Gaoli Wang¹, Yanzhao Shen², Fukang Liu¹

¹ East China Normal University ² Shandong University

> FSE 2018 6 March 2018

1/23

Outlines

1 Introduction

- Overview of Semi-free-start Collision Attack on 48-step RIPEMD-160
- 3 Compute Some Bits of X_{37} , X_{38} , Y_{30} and Y_{32} (X_{36} , Y_{29} and Y_{31} are Unknown)
- Do Message Modification to Ensure Modular Difference in Each Step Hold

5 Conclusion

Description of RIPEMD-160

The step update transformation

Boolean functions:

$$\begin{array}{lll} F_1(X,Y,Z) &=& X \oplus Y \oplus Z, \\ F_2(X,Y,Z) &=& (X \wedge Y) \lor (\neg X \wedge Z), \\ F_3(X,Y,Z) &=& (X \lor \neg Y) \oplus Z, \\ F_4(X,Y,Z) &=& (X \wedge Z) \lor (Y \wedge \neg Z), \\ F_5(X,Y,Z) &=& X \oplus (Y \lor \neg Z). \end{array}$$

Step <i>i</i>	Round <i>j</i>	Left Branch	Right Branch
1 to 16	1	F_1	F_5
17 to 32	2	F_2	F_4
33 to 48	3	F_3	F_3
49 to 64	4	F_4	F_2
65 to 80	5	F_5	F_1

◆□▼▲□▼★Ⅲ▼★□▼★□▼

5/23

Summary of (Semi-free-start) Collision Attacks on RIPEMD-160

Туре	Steps	Complexity	Reference
\triangle	36*	practical	Mendel et al., ISC 2012
\triangle	42*	275.5	Mendel et al., ASIACRYPT 2013
\triangle	36	2 ^{70.4}	Mendel et al., ASIACRYPT 2013
\triangle	36	2 ^{55.1}	Liu et al., ASIACRYPT 2017
\triangle	48*	2 ^{76.4}	This
Collision	30	2 ⁶⁷	Liu et al., ASIACRYPT 2017

* The attack starts from an intermediate step.

 \triangle The attack is semi-free-start collision.

Classical approach to find a collision (MD4) [Wang05]

- Find a message difference and a collision differential path, which holds with high probability in the linear part (i.e., the middle and the last steps).
- Using part of the message freedom to make sure the nonlinear part hold with probability almost 1 (some techniques such as message modification). The linear part is verified probabilistically using the remaining message freedom.

Classical approach-apply to RIPEMD-128/160 directly

- Choose a message difference and find two differential paths. The nonlinear parts lie in round 1 in both branches, and the differential paths without round 1 holds with high probability.
- Oberive two sets of sufficient conditions which ensure the two differential paths hold, respectively.
- Modify the message to fulfill most of the conditions on nonlinear parts. The other conditions are fulfilled probabilistically.

New strategy to find a semi-free-start collision of RIPEMD-128 [LP13]

The non-linear part is not necessarily in the first round.

- Ensure the non-linear parts hold with probability almost 1 using the freedom from the internal states and a few message words.
- From this starting point, merge the two branches using some remaining free message words.
- S The linear parts in both branches are verified probabilistically.

Semi-free-start on 42-step RIPEMD-160 [MPS+13]

Phase 1: a 48-step differential path (in rounds 2-4), difference in m_7 **Phase 2:** Use the freedom of m_i ($0 \le i \le 15, i \ne 1, 4, 7, 13$) and the internal states to satisfy the non-linear parts (starting point).

• The probability of the linear parts is $2^{-45.4}$.

Phase 3: Use the remaining free m_i (i = 1, 4, 7, 13) to merge, 2^{-32} .

- The overall probability for collision is $2^{-77.4}$.
- We need to obtain $2^{77.4}$ starting points.

Semi-free-start on 42-step RIPEMD-160 [MPS⁺13]

Phase 4: Handle probabilistically the linear parts.

- The probability of last steps (59-64) is about 2^{-11.3} by experiment.
- The overall probability will exceed 2⁸⁰ for 48-step RIPEMD-160.

Overview of Semi-free-start Collision Attack on 48-step RIPEMD-160

Overview of Attack on 42 steps \longrightarrow 48 steps

- We use the same 48-step differential path (in rounds 2-4) as in [MPS⁺13].
- Leave m_i (i = 1, 4, 7, 13) to do merging. When satisfying the non-linear parts (Phase 2), m_i (i = 1, 4, 7, 13) is unknown.
- Left: m_4 is used to compute X_{36} , so X_{36} is unknown in Phase 2.
- Right: m_4 and m_1 are used to compute Y_{29} and Y_{31} , so Y_{29} and Y_{31} are unknown in Phase 2.

Overview of Attack on 42 steps \longrightarrow 48 steps

- In order to improve the overall probability, the number of the uncontrolled conditions must decrease.
- If we can not compute X_i ($i \ge 36$) and Y_i ($i \ge 29$), the conditions on these variables have to be handled probabilistically.

Overview of Semi-free-start Collision Attack on 48-step RIPEMD-160

Overview of Attack on 42 steps \longrightarrow 48 steps

- In order to ensure $X_{37,i} = 0$ (i = 2, 21), $X_{37,i} = 1$ (i = 7, 17), $X_{38,i} = 0$ (i = 17, 21) hold, the values of these bits must be computed firstly (under the condition that X_{36} is not known).
- $Y_{30,i}$ (*i* = 9, 15, 21, 27, 30, 31) and $Y_{32,20}$ can be computed (under the condition that Y_{29} and Y_{31} are unknown).
- The conditions on X_{37} , X_{38} , Y_{30} and Y_{32} can be satisfied by message modification, once their values are calculated.

Compute Some Bits of X_{37} , X_{38} , Y_{30} and Y_{32} (X_{36} , Y_{29} and Y_{31} are Unknown)

Compute some bits of X_{37} , X_{38} , Y_{30} and Y_{32} (X_{36} , Y_{29} and Y_{31} are unknown) Example – compute $Y_{30,9}$

• In order to compute $Y_{32,20}$, we need to compute $Y_{30,9}$.

$$Y_{30} = (Y_{26} \lll 10) + \left((Y_{25} \lll 10) + F_4 (Y_{29}, Y_{28}, (Y_{27} \lll 10)) + m_9 + k_2^r \right) \lll 15$$

- $F_4(Y_{29}, Y_{28}, (Y_{27} \ll 10)) = (Y_{29} \land (Y_{27} \ll 10)) \lor (Y_{28} \land \neg (Y_{27} \ll 10))$
- Y_{29} is not known
- If the condition $Y_{27} = 0$ is added, then F_4 can be calculated.
- However, if all the 32-bit value of $Y_{27} = 0$ is added, it will waste too much freedom or contradict with the differential path.

Compute Some Bits of X_{37} , X_{38} , Y_{30} and Y_{32} (X_{36} , Y_{29} and Y_{31} are Unknown)

$$Y_{30} = (Y_{26} \lll 10) + \left((Y_{25} \lll 10) + F_4 (Y_{29}, Y_{28}, (Y_{27} \lll 10)) + m_9 + k_2^r \right) \lll 15$$

 $F_4(Y_{29}, Y_{28}, (Y_{27} \ll 10)) = (Y_{29} \land (Y_{27} \ll 10)) \lor (Y_{28} \land \neg (Y_{27} \ll 10))$

Adding conditions $Y_{27,i} = 0$ $(i = 13, 14, 16) \Longrightarrow$ bits 23, 24, 26 of F_4 can be computed by $Y_{28} \land 0 \times 5800000$. $(Y_{27,15} = 1$ is a condition of the differential path) $Y_{30,9}$ is equal to the 9-th bit of

 $(Y_{26} \ll 10) + ((Y_{25} \ll 10) + (Y_{28} \land 0 \times 5800000) + m_9 + k_2^r) \ll 15$

(ロ) (個) (目) (目) (目) (の)

by adding some conditions.

Compute Some Bits of X_{37} , X_{38} , Y_{30} and Y_{32} (X_{36} , Y_{29} and Y_{31} are Unknown)

$$Y_{30} = (Y_{26} \ll 10) + ((Y_{25} \ll 10) + F_4(Y_{29}, Y_{28}, (Y_{27} \ll 10)) + m_9 + k_2^r) \ll 15$$

$$Y_{30,9}: (Y_{26} \ll 10) + ((Y_{25} \ll 10) + (Y_{28} \land 0 \times 5800000) + m_9 + k_2^r) \ll 15$$

Adding Conditions:

$$R_{1} = (Y_{25} \lll 10) + F_{4}(Y_{29}, Y_{28}, (Y_{27} \lll 10)) + m_{9} + k_{2}'$$

$$T = (Y_{25} \lll 10) + (Y_{28} \land 0 \times 5800000) + m_{9} + k_{2}'$$

$$R_{2} = (Y_{25} \lll 10) + m_{9} + k_{2}'$$

$$Q_{1} = R_{1} \lll 15$$

Add conditions $T_i = 0$ (i = 23, 24), $R_{2,i} = 0$ (i = 23, 24, 25), $F_{4,23} = 0$

 $\implies R_{1,i} = T_i \ (i = 24, 26)$ can be calculated correctly, because there is no carry from bit 23 to 24 and from bit 25 to 26 when computing R_1 . Thus, $Q_{1,i} \ (i = 7, 9)$ can be computed correctly and $Q_{1,7} = 0$.

Add conditions $Y_{26,i} = 0$ (i = 29, 30),

⇒ there is no carry from bit 8 to 9 when computing $Y_{30,9}$ ($Y_{30} = (Y_{26} \ll 10) + Q_1$). Therefore, $Y_{30,9}$ can be calculated correctly by

 $(Y_{26} \ll 10) + ((Y_{25} \ll 10) + (Y_{28} \land 0 \times 5800000) + m_9 + k_2^r) \ll 15.$

The experiment confirms the above computation.

Do Message Modification to Ensure Modular Difference in Each Step Hold

Existing Problem in the Sufficient Conditions of the Differential Path

We give an example to illustrate the problem. The step operation of RIPEMD-160 can be abbreviated as

$$X = a + (b + c) <<<14,$$

$$X' = a' + (b' + c) <<<14.$$

If $b' - b = 2^{17}$, $b'_{17} = 1$, $b_{17} = 0$, $a' - a = 2^{31}$, then
 $Pr[X' = X] = 1$

is incorrect.

Because: the difference of (b' + c) and (b + c) will propagate to the 18-th,... bits, the difference of (b' + c) <<< 14 and (b + c) <<< 14 is not necessarily equal to 2^{31} .

Do Message Modification to Ensure Modular Difference in Each Step Hold

Finding a Set of Sufficient Conditions of the Differential Path

The step function of RIPEMD-160 is not a T-function (i.e., the *i*-th output bit depends only on the *i* first lower bits of all input words).

- Daum (Ph.D thesis 2005) has proposed a method to calculate the probability.
- Liu et al. (ASIACRYPT 2017) solve the problem completely, can give a set of sufficient conditions of the differential path. Then do message modification.
- When submitting this paper, we can make sure the modular difference hold when the difference of the internal variable is a power of 2.

Do Message Modification to Ensure Modular Difference in Each Step Hold

Message Modification to Ensure the Modular Difference Hold

 $\begin{aligned} x_i &= (x_{i-4} <<<10) + ((x_{i-5} <<<10) + f(x_{i-1}, x_{i-2}, (x_{i-3} <<<10)) + m + k) <<<3, \\ r_1 &= (X_{i-5} <<\!\!< 10) + f(X_{i-1}, X_{i-2}, (X_{i-3} <<\!\!< 10)) + m + k, \\ r'_1 &= (X_{i-5} <<\!\!< 10) + f(X_{i-1}, X_{i-2}, (X_{i-3} <<\!\!< 10)) + m' + k, \\ r_2 &= r_1 <<\!\!< 3, \qquad r'_2 &= r'_1 <<\!\!< 3. \end{aligned}$ Let $m' - m = 2^{30}$, if $r'_1 - r_1 = 2^{30}$, then $X'_i - X_i = 2$. If $X'_i - X_i \neq 2$, we know that $\Delta r_1 = [-30, -31]$, i.e. $r_{1,30} = r_{1,31} = 1$,

 $r'_{1,30} = r'_{1,31} = 0$. One of the message modification methods is:

$$m \longleftarrow m \pm 2^{31}$$
,

then after this modification, the most two significant bits of r_1 and r'_1 are $r_{1,30} = 1$, $r_{1,31} = 0$, $r'_{1,30} = 0$, $r'_{1,31} = 1$, which means $\Delta r_1 = [-30, 31]$, thus $\Delta r_2 = [-1, 2]$. Therefore, $X'_i - X_i = -2 + 2^2 = 2$.

Do Message Modification to Ensure Modular Difference in Each Step Hold

Results

- The success probability of the match of the five initial words is 2^{-32} .
- In the left branch until step 56, the uncontrolled probability is $2^{-5.4}$.
- So In the right branch until step 59, the uncontrolled probability is $2^{-29.6}$.
- The probability of the differential path in steps 57-64 (left branch) and in steps 60-64 (right branch) is 2^{-11.3}.

The uncontrolled probability is $2^{-78.5}$ in total. The complexity of the semi-free start collision attack on 48-step RIPEMD-160 is $2^{76.4}$.

Conclusion

- Compute Some Bits of X_{37} , X_{38} , Y_{30} and Y_{32} when X_{36} , Y_{29} and Y_{31} are Unknown.
- Present some insights of the sufficient conditions or to make modular difference hold.
- Get semi-free-start collision attack on more rounds.

Thanks for your attention.