

Refined Probability of Differential Characteristics Including Dependency Between Multiple Rounds

Anne CanteautInriaEran LambooijTechnische Universiteit EindhovenSamuel NevesUniversity of CoimbraShahram RasoolzadehRuhr-Universität BochumYu SasakiNTT Secure Platform LaboratoriesMarc StevensCWI Amsterdam

7 Mar 2018 @ FSE 2018

Differential Cryptanalysis

- In differential cryptanalysis, attackers construct a chain of differential propagations for each round.
- Probability for each round is often assumed to be independent.

•
$$p_i = \Pr_{RF_i}[\Delta_{i-1} \to \Delta_i]$$

•
$$p = \prod_{i=1}^r p_i$$

Assumption is true when each state is XORed by independently chosen subkeys before each non-linear operation.

Innovative R&D by N

Assumptions are not always true:

- Keyless primitives
 - Hash function
 - Even-Mansour construction
 - Key schedule function
- State is partially update by key
 - SPN with partial subkey XOR
 - Feistel network
- Subkeys are not independent

 K_i

 K_i

Our Target

- Key dependent analysis?
- Plateau characteristics?
- -> decent, but analysis requires long time

This work:

- Keyless updates appear in many parts of practical designs especially in lightweight designs.
- We focus on the keyless function and give the analysis including dependency of multiple S-box layers.

Contributions of This Research

- Focus on the gap between two probabilities
 - p_{ind} : each S-box is assumed to be independent
 - p_{exact} : dependency is considered p_{exact} can be higher than p_{ind} . p_{exact} can be lower bounded.
- Generic analysis against 3-round Feistel network
 - Lower-bounding the ratio of p_{ind} to p_{exact}
- Applications in actual designs
 - RoadRunneR (Feistel)
 - Minalpher (SPN)

3-Round Feistel

Innovative R&D by NTT

pind (straightforward)

$$\begin{split} p_{\mathrm{ind}} &= \mathrm{Pr}_{x_3 \in \mathbb{F}_2^n} \big[S(x_3 \oplus a_1 \oplus b_2) \oplus S(x_3) = b_3 \big] \times \mathrm{Pr}_{x_2 \in \mathbb{F}_2^n} \big[S(x_2 \oplus a_2) \oplus S(x_2) = b_2 \big] \\ & \times \mathrm{Pr}_{x_1 \in \mathbb{F}_2^n} \big[S(x_1 \oplus a_1) \oplus S(x_1) = b_1 \big] \,. \end{split}$$

p_{exact}

$$\mathcal{X}_S(a,b) \triangleq \{ x \in \mathbb{F}_2^n \colon S(x \oplus a) \oplus S(x) = b \}$$
$$\mathcal{Y}_S(a,b) \triangleq \{ S(x) \in \mathbb{F}_2^n \colon S(x \oplus a) \oplus S(x) = b \}$$

 p_{exact} for the 3rd S-box is $\Pr_{x_1 \in \mathcal{X}_S(a_1,b_1), y_2 \in \mathcal{Y}(a_2,b_2)}[S(x_1 \oplus y_2 \oplus a_1 \oplus b_2) \oplus S(x_1 \oplus y_2)]$

Analysis Example

 \Rightarrow

- Suppose that the differential uniformity of the round function is 4.
- Define λ as $p_{exact} = \lambda \cdot p_{ind}$
- λ is lower-bounded by max{1, 2^{n-6} }.
- p_{exact} is always higher than p_{ind} when n > 6
- When differences are propagated with prob 2^{-n+1} , $p_{ind} = 2^{-3n+3}$, while $p_{exact} = 0 \text{ or } 2^{-2n+1}$.

Demonstration with AES-Sbox (n = 8)

$$p_{ind} = 2^{-3 \times 8 + 3} = 2^{-21}$$
$$p_{exact} = 2^{-2 \times 8 + 1} = 2^{-15}$$

Innovative R&D by NTT

The first two S-boxes are satisfied with $2^{2 \times (-n+1)}$.

- $\mathcal{X}_{S}(a_{1}, b_{1}) = \{x_{1}, x_{1} \oplus a_{1}\},\$
- $\mathcal{Y}_{S}(a_{2}, b_{2}) = \{y_{2}, y_{2} \oplus b_{2}\},$
- $\mathcal{X}_S(a_1 \oplus b_2, b_3) = \{z_1, z_1 \oplus a_1 \oplus b_2\}.$

• The analysis can be extended to differential transitions of any probability as long as the \mathcal{X}_S and \mathcal{Y}_S form affine space.

Theorem 1. Let S be a permutation of \mathbb{F}_2^n , and let a_1, b_1, a_2, b_2, b_3 be five elements in \mathbb{F}_2^n . Assume that there exist $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}_2^n$ and three linear subspaces $V_1, V_2, V_3 \subseteq \mathbb{F}_2^n$ such that

$$\mathcal{X}_S(a_1, b_1) = \alpha_1 + V_1, \ \mathcal{Y}_S(a_2, b_2) = \alpha_2 + V_2, \ and \ \mathcal{X}_S(a_1 \oplus b_2, b_3) = \alpha_3 + V_3.$$

Then, the multiset

 $\{(x_1, x_2) \in \mathcal{X}_S(a_1, b_1) \times \mathcal{X}_S(a_2, b_2) \colon S(S(x_2) \oplus x_1 \oplus a_1 \oplus b_2) \oplus S(S(x_2) \oplus x_1) = b_3\}$ is either empty or has size 2^d with

 $d = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_2 + V_3)$

Applications to Practical Designs - RoadRunneR

- Minalpher

- Lightweight BC with 64-bit block, 80- or 128-bit key
- Feistel network with an SPSPSPS round function
- RK diff trail with 2 active S-boxes per round
- Lower bound of the prob of diff chara: 2^{-4r}

96-bit key per round

Differential trail and p_{ind}

Differential trail and p_{exact}

Rounds	1	2	3	4	5	6	7	8	9	10	11	12
ROADRU	NNER	-128										
p_{ind}	-4	-8	-12	-16	-20	-24	-28	-32	-36	-40	-44	-48
p_{exact}	-4†	-8†	-12^{\dagger}	-15^{\dagger}	-19^{\dagger}	-22^{\dagger}	-26^{\dagger}	-29^{\dagger}	-33	-36	-40	-43
RoadRu	NNER	-80										
p_{ind}	-8	-17	-26	-34	-42	-51	-60	-68				
p_{exact}	-8†	-17^{\dagger}	-25^{\dagger}	-32^{\dagger}	-39^{\dagger}	-47	-55	-62				

†: experimentally verified

- Each round uses 96-bit round key (more than the block size) but still key-less structure appears.
- Improvement for 8-round RoadRunneR-80 is particularly important because 8 rounds can be satisfied within the full codebook (2⁶⁴).

An Even-Mansour construction with a 256-bit permutation using an SPN structure with almost-MDS binary matrix. (1101)

Core Observation (S-P-S for a column)

- Two *S*-layers with 4 active S-boxes
- Save one S-box in the 2nd *S*-layer.
- 6-round trail is improved from 2^{-128} to 2^{-96} .
- The attack is extended to 8 rounds.

Analysis

- $\mathcal{X}_{S}(4,4) = \mathcal{Y}_{S}(4,4) = \{9, a, d, e\} = <3,4>+9.$
- In the middle *P*-layer, two active nibbles are XORed with an identical value, *con*.
- The condition that $\mathcal{Y}_S(4,4)$ is mapped to $\mathcal{X}_S(4,4)$ by *con* is that *con* $\in < 3,4 >$, which occurs with 2^{-2} instead of 2^{-4} .

- Even if the primitive uses a key, keyless computations can appear in various places.
- Then, p_{exact} can be higher than p_{ind} .
- Generic analysis on 3-round Feistel to lower bound the ratio of p_{exact} and p_{ind} .
- Applications to existing designs show that the analysis affects in practice.

