Refined Probability of Differential Characteristics Including Dependency Between Multiple Rounds

Anne Canteaut
Eran Lambooij
Samuel Neves
Shahram Rasoolzadeh
Yu Sasaki
Marc Stevens

Inria
Technische Universiteit Eindhoven
University of Coimbra
Ruhr-Universität Bochum
NTT Secure Platform Laboratories
CWI Amsterdam

Differential Cryptanalysis

- In differential cryptanalysis, attackers construct a chain of differential propagation for each round.
- Probability for each round is often assumed to be independent.
- $p_{i}=\operatorname{Pr}_{R F_{i}}\left[\Delta_{i-1} \rightarrow \Delta_{i}\right]$
- $p=\prod_{i=1}^{r} p_{i}$

Validity of Assumption

Assumption is true when each state is XORed by independently chosen subkeys before each non-linear operation.

Invalidity of Assumption

Assumptions are not always true:

- Keyless primitives
- Hash function
- Even-Mansour construction
- Key schedule function
- State is partially update by key
- SPN with partial subkey XOR
- Feistel network
- Subkeys are not independent

- Key dependent analysis?
- Plateau characteristics?
-> decent, but analysis requires long time

This work:

- Keyless updates appear in many parts of practical designs especially in lightweight designs.
- We focus on the keyless function and give the analysis including dependency of multiple S-box layers.

Contributions of This Research

- Focus on the gap between two probabilities
- $p_{\text {ind }}$: each S-box is assumed to be independent
- $\quad p_{\text {exact }}$: dependency is considered
$p_{\text {exact }}$ can be higher than $p_{\text {ind }}$.
$p_{\text {exact }}$ can be lower bounded.
- Generic analysis against 3-round Feistel network
- Lower-bounding the ratio of $p_{\text {ind }}$ to $p_{\text {exact }}$
- Applications in actual designs
- RoadRunneR (Feistel)
- Minalpher (SPN)

3-Round Feistel

Evaluation of $p_{\text {ind }}$ and $p_{\text {exact }}$

$\boldsymbol{p}_{\text {ind }}$ (straightforward)

$$
\begin{aligned}
p_{\text {ind }}= & \operatorname{Pr}_{x_{3} \in \mathbb{F}_{2}^{n}}\left[S\left(x_{3} \oplus a_{1} \oplus b_{2}\right) \oplus S\left(x_{3}\right)=b_{3}\right] \times \operatorname{Pr}_{x_{2} \in \mathbb{F}_{2}^{n}}\left[S\left(x_{2} \oplus a_{2}\right) \oplus S\left(x_{2}\right)=b_{2}\right] \\
& \times \operatorname{Pr}_{x_{1} \in \mathbb{F}_{2}^{n}}\left[S\left(x_{1} \oplus a_{1}\right) \oplus S\left(x_{1}\right)=b_{1}\right] .
\end{aligned}
$$

$p_{\text {exact }}$

$$
\begin{aligned}
& \mathcal{X}_{S}(a, b) \triangleq\left\{x \in \mathbb{F}_{2}^{n}: S(x \oplus a) \oplus S(x)=b\right\} \\
& \mathcal{Y}_{S}(a, b) \triangleq\left\{S(x) \in \mathbb{F}_{2}^{n}: S(x \oplus a) \oplus S(x)=b\right\}
\end{aligned}
$$

$p_{\text {exact }}$ for the $3^{\text {rd }} \mathrm{S}$-box is
$\underset{x_{1} \in x_{S}\left(a_{1}, b_{1}\right), y_{2} \in \mathcal{Y}\left(a_{2}, b_{2}\right)}{ }\left[S\left(x_{1} \oplus y_{2} \oplus a_{1} \oplus b_{2}\right) \oplus S\left(x_{1} \oplus y_{2}\right)\right]$

Analysis Example

- Suppose that the differential uniformity of the round function is 4.
- Define λ as $p_{\text {exact }}=\lambda \cdot p_{\text {ind }}$
λ is lower-bounded by $\max \left\{1,2^{n-6}\right\}$.
\Rightarrow
$p_{\text {exact }}$ is always higher than $p_{\text {ind }}$
 when $n>6$
- When differences are propagated with prob 2^{-n+1}, $p_{\text {ind }}=2^{-3 n+3}$, while $p_{\text {exact }}=0$ or $2^{-2 n+1}$.

Demonstration with AES-Sbox $(n=8)$

$$
\begin{aligned}
& p_{\text {ind }}=2^{-3 \times 8+3}=2^{-21} \\
& p_{\text {exact }}=2^{-2 \times 8+1}=2^{-15}
\end{aligned}
$$

Analysis for 2^{-n+1} Transitions

The first two S-boxes are satisfied with $2^{2 \times(-n+1)}$.

- $\mathcal{X}_{S}\left(a_{1}, b_{1}\right)=\left\{x_{1}, x_{1} \oplus a_{1}\right\}$,
- $\mathcal{Y}_{S}\left(a_{2}, b_{2}\right)=\left\{y_{2}, y_{2} \oplus b_{2}\right\}$,
- $\mathcal{X}_{S}\left(a_{1} \oplus b_{2}, b_{3}\right)=\left\{z_{1}, z_{1} \oplus a_{1} \oplus b_{2}\right\}$.

$$
2^{-n+1}
$$

$$
2^{-n+1}\left\{\begin{array}{l}
x_{1} \\
x_{1} \oplus a_{1}
\end{array}\right.
$$

y_{2}
$y_{2} \oplus b_{2}$

$$
\left\{\begin{array}{l}
z_{1} \\
z_{1} \oplus a_{1} \oplus b_{2}
\end{array}\right.
$$

$\left(x_{1} \oplus y_{2}, \quad x_{1} \oplus y_{2} \oplus a_{1} \oplus b_{2}\right) \quad$ Probability to hit z_{1} is $\left(x_{1} \oplus y_{2} \oplus b_{2}, x_{1} \oplus a_{1} \oplus y_{2}\right) \quad 0$ or 2^{-1}

Generalization

- The analysis can be extended to differential transitions of any probability as long as the X_{S} and \mathcal{Y}_{S} form affine space.

Theorem 1. Let S be a permutation of \mathbb{F}_{2}^{n}, and let $a_{1}, b_{1}, a_{2}, b_{2}, b_{3}$ be five elements in \mathbb{F}_{2}^{n}. Assume that there exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{2}^{n}$ and three linear subspaces $V_{1}, V_{2}, V_{3} \subseteq \mathbb{F}_{2}^{n}$ such that

$$
\mathcal{X}_{S}\left(a_{1}, b_{1}\right)=\alpha_{1}+V_{1}, \mathcal{Y}_{S}\left(a_{2}, b_{2}\right)=\alpha_{2}+V_{2}, \text { and } \mathcal{X}_{S}\left(a_{1} \oplus b_{2}, b_{3}\right)=\alpha_{3}+V_{3}
$$

Then, the multiset

$$
\left\{\left(x_{1}, x_{2}\right) \in \mathcal{X}_{S}\left(a_{1}, b_{1}\right) \times \mathcal{X}_{S}\left(a_{2}, b_{2}\right): S\left(S\left(x_{2}\right) \oplus x_{1} \oplus a_{1} \oplus b_{2}\right) \oplus S\left(S\left(x_{2}\right) \oplus x_{1}\right)=b_{3}\right\}
$$

is either empty or has size 2^{d} with

$$
d=\operatorname{dim} V_{1}+\operatorname{dim} V_{2}+\operatorname{dim} V_{3}-\operatorname{dim}\left(V_{1}+V_{2}+V_{3}\right)
$$

Applications to Practical Designs

- RoadRunneR
- Minalpher

Introduction of RoadRunneR

- Lightweight BC with 64 -bit block, 80 - or 128 -bit key
- Feistel network with an SPSPSPS round function
- RK diff trail with 2 active S-boxes per round
- Lower bound of the prob of diff chara: $2^{-4 r}$

96-bit key per round

Differential trail and $p_{\text {ind }}$

$p_{\text {ind }}$
2^{-16}

$p_{\text {exact }}$
2^{-15}

© ntt
ΔB

Differential trail and $p_{\text {exact }}$

$p_{\text {ind }}$
2^{-16}

$p_{\text {exact }}$
2^{-15}

© NTt
ΔB

Keyless Structure in RoadRunneR

previous two S-boxes

Summary of Results

Rounds	1	2	3	4	5	6	7	8	9	10	11	12
RoadRunneR-128												
$p_{\text {ind }}$	-4	-8	-12	-16	-20	-24	-28	-32	-36	-40	-44	-48
$p_{\text {exact }}$	-4^{\dagger}	-8^{\dagger}	-12^{\dagger}	-15^{\dagger}	-19^{\dagger}	-22^{\dagger}	-26^{\dagger}	-29^{\dagger}	-33	-36	-40	-43
RoadRunneR-80												
$p_{\text {ind }}$	-8	-17	-26	-34	-42	-51	-60	-68				
$p_{\text {exact }}$	-8^{\dagger}	-17^{\dagger}	-25^{\dagger}	-32^{\dagger}	-39^{\dagger}	-47	-55	-62				

- Each round uses 96-bit round key (more than the block size) but still key-less structure appears.
- Improvement for 8-round RoadRunneR-80 is particularly important because 8 rounds can be satisfied within the full codebook (2^{64}).

Introduction of Minalpher

An Even-Mansour construction with a 256 -bit permutation using an SPN structure with almostMDS binary matrix.

$$
\times\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

Core Observation ($S-P-S$ for a column)

- Two S-layers with 4 active S-boxes
- Save one S-box in the 2 nd S-layer.
- 6-round trail is improved from 2^{-128} to 2^{-96}.
- The attack is extended to 8 rounds.

Analysis

- $X_{S}(4,4)=\mathcal{Y}_{S}(4,4)=\{9, a, d, e\}=<3,4>+9$.
- In the middle P-layer, two active nibbles are XORed with an identical value, con.
- The condition that $Y_{S}(4,4)$ is mapped to $X_{S}(4,4)$ by con is that con $\in<3,4>$, which occurs with 2^{-2} instead of 2^{-4}.

Concluding Remarks

- Even if the primitive uses a key, keyless computations can appear in various places.
- Then, $p_{\text {exact }}$ can be higher than $p_{\text {ind }}$.
- Generic analysis on 3-round Feistel to lower bound the ratio of $p_{\text {exact }}$ and $p_{\text {ind }}$.
- Applications to existing designs show that the analysis affects in practice.

> Thank you for your attention!!

