Cryptanalysis of 48-step RIPEMD-160

Gaoli Wang ${ }^{1}$, Yanzhao Shen ${ }^{2}$, Fukang Liu ${ }^{1}$

${ }^{1}$ East China Normal University
${ }^{2}$ Shandong University

FSE 2018
6 March 2018

Outlines

(1) Introduction
(2) Overview of Semi-free-start Collision Attack on 48-step RIPEMD-160
(3) Compute Some Bits of X_{37}, X_{38}, Y_{30} and $Y_{32}\left(X_{36}, Y_{29}\right.$ and Y_{31} are Unknown)
(4) Do Message Modification to Ensure Modular Difference in Each Step Hold
(5) Conclusion

Description of RIPEMD-160

The step update transformation

$$
\begin{aligned}
& X_{i}=\left(X_{i-4} \lll 10\right)+\left(\left(X_{i-5} \lll 10\right)+F_{j}\left(X_{i-1}, X_{i-2},\left(X_{i-3} \lll 10\right)\right)+m_{\pi^{l}(i)}+k_{j}^{l}\right) \lll s_{i}^{l}, \\
& Y_{i}=\left(Y_{i-4} \lll 10\right)+\left(\left(Y_{i-5} \lll 10\right)+F_{6-j}\left(Y_{i-1}, Y_{i-2},\left(Y_{i-3} \lll 10\right)\right)+m_{\pi^{r}(i)}+k_{j}^{r}\right) \lll s_{i}^{r}
\end{aligned}
$$

Boolean functions:

$$
\begin{aligned}
& F_{1}(X, Y, Z)=X \oplus Y \oplus Z, \\
& F_{2}(X, Y, Z)=(X \wedge Y) \vee(\neg X \wedge Z), \\
& F_{3}(X, Y, Z)=(X \vee \neg Y) \oplus Z, \\
& F_{4}(X, Y, Z)=(X \wedge Z) \vee(Y \wedge \neg Z), \\
& F_{5}(X, Y, Z)=X \oplus(Y \vee \neg Z)
\end{aligned}
$$

Step i	Round j	Left Branch	Right Branch
1 to 16	1	F_{1}	F_{5}
17 to 32	2	F_{2}	F_{4}
33 to 48	3	F_{3}	F_{3}
49 to 64	4	F_{4}	F_{2}
65 to 80	5	F_{5}	F_{1}

Summary of (Semi-free-start) Collision Attacks on RIPEMD-160

Type	Steps Complexity	Reference		
\triangle	36^{*}	practical	Mendel et al., ISC 2012	
\triangle	42^{*}	$2^{75.5}$	Mendel et al., ASIACRYPT 2013	
\triangle	36	$2^{70.4}$	Mendel et al., ASIACRYPT 2013	
\triangle	36	$2^{55.1}$	Liu et al., ASIACRYPT 2017	
\triangle	48^{*}	$2^{76.4}$	This	
Collision	30	2^{67}	Liu et al., ASIACRYPT 2017	
${ }^{*}$ The attack starts from an intermediate step.				
\triangle The attack is semi-free-start collision.				

Classical approach to find a collision (MD4) [Wang05]

(1) Find a message difference and a collision differential path, which holds with high probability in the linear part (i.e., the middle and the last steps).
(2) Using part of the message freedom to make sure the nonlinear part hold with probability almost 1 (some techniques such as message modification). The linear part is verified probabilistically using the remaining message freedom.

Classical approach-apply to RIPEMD-128/160 directly

(1) Choose a message difference and find two differential paths. The nonlinear parts lie in round 1 in both branches, and the differential paths without round 1 holds with high probability.
(2) Derive two sets of sufficient conditions which ensure the two differential paths hold, respectively.
(3) Modify the message to fulfill most of the conditions on nonlinear parts. The other conditions are fulfilled probabilistically.

New strategy to find a semi-free-start collision of RIPEMD-128 [LP13]

The non-linear part is not necessarily in the first round.
(1) Ensure the non-linear parts hold with probability almost 1 using the freedom from the internal states and a few message words.
(2) From this starting point, merge the two branches using some remaining free message words.
(3) The linear parts in both branches are verified probabilistically.

Semi-free-start on 42-step RIPEMD-160 [MPS ${ }^{+}$13]

Phase 1: a 48-step differential path (in rounds 2-4), difference in m_{7} Phase 2: Use the freedom of $m_{i}(0 \leq i \leq 15, i \neq 1,4,7,13)$ and the internal states to satisfy the non-linear parts (starting point).

- The probability of the linear parts is $2^{-45.4}$.

Phase 3: Use the remaining free $m_{i}(i=1,4,7,13)$ to merge, 2^{-32}.

- The overall probability for collision is $2^{-77.4}$.
- We need to obtain $2^{77.4}$ starting points.

Semi-free-start on 42-step RIPEMD-160 [MPS ${ }^{+}$13]

Phase 4: Handle probabilistically the linear parts.

- The probability of last steps (59-64) is about $2^{-11.3}$ by experiment.
- The overall probability will exceed 2^{80} for 48 -step RIPEMD-160.

Overview of Attack on 42 steps $\longrightarrow 48$ steps

- We use the same 48 -step differential path (in rounds 2-4) as in [MPS ${ }^{+}$13].
- Leave $m_{i}(i=1,4,7,13)$ to do merging. When satisfying the non-linear parts (Phase 2), $m_{i}(i=1,4,7,13)$ is unknown.
- Left: m_{4} is used to compute X_{36}, so X_{36} is unknown in Phase 2.
- Right: m_{4} and m_{1} are used to compute Y_{29} and Y_{31}, so Y_{29} and Y_{31} are unknown in Phase 2.

Overview of Attack on 42 steps $\longrightarrow 48$ steps

- In order to improve the overall probability, the number of the uncontrolled conditions must decrease.
- If we can not compute $X_{i}(i \geq 36)$ and $Y_{i}(i \geq 29)$, the conditions on these variables have to be handled probabilistically.

Overview of Attack on 42 steps $\longrightarrow 48$ steps

- In order to ensure $X_{37, i}=0(i=2,21), X_{37, i}=1(i=7,17)$, $X_{38, i}=0(i=17,21)$ hold, the values of these bits must be computed firstly (under the condition that X_{36} is not known).
- $Y_{30, i}(i=9,15,21,27,30,31)$ and $Y_{32,20}$ can be computed (under the condition that Y_{29} and Y_{31} are unknown).
- The conditions on X_{37}, X_{38}, Y_{30} and Y_{32} can be satisfied by message modification, once their values are calculated.

Compute some bits of X_{37}, X_{38}, Y_{30} and Y_{32}
(X_{36}, Y_{29} and Y_{31} are unknown)
Example - compute $Y_{30,9}$

- In order to compute $Y_{32,20}$, we need to compute $Y_{30,9}$.

$$
\begin{gathered}
Y_{30}=\left(Y_{26} \lll 10\right)+\left(\left(Y_{25} \lll 10\right)+F_{4}\left(Y_{29}, Y_{28},\left(Y_{27} \lll 10\right)\right)+m_{9}+k_{2}^{r}\right) \lll 15 \\
F_{4}\left(Y_{29}, Y_{28},\left(Y_{27} \lll 10\right)\right)=\left(Y_{29} \wedge\left(Y_{27} \lll 10\right)\right) \vee\left(Y_{28} \wedge \neg\left(Y_{27} \lll 10\right)\right)
\end{gathered}
$$

- Y_{29} is not known
- If the condition $Y_{27}=0$ is added, then F_{4} can be calculated.
- However, if all the 32 -bit value of $Y_{27}=0$ is added, it will waste too much freedom or contradict with the differential path.

$$
\begin{gathered}
Y_{30}=\left(Y_{26} \lll 10\right)+\left(\left(Y_{25} \lll 10\right)+F_{4}\left(Y_{29}, Y_{28},\left(Y_{27} \lll 10\right)\right)+m_{9}+k_{2}^{r}\right) \lll 15 \\
F_{4}\left(Y_{29}, Y_{28},\left(Y_{27} \lll 10\right)\right)=\left(Y_{29} \wedge\left(Y_{27} \lll 10\right)\right) \vee\left(Y_{28} \wedge \neg\left(Y_{27} \lll 10\right)\right)
\end{gathered}
$$

Adding conditions $Y_{27, i}=0(i=13,14,16) \Longrightarrow$ bits 23, 24, 26 of F_{4} can be computed by $Y_{28} \wedge 0 \times 5800000$. ($Y_{27,15}=1$ is a condition of the differential path) $Y_{30,9}$ is equal to the 9-th bit of

$$
\left(Y_{26} \lll 10\right)+\left(\left(Y_{25} \lll 10\right)+\left(Y_{28} \wedge 0 \times 5800000\right)+m_{9}+k_{2}^{r}\right) \lll 15
$$

by adding some conditions.

$$
\begin{gathered}
Y_{30}=\left(Y_{26} \lll 10\right)+\left(\left(Y_{25} \lll 10\right)+F_{4}\left(Y_{29}, Y_{28},\left(Y_{27} \lll 10\right)\right)+m_{9}+k_{2}^{r}\right) \lll 15 \\
Y_{30,9}: \quad\left(Y_{26} \lll 10\right)+\left(\left(Y_{25} \lll 10\right)+\left(Y_{28} \wedge 0 \times 5800000\right)+m_{9}+k_{2}^{r}\right) \lll 15
\end{gathered}
$$

Adding Conditions:

$$
\begin{gathered}
R_{1}=\left(Y_{25} \lll 10\right)+F_{4}\left(Y_{29}, Y_{28},\left(Y_{27} \lll 10\right)\right)+m_{9}+k_{2}^{r} \\
T=\left(Y_{25} \lll 10\right)+\left(Y_{28} \wedge 0 \times 5800000\right)+m_{9}+k_{2}^{r} \\
R_{2}=\left(Y_{25} \lll 10\right)+m_{9}+k_{2}^{r} \\
Q_{1}=R_{1} \lll 15
\end{gathered}
$$

Add conditions $T_{i}=0(i=23,24), R_{2, i}=0(i=23,24,25), F_{4,23}=0$
$\Longrightarrow R_{1, i}=T_{i}(i=24,26)$ can be calculated correctly, because there is no carry from bit 23 to 24 and from bit 25 to 26 when computing R_{1}.
Thus, $Q_{1, i}(i=7,9)$ can be computed correctly and $Q_{1,7}=0$.
Add conditions $Y_{26, i}=0(i=29,30)$,
\Longrightarrow there is no carry from bit 8 to 9 when computing $Y_{30,9}$
$\left(Y_{30}=\left(Y_{26} \lll 10\right)+Q_{1}\right)$.
Therefore, $Y_{30,9}$ can be calculated correctly by

$$
\left(Y_{26} \lll 10\right)+\left(\left(Y_{25} \lll 10\right)+\left(Y_{28} \wedge 0 \times 5800000\right)+m_{9}+k_{2}^{r}\right) \lll 15
$$

The experiment confirms the above computation.

Existing Problem in the Sufficient Conditions of the Differential Path

We give an example to illustrate the problem. The step operation of RIPEMD-160 can be abbreviated as

$$
\begin{aligned}
X & =a+(b+c) \lll 14 \\
X^{\prime} & =a^{\prime}+\left(b^{\prime}+c\right) \lll 14
\end{aligned}
$$

If $\quad b^{\prime}-b=2^{17}, \quad b_{17}^{\prime}=1, \quad b_{17}=0, \quad a^{\prime}-a=2^{31}, \quad$ then

$$
\operatorname{Pr}\left[X^{\prime}=X\right]=1
$$

is incorrect.
Because: the difference of $\left(b^{\prime}+c\right)$ and $(b+c)$ will propagate to the 18-th,... bits, the difference of $\left(b^{\prime}+c\right) \lll 14$ and $(b+c) \lll 14$ is not necessarily equal to 2^{31}.

Finding a Set of Sufficient Conditions of the Differential Path

The step function of RIPEMD-160 is not a T-function (i.e., the i-th output bit depends only on the i first lower bits of all input words).

- Daum (Ph.D thesis 2005) has proposed a method to calculate the probability.
- Liu et al. (ASIACRYPT 2017) solve the problem completely, can give a set of sufficient conditions of the differential path. Then do message modification.
- When submitting this paper, we can make sure the modular difference hold when the difference of the internal variable is a power of 2 .

Message Modification to Ensure the Modular Difference Hold

$$
\begin{gathered}
X_{i}=\left(X_{i-4} \lll 10\right)+\left(\left(X_{i-5} \lll 10\right)+f\left(X_{i-1}, X_{i-2},\left(X_{i-3} \lll 10\right)\right)+m+k\right) \lll 3, \\
r_{1}=\left(X_{i-5} \lll 10\right)+f\left(X_{i-1}, X_{i-2},\left(X_{i-3} \lll 10\right)\right)+m+k, \\
r_{1}^{\prime}=\left(X_{i-5} \lll 10\right)+f\left(X_{i-1}, X_{i-2},\left(X_{i-3} \lll 10\right)\right)+m^{\prime}+k, \\
r_{2}=r_{1} \lll 3, \quad r_{2}^{\prime}=r_{1}^{\prime} \lll 3 .
\end{gathered}
$$

Let $m^{\prime}-m=2^{30}$, if $r_{1}^{\prime}-r_{1}=2^{30}$, then $X_{i}^{\prime}-X_{i}=2$.
If $X_{i}^{\prime}-X_{i} \neq 2$, we know that $\Delta r_{1}=[-30,-31]$, i.e. $r_{1,30}=r_{1,31}=1$,
$r_{1,30}^{\prime}=r_{1,31}^{\prime}=0$. One of the message modification methods is:

$$
m \longleftarrow m \pm 2^{31}
$$

then after this modification, the most two significant bits of r_{1} and r_{1}^{\prime} are $r_{1,30}=1, r_{1,31}=0, r_{1,30}^{\prime}=0, r_{1,31}^{\prime}=1$, which means $\Delta r_{1}=[-30,31]$, thus $\Delta r_{2}=[-1,2]$. Therefore, $X_{i}^{\prime}-X_{i}=-2+2^{2}=2$.

Results

(1) The success probability of the match of the five initial words is 2^{-32}.
(2) In the left branch until step 56 , the uncontrolled probability is $2^{-5.4}$.
(3) In the right branch until step 59 , the uncontrolled probability is $2^{-29.6}$.
(9) The probability of the differential path in steps 57-64 (left branch) and in steps $60-64$ (right branch) is $2^{-11.3}$.

The uncontrolled probability is $2^{-78.5}$ in total.
The complexity of the semi-free start collision attack on 48-step RIPEMD-160 is $2^{76.4}$.

Conclusion

- Compute Some Bits of X_{37}, X_{38}, Y_{30} and Y_{32} when X_{36}, Y_{29} and Y_{31} are Unknown.
- Present some insights of the sufficient conditions or to make modular difference hold.
- Get semi-free-start collision attack on more rounds.

Thanks for your attention.

