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Abstract. Many block ciphers use permutations defined over the finite field F22k

with low differential uniformity, high nonlinearity, and high algebraic degree to
provide confusion. Due to the lack of knowledge about the existence of almost perfect
nonlinear (APN) permutations over F22k , which have lowest possible differential
uniformity, when k > 3, constructions of differentially 4-uniform permutations are
usually considered. However, it is also very difficult to construct such permutations
together with high nonlinearity; there are very few known families of such functions,
which can have the best known nonlinearity and a high algebraic degree. At Crypto’16,
Perrin et al. introduced a structure named butterfly, which leads to permutations over
F22k with differential uniformity at most 4 and very high algebraic degree when k is
odd. It is posed as an open problem in Perrin et al.’s paper and solved by Canteaut et
al. that the nonlinearity is equal to 22k−1 −2k. In this paper, we extend Perrin et al.’s
work and study the functions constructed from butterflies with exponent e = 2i + 1.
It turns out that these functions over F22k with odd k have differential uniformity at
most 4 and algebraic degree k + 1. Moreover, we prove that for any integer i and odd
k such that gcd(i, k) = 1, the nonlinearity equality holds, which also gives another
solution to the open problem proposed by Perrin et al. This greatly expands the list
of differentially 4-uniform permutations with good nonlinearity and hence provides
more candidates for the design of block ciphers.
Keywords: S-boxes · APN · butterfly structure · permutation · differential uniformity
· nonlinearity

1 Introduction
In block ciphers nonlinear functions over finite fields are usually used as substitution
boxes (S-boxes) to provide confusion. For the easiness of implementation and to obtain
a permutation, S-boxes are usually chosen to be permutations over the finite field with
characteristic 2 and an even extension degree, i.e., F22k . Besides, in order to resist various
kinds of cryptographical attacks, S-boxes used in block ciphers should possess, for example,
low differential uniformity (to resist differential attack [BS91]), and high nonlinearity (to
resist linear attack [Mat93]).

It is well known that for any function defined over F2n , its differential uniformity must
be even. So a lower bound of the differential uniformity is 2, and the functions achieving
this value are called almost perfect nonlinear (APN) functions. Unfortunately, it is very
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difficult to construct APN permutations for even n. Up to now, only one sporadic APN
permutation over F26 was found by Dillon et al. [BDMW10] To find any other APN
permutations over F2n for even n is called the BIG APN problem.

Therefore, when the input sizes are even, a natural tradeoff is to use differentially
4-uniform permutations as the nonlinear functions. For instance, the AES block cipher uses
a differentially 4-uniform permutation, namely the inverse function over F28 as S-boxes.
Hence, to provide more choices for the design of block ciphers, it is of significant importance
to construct more classes of differentially 4-uniform permutations over F22k .

Besides, the nonlinear functions should have high (or at least not low) algebraic degree
to resist the higher-order differential attack [Knu94, Lai94] (which is described by Knudsen
when the degree is 2). Qu et al. [QTTL13, QTLG16], Peng et al. [PT16] and Tang et al.
[TCT15] proposed several families of differentially 4-uniform permutations with optimal
algebraic degree from the inverse function by applying the powerful switching method.
Later, Zha et al. [ZHS14, ZHSS15] presented some more families of differentially 4-uniform
permutations with optimal algebraic degree by applying affine transformations on the
elements of some subfields of the inverse function. In [CTTL14], Carlet et al. built a family
of differentially 4-uniform permutations with optimal algebraic degree by concatenating
two functions from F2n−1 to F2n for even n ≥ 6.

In [BL10, Table 1], the authors list some differentially 4-uniform permutations with
nonlinearity 2n−1 − 2 n

2 (the best we have known) over the fields of even extension degree.
Up to now, the known such functions are Gold functions, Kasami functions, Inverse
function, Bracken–Leander functions [BL10], a class of binomials found by Bracken et al.
[BTT12] and those functions constructed from quadratic APN permutations over F22k+1

[LW14a]. We can see that the list of differentially 4-uniform permutations with the best
known nonlinearity and high algebraic degree over the fields of even extension degree is
still limited. As pointed out by Carlet [Car10], the alternatives for the inverse function are
very rare and it is also a main challenge to find more such functions. Thus, constructing
more differentially 4-uniform permutations with high nonlinearity and algebraic degree is
very necessary, which is still an open problem up to now.

Recently in [PUB16], Perrin et al. introduced two new structures called open and closed
butterflies and showed that these functions constructed from butterflies with exponent
e = 3 always have differential uniformity at most 4 and algebraic degree k + 1 when
n = 2k with odd k. The authors also verified experimentally that the nonlinearity of these
functions are equal to 22k−1 − 2k for k = 3, 5, 7. However, they could not prove it in the
general case and conjectured that it is true for every odd k.

In [CDP17], Canteaut et al. generalise the family of butterflies, and showed that when
e = 3, the generalised butterflies have differential uniformity exactly 4 with one exception
which is affine equivalent to the Dillon’s APN permutation. They also prove that this
family functions have the best known nonlinearity and give their algebraic degree.

In [LW14b], Li and Wang proposed a construction from 3-round Feistel structure, which
is actually a particular case of the butterfly with trivial coefficient 1. They proved that
these functions have differential uniformity 4 and algebraic degree k.

The low cost of hardware implementation of nonlinear functions is also an important
criterion in the design of S-boxes. As the cost of nonlinear functions increases with its
input and output size, implementing functions over small subfields often costs much less
than implementing functions over the larger field. It is a huge advantage of constructing
S-boxes over (F2k )2 from butterflies since we only need to implement the exponentiation
and the multiplication in F2k . Besides, these functions constructed from open butterflies
are actually involutory, which means that the implementation of the inverse does not
require additional resources, so it is particularly useful in devices with limited resources.
There are many works on efficient techniques for implementing S-boxes, for instance, see
[SP04, EKP+07, SD16].
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In this paper, we study the functions constructed from butterflies with exponent
e = 2i + 1 and prove that these functions also have differential uniformity at most 4 and
their algebraic degree are k + 1 when n = 2k for k odd. Moveover, we prove that their
nonlinearity is the best in the sense that no known functions over the field of even extension
degree have a higher nonlinearity. Finally, we study the function with trivial coefficient
α = 1, and show that it also has the best known nonlinearity. Hence, some new infinite
families of differentially 4-uniform permutations with the best known nonlinearity and
high algebraic degree are obtained. Besides, the function constructed from closed butterfly
with trivial coefficient is also a permutation.

The rest of the paper is organized as follows. In the next section, we recall some basic
backgrounds, including some necessary definitions and results. In Section 3, we show that
these functions with odd branch size k, exponent e = (2i + 1) and nontrivial coefficient
have differential uniformity at most 4 and the best known nonlinearity. In Section 4, we
further revisit these functions with coefficient α = 1 and show that they have the best
known nonlinearity as well. The proof of bijective property of functions constructed from
closed butterfly is also given in this section. Conclusions and some open problems are
given in Section 5.

2 Preliminaries
Let n be a positive integer, F2n be the finite field with 2n elements, F∗2n be its multiplicative
group, and F2n [x] be the polynomial ring over F2n . Any function F : F2n → F2n can be
represented uniquely by a polynomial in F2n [x]/〈x2n + x〉 as

F (x) =
2n−1∑
i=0

cix
i, ci ∈ F2n .

For any l, 0 ≤ l ≤ 2n−1, the number w2(l) of the nonzero coefficients lj ∈ F2 in the binary
expansion l =

∑n−1
j=0 lj2j is called the 2-weight of l. It is well known that the algebraic

degree of F is equal to the maximal 2-weight of the exponent i such that ci 6= 0.

Definition 1 (See [Nyb93]). For a function F : F2n → F2n , the differential uniformity of
F is defined as

∆F = max{δF (a, b) : a ∈ F∗2n , b ∈ F2n},

where δF (a, b) = |{x ∈ F2n : F (x+ a) + F (x) = b}|. The differential spectrum of F is the
multi-set

{δF (a, b) : a ∈ F∗2n , b ∈ F2n}.

For a given integer δ, F is called differentially δ-uniform if ∆F = δ. It is easy to see
that if x0 is a solution of F (x+ a) + F (x) = b, so is x0 + a. Thus a lower bound of the
differential uniformity of F is 2. The functions which achieve this bound are called almost
perfect nonlinear (APN) functions.

For any function F : F2n → F2n , the Walsh transform of F is defined as

WF (a, b) =
∑
x∈F2n

(−1)Tr(bF (x)+ax), a, b ∈ F2n ,

where Tr(x) = x + x2 + · · · + x2n−1 is the absolute trace function from F2n to F2. The
multi-set ΛF = {WF (a, b) : a ∈ F2n , b ∈ F∗2n} is called the Walsh spectrum of the function
F . And the multi-set {|WF (a, b)| : a ∈ F2n , b ∈ F∗2n} is called the extended Walsh spectrum
of the function F .
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The nonlinearity of F is defined as

NL(F ) = 2n−1 − 1
2 max
a∈F2n ,b∈F∗

2n

|WF (a, b)|.

The Parseval’s relation states that, for any b ∈ F∗2n :∑
a∈F2n

(WF (a, b))2 = 22n.

This implies that NL(F ) ≤ 2n−1 − 2n/2−1. Moreover, it is known that if n is odd, the
nonlinearity of F satisfies the inequality NL(F ) ≤ 2n−1 − 2 n−1

2 [CV94] and when the
equality holds F is called almost bent (AB). The notion of AB functions is closely connected
with the notion of APN functions. AB functions exist only for odd n and provide the
optimal resistance to linear cryptanalysis. Besides, every AB function is APN, and in the
case of odd n, any quadratic APN function is an AB function. A comprehensive survey on
APN and AB functions can be found in [Car10, CCZ98].

When n is even, the upper bound of the nonlinearity is still open. The best known
nonlinearity is 2n−1 − 2 n

2 . It is conjectured that NL(F ) is upper bounded by 2n−1 − 2 n
2

[Dob98]. These functions which meet this bound are usually called the best known nonlinear
functions.

Two functions F,G : F2n → F2n are called extended affine equivalent (EA-equivalent),
if G(x) = A1(F (A2(x))) +A3(x), where A1(x), A2(x) are affine permutations over F2n and
A3(x) is an affine function over F2n . Furthermore, if A3 = 0 (resp. A3 = 0 and A1, A2 are
linear permutations over F2n), then they are called affine (resp. linear) equivalent. They
are called CCZ-equivalent (Carlet-Charpin-Zinoviev equivalent) if there exists an affine
permutation over F2n × F2n which maps GF to GG , where GF = {(x, F (x)) : x ∈ F2n} is
the graph of F , and GG is the graph of G.

It is well known that EA-equivalence implies CCZ-equivalence, but not vice versa. Dif-
ferential uniformity, nonlinearity and Walsh spectrum are invariant of both EA-equivalence
and CCZ-equivalence. Algebraic degree is preserved by EA-equivalence, but not by CCZ-
equivalence. However, in general, neither EA-equivalence nor CCZ-equivalence preserves
the permutation property.

Definition 2 (See [PUB16]). Let k be a positive integer and α ∈ F2k , e be an integer
such that the mapping x 7→ xe is a permutation over F2k and Rz[e, α](x) = (x+ αz)e + ze

be a keyed permutation. The butterfly structures over (F2k )2 are defined as follows:

1. the open butterfly structure with branch size k, exponent e and coefficient α is a
function denoted Hαe (see Figure 1a) defined by:

Hαe (x, y) =
(
RR−1

y [e,α](x)[e, α](y), R−1
y [e, α](x)

)
,

2. the closed butterfly structure with branch size k, exponent e and coefficient α is a
function denoted Vαe (see Figure 1b) defined by:

Vαe (x, y) = (Rx[e, α](y), Ry[e, α](x)) .

Note that Hαe is always a permutation over (F2k )2, while Vαe maybe not. Moreover, Hαe is
an involution over (F2k )2, i.e., Hαe (Hαe (x, y)) = (x, y), which means that the compositional
inverse of Hαe is itself. Furthermore, the permutation Hαe and the function Vαe are CCZ-
equivalent [PUB16].

Let L be an extension of a field K and Gal(L/K) be the Galois group of L over K.
For any σ ∈ Gal(L/K) and any x ∈ L, let σ0(x) = x, σj(x) = σ(σj−1(x)). Then for a
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Fig. 11: The two types of butterfly structure with coefficient 𝛼 and exponent 𝑒.

Furthermore, the permutation H𝛼
𝑒 and the function V𝛼

𝑒 are CCZ-equivalent.

Pictures representing such functions are given in Figure 11. Our decomposition
of the 6-bit APN permutation and its CCZ-equivalent function have butterfly
structures: 𝑆ℐ = H2

6 and 𝑄ℐ = V2
6 . In fact, the proof of the CCZ-equivalence

of open and closed butterfly is identical to that of Lemma 2. The properties of
such structures for 𝑛 > 3 are studied in Section 4.1, in particular in Theorem 4.
In this section, we focus on the case 𝑛 = 3.

3.3 Propagation of Affine Mappings through the Components

As we have seen, affine-equivalence and CCZ-equivalence are key concepts in
our analysis of 𝑆ℐ . In this context, it is natural to extend our analysis not only
to outer affine layers applied before and after the permutation but also to the
inner affine permutation itself: what modifications can we make to this function
while preserving the APN property of the structure? In this section, we study
the “propagation” of affine layers in the sense defined below. Our study will show
some interesting properties of the structure and why changing some components
can lead to an affine equivalent structure.

Definition 3 (Propagation of Affine Layers). We say that an affine trans-
formation 𝐴 propagates through a component 𝐶 if there exists an affine trans-
formation 𝐴′ such that 𝐶 ∘𝐴 = 𝐴′ ∘ 𝐶.

Note that this definition is another way of looking at self-equivalence: indeed,
𝐶 ∘𝐴 = 𝐴′ ∘ 𝐶 is equivalent to 𝐶 = 𝐴′−1 ∘ 𝐶 ∘𝐴.

Theorem 2. Consider the two permutations of F6
2 with structures shown in

Figure 12, where 𝐴,𝐵 : F3
2 → F3

2 are some linear bijections,

𝑀 =

[︂
𝑝 𝑞
𝑟 𝑠

]︂

is an invertible matrix operating on column-vectors, 𝑝, 𝑞, 𝑟, 𝑠 are 3 × 3 sub-
matrices over F2 and 𝑎, 𝑏, 𝑐, 𝑑 are constants of F23 . Assume also that 𝑞 is in-
vertible. Then both structures are affine-equivalent for any choice of 𝑀 (with 𝑞

15

Figure 1: The butterfly structures.

given polynomial w(t) =
∑l
j=0 cjt

j ∈ L[t], w(σ) acting on the element x is defined as
w(σ)x =

∑l
j=0 cjσ

j(x). The following lemma characterizes the size of solution space of
w(σ)x = 0 and will be of use in the sequel.

Lemma 1 (See [GQ09]). Let L be a cyclic Galois extension of K of degree n and suppose
that σ generates the Galois group of L over K. Let m be an integer satisfying 1 ≤ m ≤ n
and w(t) be a polynomial of degree m in L[t]. Let

R = {x ∈ L : w(σ)x = 0}.

Then we have dimK R ≤ m.

It is well known that the Frobenius automorphism σ(x) = x2 generates the cyclic group
Gal(F2k/F2) ∼= Z/kZ. Moveover, if gcd(i, k) = 1, then σi(x) = x2i is also a generator. We
have the following corollary.

Corollary 1. Suppose k and i are two integers such that gcd(i, k) = 1. For any c1, c2, c3 ∈
F2k which are not all zero, the following equation

c1x
22i

+ c2x
2i

+ c3x = 0

has at most 4 solutions in F2k .

Moreover, if k is an odd integer and gcd(i, k) = 1, then gcd(2i, k) = 1. The next
corollary is obvious.

Corollary 2. Suppose k is an odd integer and gcd(i, k) = 1. For any c1, c2, c3 ∈ F2k

which are not all zero, the following equation

c1x
24i

+ c2x
22i

+ c3x = 0

has at most 4 solutions in F2k .

3 Butterfly Structures with α 6= 0, 1
In this section we shall study the butterfly structures with α 6= 0, 1 for odd branch sizes k,
and give their differential uniformity, algebraic degree and nonlinearity. Below we make
the convention that k is always an odd positive integer unless explicitly mentioned.

For a given non-negative integer i, if gcd(i, k) = 1, then we have also gcd(2i, k) = 1,
which implies that gcd(2i ± 1, 2k − 1) = 1. So both mappings x 7→ x2i+1 and x 7→ x2i−1

are bijective over F2k .
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3.1 Differential Uniformity
In order to characterize the differential uniformity of the butterfly structures, we first
introduce a lemma.

Lemma 2. Let i be an integer such that gcd(i, k) = 1. Then for any α ∈ F2k with α 6= 0, 1,
the equation system in variables u, v

(αv + u)
(
α(αu+ v)2i

+ u2i
)

+ (αv + u)2i
(
α2i

(αu+ v) + u
)

= 0, (1)

(αv + u)(αu+ v) +
(
α2i

(αu+ v) + u
)(

α2i

(αv + u) + v
)

= 0, (2)

(αv + u)(αu+ v)2i

+
(
α2i

(αu+ v) + u
)(

α(αv + u)2i

+ v2i
)

= 0 (3)

holds over F2k if and only if u, v satisfy both αv + u = 0 and α2i(αu+ v) + u = 0.

Proof. The sufficiency is obvious. Now we consider the necessity, and suppose that at
least one of αv + u and α2i(αu+ v) + u is not equal to 0. Below we discuss three cases
separately.

1. αv + u = 0, α2i(αu + v) + u 6= 0. Then u 6= 0, v 6= 0, and Eqn. (2) implies(
α2i(αu+ v) + u

)
v = 0, which is impossible.

2. αv + u 6= 0, α2i(αu+ v) + u = 0. Then by Eqn. (2) we get αu+ v = 0. We further
have u = v = 0, which contradicts with αv + u 6= 0.

3. αv + u 6= 0, α2i(αu+ v) + u 6= 0.
We first claim that both u 6= 0 and v 6= 0. This is because: if u = 0, then v 6= 0. By

Eqn. (1) we have (α2i +α)2 = 0, which is impossible since α 6= 0, 1 and gcd(i, k) = 1.
If v = 0, then u 6= 0. By Eqn. (2) and (3), we have α2i+1+1 + α2i + α = 0 and
α2i+2 + α2i + α = 0 respectively. Hence, α2i+1+1 + α2i+2 = α2i+1(α2i + α) = 0,
which is impossible too.

Next we claim both α(αu + v)2i + u2i 6= 0 and αu + v 6= 0. Indeed, if α(αu +
v)2i + u2i = 0, then by Eqn. (1), we have αv + u = 0 or α2i(αu+ v) + u = 0, which
contradicts the hypothesis. If αu + v = 0, then we have αv + u 6= 0 and u 6= 0.
By Eqn. (1), we have (αv + u)u2i = (αv + u)2i

u, which can be reduced to that
u2i−1 = (αv+u)2i−1. Recall that x2i−1 is a permutation, we have u = αv+u, which
is impossible since α 6= 0 and v 6= 0.

By Eqn. (1) and (3), we have

(αv + u)2i

α(αu+ v)2i + u2i = αv + u

α2i(αu+ v) + u
= α(αv + u)2i + v2i

(αu+ v)2i .

For simplifying the above expressions, we denote α = β2i . Then β 6= 0, 1. From the
above equation we get

(αv + u)2i

(β(αu+ v) + u)2i = (β(αv + u) + v)2i

(αu+ v)2i ,

which is equivalent to

(αv + u)(αu+ v) = (β(αu+ v) + u)(β(αv + u) + v). (4)
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Compare the above equation with (2), and we get

(β(αu+ v) + u)(β(αv + u) + v) =
(
α2i

(αu+ v) + u
)(

α2i

(αv + u) + v
)
,

which can be further simplified as

(α2i

+ β)2(αu+ v)(αv + u) + (α2i

+ β)(u2 + v2) = 0.

Note that α2i + β = β22i + β 6= 0 since β 6= 0, 1 and gcd(2i, k) = 1, thus we divide
both sides of the above equation by α2i + β, and get

(α2i

+ β)(αu+ v)(αv + u) + u2 + v2 = 0.

Let u = λv, where λ 6= 0. So we have

(α2i+1 + αβ + 1)λ2 + (α2i

+ β)(α2 + 1)λ+ (α2i+1 + αβ + 1) = 0. (5)

The coefficient of λ2 does not vanish. Otherwise, we have Tr(α2i+1 + αβ + 1) =
Tr
(

(β2i+1)2i + β2i+1 + 1
)

= Tr(1) = 0, which is impossible since k is odd. Therefore,

divided by α2i+1 + αβ + 1, Eqn. (5) is equivalent to

λ2 + (α2i + β)(α2 + 1)
α2i+1 + αβ + 1

λ+ 1 = 0. (6)

Further by Eqn. (2), we get

(α2i+1+1 + α2i

+ α)λ2 + (α2i+1+2 + α2i+1
+ α2)λ+ (α2i+1+1 + α2i

+ α) = 0.

If α2i+1+1 + α2i + α = 0, since α2i+1+2 + α2i+1 + α2 = (α + 1)2(2i+1) + 1 6= 0, it
follows λ = 0, which is a contradiction. Divided by α2i+1+1 + α2i + α, the above
equation becomes

λ2 + α2i+1+2 + α2i+1 + α2

α2i+1+1 + α2i + α
λ+ 1 = 0. (7)

Each equation in the variable λ of (6) and (7), either has two solutions or has no
solution in F2k . Moreover, it is noticed that two solutions of each equation are of
the forms λ and λ−1, which means that the sets of solutions of two equations are
identical or non-intersected. If their intersection is empty, then at least one of Eqn.
(1)-(3) does not hold. If the two solution sets are identical, we must have

(α2i + β)(α2 + 1)
α2i+1 + αβ + 1

= α2i+1+2 + α2i+1 + α2

α2i+1+1 + α2i + α
.

We replace α with β2i , and reduce the above equation to

β22i+2i+1+1 + β22i+1 + β22i+2i

+ β2i+1
+ β2i+1 = 0, (8)

which is further equivalent to the following equation

β(2i+1)2
= (β2i

+ β)2i+1.

Recall that x2i+1 is a permutation over F2k , hence we have

β2i+1 + β2i

+ β = (β + 1)2i+1 + 1 = 0,

which contradicts with β 6= 0. Therefore, at least one of Eqn. (1)-(3) does not hold.
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So combining the above three cases, we get the conclusion.

Theorem 1. Let i be an integer such that gcd(i, k) = 1. For any 0 ≤ t ≤ k − 1, α ∈ F2k

with α 6= 0, 1, let Hαe and Vαe be the open and closed 2k-bit butterfly structures with exponent
e = (2i + 1)× 2t and coefficient α respectively. Then the differential uniformity of both Hαe
and Vαe are at most 4.

Proof. Since Hαe and Vαe are CCZ-equivalent, they have the same differential uniformity.
It is sufficient to prove that the differential uniformity of Vαe is at most 4. Besides, the
functions Vαe with exponent e = (2i + 1)× 2t are affine equivalent to the functions Vαe with
exponent e = 2i + 1. Thus we only consider the case where the exponent is equal to 2i + 1.

Let u, v, a, b ∈ F2k , where (u, v) 6= (0, 0). Then we need to prove that

Vαe (x, y) + Vαe (x+ u, y + v) = (a, b), (9)

namely, the equation system

(
α2i(αu+ v) + u

)
x2i +

(
α(αu+ v)2i + u2i

)
x

+(αu+ v)y2i + (αu+ v)2i

y = (αu+ v)2i+1 + u2i+1 + a,

(αv + u)x2i + (αv + u)2i

x+
(
α2i(αv + u) + v

)
y2i

+
(
α(αv + u)2i + v2i

)
y = (αv + u)2i+1 + v2i+1 + b

has at most 4 solutions in (F2k )2. Notice that this system is affine in variables x, y, then it
is enough to prove that the following linear system

(
α2i

(αu+ v) + u
)
x2i

+
(
α(αu+ v)2i

+ u2i
)
x+ (αu+ v)y2i

+ (αu+ v)2i

y = 0, (10)

(αv + u)x2i

+ (αv + u)2i

x+
(
α2i

(αv + u) + v
)
y2i

+
(
α(αv + u)2i

+ v2i
)
y = 0 (11)

has at most 4 solutions in (F2k )2. Below we consider two cases depending on whether
α2i(αu+ v) + u = 0 or not.

CASE 1 : α2i(αu+ v) + u = 0. Then we must have αu+ v 6= 0, otherwise, we have
u = v = 0, which leads to a contradiction. Further we have

α(αu+ v)2i

+ u2i

= α(αu+ v)2i

+
(
α2i

(αu+ v)
)2i

= (α22i

+ α)(αu+ v)2i

6= 0,

since α 6= 0, 1 and gcd(2i, k) = 1. Then Eqn. (10) can be written as

x = αu+ v

(α22i + α)(αu+ v)2i y
2i

+ 1
α22i + α

y. (12)

If αv + u = 0, Eqn. (11) implies vy2i + v2i

y = 0. Note that v 6= 0, thus y = 0 or y = v.
Since Eqn. (12) in x has exactly one solution for each y, thus the total number of solutions
of the equation system is equal to 2.

If αv + u 6= 0, we replace the x in Eqn. (11) by Eqn. (12) and get

A1y
22i

+A2y
2i

+A3y = 0,

where A1 = (αv+u)(αu+v)2i

(α22i +α)2i (αu+v)22i 6= 0, and A2, A3 are some expressions in α, u, v. By
Corollary 1, the above equation in y has at most 4 solutions. From Eqn. (12), x is uniquely
determined by y, thus the total number of solutions of the equation system is at most
equal to 4.
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CASE 2 : α2i(αu+ v) + u 6= 0.
If αv + u = 0, Eqn. (11) becomes vy2i + v2i

y = 0. Similarly we have y = 0 or y = v.
For each of y, Eqn. (10) in x has at most 2 solutions since the coefficient of x2i does not
vanish. Thus the total number of the solutions of the equation system is at most equal to
4.

If αv+u 6= 0, we multiply Eqn. (10) and (11) by αv+u and α2i(αu+v)+u respectively,
and then add them to eliminate x2i , obtaining

A4x+A5y
2i

+A6y = 0, (13)

where

A4 = (αv + u)
(
α(αu+ v)2i

+ u2i
)

+ (αv + u)2i
(
α2i

(αu+ v) + u
)
,

A5 = (αv + u)(αu+ v) +
(
α2i

(αu+ v) + u
)(

α2i

(αv + u) + v
)
,

A6 = (αv + u)(αu+ v)2i

+
(
α2i

(αu+ v) + u
)(

α(αv + u)2i

+ v2i
)
.

By Lemma 2, not all of A4, A5, A6 are equal to zero.
If A4 = 0, Eqn. (13) in y has at most 2 solutions. For each y, Eqn. (10) in x has at

most 2 solutions. Hence the total number of solutions of the equation system is at most
equal to 4.

If A4 6= 0 and A5 = A6 = 0, then x = 0. It is easy to observe that not both of
α2i(αv+u)+v and α(αv+u)2i +v2i are equal to 0. Otherwise, we get (α22i +α)(αv+u)2i = 0
implying that α = 0 or α = 1 since gcd(2i, k) = 1, which has been excluded by the
hypothesis. When x = 0, since the coefficients in Eqn. (11) cannot simultaneously vanish,
Eqn. (11) has at most 2 solutions in y. Hence the total number of the solutions of the
equation system is at most equal to 2.

If A4 6= 0, A5 = 0, A6 6= 0, we combine Eqn. (10) and (13) to eliminate x, and get

A7y
2i

+A8y = 0, (14)

where A7 is an expression in α, u, v and A8 =
(
α(αu+ v)2i + u2i

)
A6
A4

+ (αu+v)2i . Indeed
we have A8 6= 0 (see Appendix A), so Eqn. (14) in y has at most 2 solutions. For each
y, Eqn. (13) in x has exactly one solution. Hence the equation system has at most 2
solutions.

If A4 6= 0 and A5 6= 0, similarly we eliminate x from Eqn. (11) and get

A9y
22i

+A10y
2i

+A11y = 0, (15)

where A9 = (αv+u)
(
A5
A4

)2i

6= 0 and A10, A11 are some expressions in α, u, v. By Corollary
1, Eqn. (15) in y has at most 4 solutions. For each y, Eqn. (13) in x has exactly one
solution. Hence Eqn. (9) has at most 4 solutions.

Combining the discussion of all cases, we get that the above linear equation system
has at most 4 solutions in (F2k )2. So the conclusion follows.

Remark 1. In [PUB16], it has been proved that the 6-bit APN permutation described by
Dillon et al. is affine equivalent to the butterfly structure H2

6, where 2 = 0 ·20 +1 ·21 +0 ·22

is viewed as an element 0 · 1 + 1 ·X + 0 ·X2 = X in F2 [X]/〈X3 +X + 1〉. In [CDP17],
the authors showed that when e = 3, the butterflies do not contain any APN permutation
except the foregoing one. However, when k > 3, e 6= 3, the pairs (e, α) such that Hαe is
APN are not yet found. Perrin et al. verified experimentally that butterfly structures are
never differentially 4-uniform for k = 4, 8, 10, while for k = 6, there does exist α such that
Hαe (e.g., Hα5 ) is differentially 4-uniform.
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3.2 Algebraic Degree
When e = 2i + 1, the two components of Vαe (x, y) are equal to (αx+ y)2i+1 + x2i+1 and
(x+ αy)2i+1 + y2i+1 respectively. It is obvious that they are quadratic. Below we consider
the open butterfly structure Hαe , and we use the same method as in [CDP17] to determine
its degree. First the following lemma is needed.

Lemma 3 (See [Nyb93]). Let i be a non-negative integer such that gcd(i, k) = 1. Then
the compositional inverse of x2i+1 over F2k is also a power function xt, and its algebraic
degree is k+1

2 , where t =
∑ k−1

2
j=0 22ji mod (2k − 1).

Now we consider the second component of the open butterfly Hαe , which is equal to
(x+ y2i+1)

1
2i+1 + αy. Its algebraic degree is mainly determined by the algebraic degree of

the first term. By Lemma 3, we have

(x+ y2i+1)
1

2i+1 =
∑

J⊆[0,(k−1)/2]

∏
j∈J

y(2i+1)·22ji

︸ ︷︷ ︸
deg≤2|J|

∏
j∈J

x22ji

︸ ︷︷ ︸
deg=(k+1)/2−|J|

,

where J is the complement of J in [0, (k− 1)/2]. The algebraic degree of each term in this
sum is at most equal to (k + 1)/2 + |J | = k + 1− |J |.

If J = ∅, then x is absent from the term, so the corresponding term is equal to y and
has algebraic degree 1.

If |J | = 1, then the algebraic degree of these terms are at most equal to k + 1− 1 = k.
Moveover, if J = {j} for some j, then the term is equal to

x22ji

y2k−(2i+1)·22ji

= x22ji

y(2k−1)−(2(2j+1)i+22ji−1).

If j = 0, then the term is equal to xy(2k−1)−2i and has algebraic degree 1 + k − 1 = k. If
j = (k − 1)/2, then the term is equal to x2(k−1)i

y(2k−1)−2(k−1)i and has algebraic degree
1 + k − 1 = k. If j 6= 0, (k − 1)/2, then 2ji 6≡ 0 (mod k), (2j + 1)i 6≡ 0 (mod k) and
2ji 6≡ (2j + 1)i (mod k) since gcd(i, k) = 1. For any integer l, l denotes the unique integer
r, 0 ≤ r < k such that l = qk + r with q ∈ Z. Then 0 < 2ji < k, 0 < (2j + 1)i < k and
2ji 6= (2j + 1)i. Hence its algebraic degree is

1 + k − w2(2(2j+1)i + 22ji − 1) =
{
k − 2ji if 2ji < (2j + 1)i,
k − (2j + 1)i if 2ji > (2j + 1)i,

which is always less than k. Therefore, this component has two terms of degree k,
corresponding to j = 0 and j = (k − 1)/2. Notice that i (mod k) does not vanish since
gcd(i, k) = 1, then those two terms are distinct.

When |J | > 1, the algebraic degree of these terms are at most equal to k+1−2 = k−1.
Thus, the second component of Hαe has algebraic degree k.

Next we consider the first component of Hαe , which is equal to(
y + α

((
x+ y2i+1

) 1
2i+1 + αy

))2i+1

+
((

x+ y2i+1
) 1

2i+1 + αy

)2i+1

.

Let z =
(
x+ y2i+1

) 1
2i+1 , then from the above expression we deduce that

(y + α (z + αy))2i+1 + (z + αy)2i+1

=
(

1 + α2i+1+2 + α2 + α2i+1
+ α2i+1

)
y2i+1 +

(
α2i+1 + 1

)
z2i+1

+
(
α2i+1+1 + α+ α2i

)
y2i

z +
(
α2i+2 + α2i

+ α
)
yz2i

.
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The first two terms have algebraic degree at most two. So the terms of highest algebraic
degree in this component are of the forms y2i

z or yz2i .
Since z has algebraic degree k, we deduce that the first component of Hαe has algebraic

degree at most k + 1. The only terms in this component which may have algebraic degree
k + 1 correspond to terms of algebraic degree k in z, namely (omitting the coefficients):

y2i

z, j = 0 : y2i

xy(2k−1)−2i = xy2k−1,

y2i

z, j = k−1
2 : y2i

x2(k−1)i

y(2k−1)−2(k−1)i = x2(k−1)i

y(2k−1)−(2(k−1)i−2i),

yz2i

, j = 0 : y
(
xy(2k−1)−2i

)2i

= x2i

y(2k−1)−(22i−1),

yz2i

, j = k−1
2 : y

(
x2(k−1)i

y(2k−1)−2(k−1)i
)2i

= xy2k−1.

Only the first and the last terms have algebraic degree k + 1. Therefore, the term of
algebraic degree k + 1 in the first component of Hαe is(
α2i+1+1 + α+ α2i

)
xy2k−1 +

(
α2i+2 + α2i

+ α
)
xy2k−1 =

(
α2i+1+1 + α2i+2

)
xy2k−1.

When α 6= 0, 1, then α2i+1+1 + α2i+2 6= 0 since gcd(i, k) = 1. It follows that the first
component of Hαe thus the whole function has algebraic degree k + 1. In the case of α = 1,
the coefficient α2i+1+1 + α2i+2 = 0, so the whole function has algebraic degree k because
of the second component.

Theorem 2. Let i be an integer such that gcd(i, k) = 1. For any 0 ≤ t ≤ k−1, α ∈ F∗2k , let
Hαe and Vαe be the open and closed 2k-bit butterfly structures with exponent e = (2i+ 1)×2t
and coefficient α respectively. Then

1. The closed butterfly Vαe has algebraic degree 2.

2. The open butterfly Hαe has algebraic degree k + 1 or k. It is equal to k if and only if
α = 1.

We will use the following lemma in next section, which gives the connection between
the Walsh spectrum and algebraic degree of a function over F2n .

Lemma 4 (See [Lan90, CCZ98]). Let F be any function over F2n . If there exists an
integer 1 ≤ l ≤ n such that 2l

∣∣WF (a, b) for any a, b ∈ F2n with b 6= 0, then the algebraic
degree of F (x) is at most equal to n− l + 1.

3.3 Nonlinearity
In this section we consider the nonlinearity of butterfly structures. We make use of the
following lemmata.

Lemma 5. Let i be an integer such that gcd(i, k) = 1 and α ∈ F2k with α 6= 0, 1. Then
for any c, d ∈ F2k , the equations α2i

c+ αd = αc+ α2i

d = 0 hold over F2k if and only if
c = d = 0.

Proof. The sufficiency is obvious. For the necessity, we have (α2i + α)(c+ d) = 0. Note
that α2i + α 6= 0 since α 6= 0, 1 and gcd(i, k) = 1. Hence, we get c = d and further deduce
that α2i

c+ αd = (α2i + α)c = 0, implying that c = d = 0.
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Lemma 6. Let i be an integer such that gcd(i, k) = 1. Then for any α ∈ F2k with α 6= 0, 1,
the following equation system in variables c, d

(
α2i+1c+ c+ d

)(
α2i

c+ αd
)2i

+
(
α2i+1c+ c+ d

)2i (
αc+ α2i

d
)

= 0, (16)(
αc+ α2i

d
)2i (

α2i

c+ αd
)2i

+
(
α2i+1c+ c+ d

)2i (
α2i+1d+ c+ d

)2i

= 0, (17)(
α2i

c+ αd
)(

α2i

c+ αd
)2i

+
(
α2i+1c+ c+ d

)2i (
α2i+1d+ c+ d

)
= 0 (18)

holds over F2k if and only if c, d satisfy both α2i+1c+ c+ d = 0 and α2i

c+ αd = 0.

Proof. The sufficiency is trivial. Below we consider the necessity. Suppose that at least
one of α2i+1c+ c+ d and α2i

c+ αd is not equal to 0.
If c = 0, by Eqn. (17), we have d2i+1 = 0, which contradicts the assumption. Similarly

for the case d = 0, Eqn. (17) can be written as c2i+1 = 0. So we always assume that c 6= 0
and d 6= 0.

First we claim that α2i+1c + c + d 6= 0 and α2i

c + αd 6= 0. This is because: if
α2i+1c + c + d = 0, then by Eqn. (18) we have α2i

c + αd = 0, which contradicts the
assumption. Similarly, if α2i

c+ αd = 0, then by Lemma 5, we have αc+ α2i

d 6= 0. Hence,
from Eqn. (16) we have α2i+1c+ c+ d = 0, which contradicts the assumption as well. So
we always consider both α2i+1c+ c+ d 6= 0 and α2i

c+ αd 6= 0.
Note that αc+ α2i

d 6= 0 and α2i+1d+ c+ d 6= 0, otherwise, by Eqn. (16) and (18) we
have α2i+1c+ c+ d = 0 or α2i

c+ αd = 0, a contradiction. Thus by Eqn. (16) and (17),
we get

α2i+1c+ c+ d

αc+ α2id
=

(
α2i+1c+ c+ d

)2i

(
α2ic+ αd

)2i =

(
αc+ α2i

d
)2i

(
α2i+1d+ c+ d

)2i ,

and obtain the following equation(
α2i+1c+ c+ d

)(
α2i+1d+ c+ d

)2i

=
(
αc+ α2i

d
)(

αc+ α2i

d
)2i

.

To simplify the expressions in the procedure of deductions, let c = λd and γ = α2i , where
λ 6= 0, γ 6= 0, 1. Then the above equation can be rewritten as

λ2i+1 + (γ2 + 1)λ2i

+ (αγ2i+2 + γ2i+1 + αγ2i

+ αγ + 1)λ+ 1 = 0. (19)

Similarly, Eqn. (18) can be rewritten as

λ2i+1 + (αγ2i+2 + γ2i+1 + αγ2i

+ αγ + 1)λ2i

+ (γ2 + 1)λ+ 1 = 0. (20)

We add Eqn. (19) onto Eqn. (20) and get

(αγ2i+2 + γ2i+1 + αγ2i

+ αγ + γ2)λ2i

+ (αγ2i+2 + γ2i+1 + αγ2i

+ αγ + γ2)λ = 0. (21)

Recall that αγ2i+2+γ2i+1+αγ2i +αγ+γ2 = α22i+2i+1+1+α22i+2i +α22i+1+α2i+1 +α2i+1 6=
0 by Eqn. (8). then Eqn. (21) implies λ2i + λ = 0, that is, λ = 1, which means c = d.
Further by Eqn. (17) we have α2i+1 + α2i + α = (α+ 1)2i+1 + 1 = 0, which implies α = 0
and leads to a contradiction. So we can get the desired conclusion.
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Lemma 7. Let i be an integer such that gcd(i, k) = 1. Then for any (c, d) ∈ F2k × F2k

with (c, d) 6= (0, 0), the following equation system in the variables u, v

(
α2i+1c+ c+ d

)2i

u22i

+
(
α2i+1c+ c+ d

)
u

+
(
αc+ α2i

d
)2i

v22i

+
(
α2i

c+ αd
)
v = 0, (22)(

α2i

c+ αd
)2i

u22i

+
(
αc+ α2i

d
)
u

+
(
α2i+1d+ c+ d

)2i

v22i

+
(
α2i+1d+ c+ d

)
v = 0 (23)

has at most 4 solutions in (F2k )2.

Proof. We consider two cases depending on whether α2i+1c+ c+ d = 0 or not.
CASE 1 : α2i+1c+ c+ d = 0. Eqn. (22) can be reduced to(

αc+ α2i

d
)2i

v22i

+
(
α2i

c+ αd
)
v = 0. (24)

If αc+ α2i

d = α2i

c+ αd = 0, then we have c = d = 0. A contradiction. Hence at least
one of αc+ α2i

d and α2i

c+ αd is nonzero. So Eqn. (24) in v has at most 2 solutions by
Corollary 1. Similarly, for each v, Eqn. (23) in u has at most 2 solutions as well. Hence
the total numbers of solutions of the equation system is at most equal to 4.

CASE 2 : α2i+1c+ c+ d 6= 0.
If α2i

c+ αd = 0, then αc+ α2i

d 6= 0. Eqn. (23) is reduced to(
αc+ α2i

d
)
u =

(
α2i+1d+ c+ d

)2i

v22i

+
(
α2i+1d+ c+ d

)
v. (25)

When α2i+1d+ c+ d = 0, then u = 0. Substitute it into Eqn. (22), and we have v = 0.
Hence the equation system has only the zero solution. When α2i+1d+ c+d 6= 0, substitute
Eqn. (25) into Eqn. (22), and we obtain the following equation

B1v
24i

+B2v
22i

+B3v = 0,

where B1 =
(
α2i+1c+c+d

)2i(
α2i+1d+c+d

)23i

(αc+α2id)22i 6= 0, and B2, B3 are some expressions in α, c, d.

By Corollary 2, the above equation in v has at most 4 solutions. For each solution v,
Eqn. (25) in u has only one solution. Hence the total numbers of solutions of the equation
system is at most equal to 4.

If α2i

c+αd 6= 0, we multiply Eqn. (22) and (23) by
(
α2i

c+ αd
)2i

and
(
α2i+1c+ c+ d

)2i

respectively, and then add them together to eliminate u22i . Finally we get the following
equation

B4u+B5v
22i

+B6v = 0, (26)

where

B4 =
(
α2i+1c+ c+ d

)(
α2i

c+ αd
)2i

+
(
α2i+1c+ c+ d

)2i (
αc+ α2i

d
)
,

B5 =
(
αc+ α2i

d
)2i (

α2i

c+ αd
)2i

+
(
α2i+1c+ c+ d

)2i (
α2i+1d+ c+ d

)2i

,

B6 =
(
α2i

c+ αd
)(

α2i

c+ αd
)2i

+
(
α2i+1c+ c+ d

)2i (
α2i+1d+ c+ d

)
.
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By Lemma 6, not all of B4, B5, B6 are equal to zero.
If B4 = 0, Eqn. (26) in v has at most 2 solutions. For each solution v, Eqn. (22) in u

has at most 2 solutions. Hence the total number of solutions of the equation system is at
most equal to 4.

If B4 6= 0 and B5 = B6 = 0, then u = 0. Recall that α2i

c+ αc and αc+ α2i

d cannot
be equal to 0 simultaneously. Substitute u = 0 into Eqn. (22), and we obtain an equation
in v with coefficient not all zero, which has at most 2 solutions. Hence the total number of
solutions of the equation system is at most equal to 2.

If B4 6= 0 and B5 = 0, B6 6= 0, then substitute Eqn. (26) into Eqn. (23), and we get

B7v
22i

= 0,

where B7 =
(
α2i

c+ αd
)2i

B22i

6 +
(
α2i+1d+ c+ d

)2i

B22i

4 . With a tedious verification
(see Appendix B), we have B7 6= 0. So v = 0, which implies that u = 0. It is shown that
the equation system has only the zero solution.

If B4 6= 0 and B5 6= 0, we substitute Eqn. (26) into Eqn. (23) and get

B8v
24i

+B9v
22i

+B10v = 0, (27)

where B8 =
(
α2i

c+ αd
)2i (

B5
B4

)22i

6= 0 and B9, B10 are some expressions in α, c, d. By
Corollary 2, Eqn. (27) in v has at most 4 solutions. For each solution v, Eqn. (26) in u
has only one solution. Hence the total number of solutions of the equation system is at
most equal to 4.

Combining the two cases, we complete the proof.

Since Vαe is quadratic, then its Walsh spectrum can be easily determined by the
number of constant derivatives of its components, i.e., the dimension of the radical of the
corresponding quadratic form (see e.g. [CDP17, Proposition 1], [MS77, Chapter 15] or
[CCCF01, Appendix A]). In the following we give the detailed proof.

Theorem 3. Let i be an integer such that gcd(i, k) = 1. For any 0 ≤ t ≤ k − 1, α ∈ F2k

with α 6= 0, 1, let Hαe and Vαe be the open and closed 2k-bit butterfly structures with exponent
e = (2i + 1)× 2t and coefficient α respectively. Then the nonlinearity of both Hαe and Vαe
are 22k−1 − 2k. Furthermore, their extended Walsh spectrum are {0, 2k, 2k+1}.

Proof. By the CCZ-equivalent relation of Hαe and Vαe , here we only consider Vαe with
e = 2i + 1. For convenience, we denote F (x, y) = Vαe (x, y).

Let a, b, c, d ∈ F2k , where (c, d) 6= (0, 0). Then we have

WF ((a, b), (c, d)) =
∑

x,y∈F2k

(−1)Tr(c(αx+y)2i+1+cx2i+1+d(x+αy)2i+1+dy2i+1+ax+by)

=
∑

x,y∈F2k

(−1)f(x,y),

where

f(x, y) =Tr
(

(α2i+1c+ c+ d)x2i+1 + (α2i+1d+ c+ d)y2i+1

+(α2i

c+ αd)x2i

y + (αc+ α2i

d)xy2i

+ ax+ by
)
.
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Note that Tr(x) = Tr(x2i) for any x ∈ F2k , we have

f(x, y) + f(x+ u, y + v)

=Tr
[(

(α2i+1c+ c+ d)2i

u22i

+ (α2i+1c+ c+ d)u + (αc+ α2i

d)2i

v22i

+ (α2i

c+ αd)v
)
x2i

+
(

(α2i

c+ αd)2i

u22i

+ (αc+ α2i

d)u+ (α2i+1d+ c+ d)2i

v22i

+ (α2i+1d+ c+ d)v
)
y2i
]

+ f(u, v).

So

(WF ((a, b), (c, d)))2 =
∑

x,y∈F2k

(−1)f(x,y) ·
∑

u,v∈F2k

(−1)f(x+u,y+v)

=
∑

x,y,u,v∈F2k

(−1)f(x,y)+f(x+u,y+v)

= 22k ·
∑

u,v∈R(c,d)

(−1)f(u,v),

where the radical R(c, d) is the solution set of the following equation system in variables
u, v
(
α2i+1c+ c+ d

)2i

u22i +
(
α2i+1c+ c+ d

)
u+

(
αc+ α2i

d
)2i

v22i +
(
α2i

c+ αd
)
v = 0,(

α2i

c+ αd
)2i

u22i +
(
αc+ α2i

d
)
u+

(
α2i+1d+ c+ d

)2i

v22i +
(
α2i+1d+ c+ d

)
v = 0.

Denote m = dimF2 R(c, d). By Lemma 7, we have 0 ≤ m ≤ 2. Note that f(x, y) + f(x+
u, y + v) = f(u, v) for (u, v) ∈ R(c, d) and (x, y) ∈ (F2k )2. This implies that f(u, v) is
linear over R(c, d). Since (0, 0) ∈ R(c, d), f(u, v) is balanced or constant 0 over R(c, d).
Thus

(WF ((a, b), (c, d)))2 =
{

22k+m f(u, v) = 0 over R(c, d),
0 otherwise.

As WF ((a, b), (c, d)) is an integer, m must be even, i.e., m = 0 or m = 2. Hence,
WF ((a, b), (c, d)) ∈ {0,±2k,±2k+1}.

Since Hαe is a permutation over (F2k )2, WF ((0, 0), (c, d)) = 0 for any (c, d) ∈ (F2k )2

with (c, d) 6= (0, 0), which means 0 ∈ ΛF . Besides we also have 2k+1 ∈ ΛF or −2k+1 ∈
ΛF . Otherwise, by Parseval’s relation we must have WF ((a, b), (c, d)) = ±2k for any
(a, b), (c, d) ∈ (F2k )2 with (c, d) 6= (0, 0), which is impossible. If ±2k /∈ ΛF , by Lemma 4,
the algebraic degree is at most equal to 2k − (k + 1) + 1 = k, which contradicts that the
algebraic degree of Hαe is k + 1. Therefore, its extended Walsh spectrum is {0, 2k, 2k+1},
and the nonlinearity NL(F ) = 22k−1 − 2k.

Remark 2. Recall that the Walsh spectrum of Gold function is {0,±2k+1}, which is
different from that of butterfly structures. Hence, the butterfly structures Hαe and Vαe
are CCZ-inequivalent to the Gold function. Besides, in the proof of Lemma 7, there
exists some cases that the solution set R(c, d) has only one solution (0, 0) (e.g. the case
of αc + α2i

d = 0 and α2i

c + αd 6= 0), namely, m = 0. Hence, we also have 2k ∈ ΛF or
−2k ∈ ΛF . From the proof of above theorem, we have actually m = 0 or m = 2, which
means that the equation system in Lemma 7 has either one solution or 4 solutions.

4 Butterfly Structures with α = 1
In this section we will discuss the butterflies with trivial coefficient α = 1. It is known
that the butterfly structure H1

e is functionally equivalent to the 3-round Feistel structure
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constructed by Li and Wang [LW14b]. They proved that its differential spectrum is {0, 4}
and its algebraic degree is k (or see Section 3.2).

Moreover, in [PUB16, Theorem 5], the author showed that when the exponent e = 22i+1
for some i, the closed 2k-bit butterfly V1

e is linear equivalent to the monomial xe. When
k is odd and gcd(i, k) = 1, it is easy to see that xe is a differentially 4-permutation over
F22k . By the linear equivalence, V1

e is a differentially 4-permutation and has the Gold-type
Walsh spectrum {0,±2k+1}.

In this section we give a direct proof of these results. In Section 4.1, when gcd(i, k) = 1
we show that V1

e with exponent e = (2i + 1)× 2t is a permutation over (F2k )2. In Section
4.2, we give a proof that the butterflies with α = 1 have the best known nonlinearity. We
still suppose that k is an odd positive integer.

4.1 The Bijective Property of the Closed Butterfly Structures
When α = 1, e = 2i + 1, the closed butterfly structure V1

e becomes

V1
e(x, y) =

(
(x+ y)2i+1 + x2i+1, (x+ y)2i+1 + y2i+1

)
.

Proposition 1. Let i be an integer such that gcd(i, k) = 1. For any 0 ≤ t ≤ k − 1, let V1
e

be the closed 2k-bit butterfly structure with exponent e = (2i + 1)× 2t. Then V1
e(x, y) is a

permutation over (F2k )2.

Proof. Similarly as the proof of Theorem 1, we only consider the case e = 2i + 1. For any
u, v ∈ F2k with (u, v) 6= (0, 0), it is sufficient to show that

V1
e(x, y) + V1

e(x+ u, y + v) = (0, 0),

namely, the system of equations{
vx2i + v2i

x+ (u+ v)y2i + (u+ v)2i

y = (u+ v)2i+1 + u2i+1,

(u+ v)x2i + (u+ v)2i

x+ uy2i + u2i

y = (u+ v)2i+1 + v2i+1,

has no solution in (F2k )2. We replace the first equation by the sum of the two equations
and consider the following equivalent system of equations{

ux2i

+ u2i

x+ vy2i

+ v2i

y = u2i+1 + v2i+1, (28)
(u+ v)x2i

+ (u+ v)2i

x+ uy2i

+ u2i

y = (u+ v)2i+1 + v2i+1. (29)

First, if u = 0, then v 6= 0. So Eqn. (28) can be reduced to

vy2i

+ v2i

y = v2i+1,

which is equivalent to (v + y)2i+1 = y2i+1. Therefore, Eqn. (28) has no solution in (F2k )2

since x2i+1 is a permutation over F2k .
Similarly we have the same conclusion for the cases u 6= 0, v = 0 and u = v 6= 0. Since

their proof procedures are almost identical to the above, here we do not repeat them.
Below we suppose that u 6= 0, v 6= 0, and u 6= v. We multiply Eqn. (28) and Eqn. (29)

by u and v respectively, then add them together to eliminate y2i , and get

y = 1
C2

(C1x
2i

+ C3x+ C1u
2i

),

where
C1 = u2 + uv + v2,

C2 = u2i

v + uv2i

,

C3 = u2i+1 + u2i

v + v2i+1.
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It is easy to see that C1 6= 0, otherwise we have (uv )2 + u
v + 1 = 0, which is impossible since

k is odd. We also have C2 6= 0 since u 6= v. Substitute the above equation into Eqn. (28),
multiply both sides by C2i+1

2 , and we obtain

vC2C
2i

1 x
22i

+
(
uC2i+1

2 + (vC2)2i

C1 + vC2C
2i

3

)
x2i

+
(
u2i

C2i+1
2 + (vC2)2i

C3

)
x

= vC2C
2i

1 u
22i

+ (vC2)2i

C1u
2i

+ C2i+1
2

(
u2i+1 + v2i+1

)
,

which can be further reduced to the following equation

C2x
22i

+
(
u22i

v + uv22i
)
x2i

+ C2i

2 x = u22i

C2 + uC2i

2 .

Divide both sides by u22i+2i+1, and we have(
v

u
+
( v
u

)2i)(x
u

)22i

+
(
v

u
+
( v
u

)22i)(x
u

)2i

+
(( v

u

)2i

+
( v
u

)22i)
x

u

= v

u
+
( v
u

)2i

+
( v
u

)2i

+
( v
u

)22i

.

(30)

Denote w = v
u +

(
v
u

)2i

, z = x
u +

(
x
u

)2i

, then we have w 6= 0. The above equation is
equivalent to

w(z + 1)2i

+ w2i

(z + 1) = 0. (31)

It is to check that Eqn. (31) has two solutions z = 1 and z = w + 1 since gcd(i, k) = 1.
If z = 1, i.e., xu +

(
x
u

)2i

= 1. Note that 1 = Tr(1) 6= Tr
(
x
u +

(
x
u

)2i)
= 0, it follows that

Eqn. (30) has no solution in F2k .
If z = w + 1, i.e., xu +

(
x
u

)2i

= v
u +

(
v
u

)2i

+ 1. Thus we have (xu + v
u ) + (xu + v

u )2i = 1.
In this case Eqn. (30) has no solution in F2k as well.

So the conclusion follows.

Remark 3. We have also investigated experimentally the bijective property of the closed
butterfly structure with other α. However, we could not find an α 6= 1 such that Vαe is
also a permutation over (F2k )2. We conjecture that Vαe is a permutation over (F2k )2 if and
only if α = 1.

4.2 Nonlinearity
First we give a lemma which says that the dimension of the radical of the corresponding
quadratic form of V1

e is at most equal to 2.

Lemma 8. Let i be an integer such that gcd(i, k) = 1. Then for any (c, d) ∈ (F2k )2 with
(c, d) 6= (0, 0), the following system of equations in variables u and v{

du2i + (du)2k−i + (c+ d)v2i + ((c+ d)v)2k−i = 0,
(c+ d)u2i + ((c+ d)u)2k−i + cv2i + (cv)2k−i = 0

(32)

has at most 4 solutions in (F2k )2.

Proof. We add the first equation to the second equation and obtain{
du2i + (du)2k−i + (c+ d)v2i + ((c+ d)v)2k−i = 0,
cu2i + (cu)2k−i + dv2i + (dv)2k−i = 0.

(33)
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Then raising both equations to the 2ith power, we deduce that{
d2i

u22i

+ du+ (c+ d)2i

v22i

+ (c+ d)v = 0, (34)
c2i

u22i

+ cu+ d2i

v22i

+ dv = 0. (35)

If c = 0, then d 6= 0 and Eqn. (35) in v has 2 solutions. For each solution v, Eqn. (34)
in u has at most 2 solutions. Hence the equation system (32) has at most 4 solutions.
Similarly we have the same conclusion for the cases d = 0, c 6= 0 and c = d 6= 0.

Now we suppose that c 6= 0, d 6= 0 and c 6= d. We multiply Eqn. (34) and (35) by
c2i and d2i respectively, then add them together to eliminate u22i , finally substitute the
expression of u into Eqn. (35) and get

D1v
24i

+D2v
22i

+D3v = 0,

where D1 = c2i (c2+cd+d2)23i

(c2id+cd2i )2i , and D2, D3 are some expressions in c, d. From the proof

of the Proposition 1, we know c2 + cd + d2 6= 0 and c2i

d + cd2i 6= 0, thus D1 6= 0. By
Corollary 2, this equation in v has at most 4 solutions. Since the solution u is uniquely
determined by v, the equation system (32) has at most 4 solutions.

Therefore, the whole system has at most 4 solutions.

Proposition 2. Let i be an integer such that gcd(i, k) = 1. For any 0 ≤ t ≤ k − 1, let H1
e

and V1
e be the open and closed 2k-bit butterfly structures with exponent e = (2i + 1)× 2t

respectively. Then the nonlinearity of both H1
e and V1

e are 22k−1 − 2k. Furthermore, their
Walsh spectrum are {0,±2k+1}.
Proof. The proof of nonlinearity of V1

e is identical to the proof of the nonlinearity
of Vαe in Theorem 3, here we also have m ≤ 2 by Lemma 8. It is implied that
WV1

e
((a, b), (c, d)) ∈ {0,±2k,±2k+1} for any a, b, c, d ∈ F2k with (c, d) 6= (0, 0). Fur-

ther, since V1
e is a permutation, all its nonzero components are balanced, thus cannot

be bent. It follows that ±2k /∈ ΛV1
e
. Therefore, ΛV1

e
= {0,±2k+1}, and the nonlinearity

NL(V1
e) = 22k−1 − 2k. Finally, by CCZ-equivalence, we get the conclusions.

Remark 4. From the proof of above theorem, we have actually m = 2, which means that
the equation system in Lemma 8 has exactly 4 solutions for any (c, d) ∈ (F2k )2 with
(c, d) 6= (0, 0).

5 Conclusion and Future Work
In the paper we study the functions of butterflies over (F2k )2 with odd k and show that
these functions with exponent e = 2i + 1 have the differential uniformity at most 4 and
the algebraic degree are also very high. Moveover, we prove that their nonlinearity are
equal to 22k−1 − 2k in the general case, which also give another complete solution to an
open problem raised in [PUB16], which has been independently solved by Canteaut et al.
in [CDP17]. Besides, we also study the functions with trivial coefficient α = 1, and show
that the function constructed from closed butterfly is also bijective. Hence, we obtain
many new differentially 4-uniform permutations with the best known nonlinearity and
high algebraic degree. These functions provide more choices for the design of S-boxes.

The research of butterfly structures also raise the following problem: To give a char-
acterization of the pair (e, α) such that Hαe has lower differential uniformity over (F2k )2

with even k. Besides, how to find more classes of differentially 4-uniform permutations
with the best known nonlinearity and high algebraic degree from other functions over
subfields or other structures is still very interesting and worthy of a further investigation.
The following question is still open: Is there a tuple (k, e, α) where k > 3 and e > 3 are
integers, and α is a nonzero element in F2k such that Hαe is APN over (F2k )2?
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A The Proof of A8 6= 0
Suppose that A8 = 0. Then(

α(αu+ v)2i

+ u2i
)
A6 = (αu+ v)2i

A4.

Note that α2i(αu+ v) + u 6= 0, we substitute A4 and A6 into the above equation and get

(αv + u)(αu+ v) = (β(αu+ v) + u)(β(αv + u) + v), (36)

where α = β2i .
If u = 0, then v 6= 0. From Eqn. (36) and A5 = 0, we have β2i+2 + β2i + β = 0 and

α2i+1+1 + α2i + α = 0. We add the first equation raised by the 2ith power to the second
equation and get α2i+1(α2i + α) = 0, which is impossible.

Similarly we have the same conclusion for the case v = 0, u 6= 0. Hence we only consider
that u 6= 0, v 6= 0. Note that A5 = 0 and Eqn. (36) are the same as Eqn. (2) and (4),
according to the proof of Lemma 2, it is known that this is impossible. So it follows that
A8 6= 0.

B The Proof of B7 6= 0
Otherwise, we suppose that B7 = 0. Keep the notation γ = α2i . Then

(γc+ αd)B2i

6 = (αγd+ c+ d)B2i

4 .

Substitute B4 and B6 into the above equation, and we have

(γc+ αd)22i
[
(γc+ αd)(γc+ αd)2i

+ (αγd+ c+ d)(αγc+ c+ d)2i
]

= (αγc+ c+ d)22i
[
(γc+ αd)(αγd+ c+ d)2i

+ (αγd+ c+ d)(αc+ γd)2i
]
.

Note that γc+ αd 6= 0 and αγc+ c+ d 6= 0, we deduce that

(γc+ αd)(αγd+ c+ d)2i

+ (αγd+ c+ d)(αc+ γd)2i

= (γc+ αd)22i

(αγc+ c+ d)22i B6. (37)

Since B6 6= 0, it follows that αγd+ c+ d 6= 0 by the above equation. By B5 = 0, we get

(αγd+ c+ d)(γc+ αd)(αc+ γd)2i

(γc+ αd)2i

= (αγd+ c+ d)(γc+ αd)(αγc+ c+ d)2i

(αγd+ c+ d)2i

.

Substitute
(γc+ αd)(γc+ αd)2i

= B6 + (αγc+ c+ d)2i

(αγd+ c+ d)
into the above equation, and we obtain

B6(αγd+ c+ d)(αc+ γd)2i

= (αγc+ c+ d)2i

(αγd+ c+ d) ·
[
(γc+ αd)(αγd+ c+ d)2i

+ (αγd+ c+ d)(αc+ γd)2i
]
.

By Eqn. (37) and B6 6= 0, we deduce that

(αγd+ c+ d)(αc+ γd)2i

= (αγc+ c+ d)2i

(αγd+ c+ d) (γc+ αd)22i

(αγc+ c+ d)22i ,

which is equivalent to

(αc+ γd)(αγc+ c+ d)2i

= (αγc+ c+ d)(γc+ αd)2i

.

The last equation implies B4 = 0. A contradiction. So B7 6= 0.
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