{2^{i}}
\end{aligned}\right.
$$

has at most 4 solutions in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

Let $a, b, c, d \in \mathbb{F}_{2^{k}}$, and $(c, d) \neq(0,0)$. Then we have

$$
\mathcal{W}_{F}^{2}((a, b),(c, d))=\sum_{x, y \in \mathbb{F}_{2^{k}}}(-1)^{F(x, y)} \cdot \sum_{u, v \in \mathbb{F}_{2^{k}}}(-1)^{F(x+u, y+v)}
$$

Let $a, b, c, d \in \mathbb{F}_{2^{k}}$, and $(c, d) \neq(0,0)$. Then we have

$$
\begin{aligned}
\mathcal{W}_{F}^{2}((a, b),(c, d)) & =\sum_{x, y \in \mathbb{F}_{2^{k}}}(-1)^{F(x, y)} \cdot \sum_{u, v \in \mathbb{F}_{2^{k}}}(-1)^{F(x+u, y+v)} \\
& =\sum_{x, y, u, v \in \mathbb{F}_{2^{k}}}(-1)^{F(x, y)+F(x+u, y+v)}
\end{aligned}
$$

Let $a, b, c, d \in \mathbb{F}_{2^{k}}$, and $(c, d) \neq(0,0)$. Then we have

$$
\begin{aligned}
\mathcal{W}_{F}^{2}((a, b),(c, d)) & =\sum_{x, y \in \mathbb{F}_{2^{k}}}(-1)^{F(x, y)} \cdot \sum_{u, v \in \mathbb{F}_{2^{k}}}(-1)^{F(x+u, y+v)} \\
& =\sum_{x, y, u, v \in \mathbb{F}_{2^{k}}}(-1)^{F(x, y)+F(x+u, y+v)} \\
& =2^{2 k} \cdot \sum_{u, v \in R(c, d)}(-1)^{f(u, v)}
\end{aligned}
$$

where

$$
\begin{aligned}
f(x, y)=\operatorname{Tr}(& \left(\alpha^{2^{i}+1} c+c+d\right) x^{2^{i}+1}+\left(\alpha^{2^{i}+1} d+c+d\right) y^{2^{i}+1} \\
& \left.+\left(\alpha^{2^{i}} c+\alpha d\right) x^{2^{i}} y+\left(\alpha c+\alpha^{2^{i}} d\right) x y^{2^{i}}+a x+b y\right)
\end{aligned}
$$

and $R(c, d)$ is the solution set of the following system of equations with variables u, v

$$
\left\{\begin{array}{l}
\left(\alpha^{2^{i}+1} c+c+d\right)^{2^{i}} u^{2^{2 i}}+\left(\alpha^{2^{i}+1} c+c+d\right) u \\
\quad+\left(\alpha c+\alpha^{2^{i}} d\right)^{2^{i}} v^{2^{2 i}}+\left(\alpha^{2^{i}} c+\alpha d\right) v=0, \\
\left(\alpha^{2^{i}} c+\alpha d\right)^{2^{i}} u^{2^{2 i}}+\left(\alpha c+\alpha^{2^{i}} d\right) u \\
\quad+\left(\alpha^{2^{i}+1} d+c+d\right)^{2^{i}} v^{2^{2 i}}+\left(\alpha^{2^{i}+1} d+c+d\right) v=0 .
\end{array}\right.
$$

The core part: $\operatorname{dim}_{\mathbb{F}_{2}} R(c, d)=0$ or 2 .

1 Background and Related Concepts

- Background

■ (Vectorial) Boolean Functions

- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity

■ Trivial Case
4 Conclusion and Open Problems

- Conclusion
- Open Problems

Background and Related Concepts Motivation and Our Results The Sketch of Proof

 The bjective of closed butterily structure

 The bjective of closed butterily structure -00

 -00}

For any $u, v \in \mathbb{F}_{2^{k}}$, where $(u, v) \neq(0,0)$, it is sufficient to show that

$$
\mathrm{V}_{e}^{1}(x, y)+\mathrm{V}_{e}^{1}(x+u, y+v)=(0,0)
$$

has no solution in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$.

Background and Related Concepts Motivation and Our Results The Sketch of Proof

 The bijective of closed butterfly structure

 The bijective of closed butterfly structure}

For any $u, v \in \mathbb{F}_{2^{k}}$, where $(u, v) \neq(0,0)$, it is sufficient to show that

$$
\mathrm{V}_{e}^{1}(x, y)+\mathrm{V}_{e}^{1}(x+u, y+v)=(0,0)
$$

has no solution in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$.
This is to say that the following system of equations

$$
\left\{\begin{array}{l}
v x^{2^{i}}+v^{2^{i}} x+(u+v) y^{2^{i}}+(u+v)^{2^{i}} y=(u+v)^{2^{i}+1}+u^{2^{i}+1} \\
(u+v) x^{2^{i}}+(u+v)^{2^{i}} x+u y^{2^{i}}+u^{2^{i}} y=(u+v)^{2^{i}+1}+v^{2^{i}+1}
\end{array}\right.
$$

has no solution in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$.

The proof procedure of the nonlinearity of trivial case is mainly based on the following lemma.

Lemma

Let i be an integer such that $0 \leq i \leq k-1$ and $\operatorname{gcd}(k, i)=1$. Then for any $(c, d) \in \mathbb{F}_{2^{k}}^{2}$ with $(c, d) \neq(0,0)$, the following system of equations in variables u and v

$$
\left\{\begin{array}{l}
d u^{2^{i}}+(d u)^{2^{k-i}}+(c+d) v^{2^{i}}+((c+d) v)^{2^{k-i}}=0 \\
(c+d) u^{2^{i}}+((c+d) u)^{2^{k-i}}+c v^{2^{i}}+(c v)^{2^{k-i}}=0
\end{array}\right.
$$

has exactly 4 solutions in $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

3 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems
■ Conclusion

- Open Problems
- We further study the butterfly structures and show that they always have very good cryptographic properties;

■ We further study the butterfly structures and show that they always have very good cryptographic properties;
■ We prove that their nonlinearities are optimal in a general case;

■ We further study the butterfly structures and show that they always have very good cryptographic properties;
■ We prove that their nonlinearities are optimal in a general case;

- We prove that the closed butterfly structure with trivial coefficient is also a permutation.

1 Background and Related Concepts

- Background
- (Vectorial) Boolean Functions
- Differential Uniformity
- Nonlinearity

2 Motivation and Our Results

- Motivation
- Our Results

13 The Sketch of Proof

- The Proof of Differential Uniformity
- The Proof of Nonlinearity
- Trivial Case

4 Conclusion and Open Problems

- Conclusion
- Open Problems

■ The BIG APN problem: Is there a tuple $k, R(x, y)$ where $k>3$ is an integer, such that $\mathrm{H}_{R}(x, y)$ operating on $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$ is APN?

■ The BIG APN problem: Is there a tuple $k, R(x, y)$ where $k>3$ is an integer, such that $\mathrm{H}_{R}(x, y)$ operating on $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$ is APN?
■ Find more k, e, α where e is an integer and $\alpha \in \mathbb{F}_{2^{k}}$, such that H_{e}^{α} operating on $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$ for even k is differential 4-uniform. (E.g., in the case $k=6$ there does exist α such that H_{5}^{α} is differential 4-uniform)

■ The BIG APN problem: Is there a tuple $k, R(x, y)$ where $k>3$ is an integer, such that $\mathrm{H}_{R}(x, y)$ operating on $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$ is APN?
■ Find more k, e, α where e is an integer and $\alpha \in \mathbb{F}_{2^{k}}$, such that H_{e}^{α} operating on $\mathbb{F}_{2^{k}} \times \mathbb{F}_{2^{k}}$ for even k is differential 4-uniform. (E.g., in the case $k=6$ there does exist α such that H_{5}^{α} is differential 4-uniform)

- Find more classes of differentially 4-uniform permutations with the optimal nonlinearity and high algebraic degree from other functions over subfields or other structures.

Thanks!

