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Abstract. In this paper, we show how to theoretically compute the step differential probability
of RIPEMD-160 under the condition that only one internal variable contains difference and the
difference is a power of 2. Inspired by the way of computing the differential probability, we
can do message modification such that a step differential hold with probability 1. Moreover,
we propose a semi-free-start collision attack on 48-step RIPEMD-160, which improves the
best semi-free start collision by 6 rounds. This is mainly due to that some bits of the chaining
variable in the i-th step can be computed by adding some conditions in advance, even though
some chaining variables before step i are unknown. Therefore, the uncontrolled probability
of the differential path is increased and the number of the needed starting points is decreased.
Then a semi-free-start collision attack on 48-step RIPEMD-160 can be obtained based on the
differential path constructed by Mendel ef al. at ASTACRYPT 2013. The experiments confirm
our reasoning and complexity analysis.

Keywords: Hash functions - RIPEMD-160 - Semi-free-start collision - Generalized message
modification

Introduction

Cryptographic hash functions play an important role in modern cryptography, which can be used
in digital signature schemes, message authentication codes, password authentication schemes
and so on. A cryptographic hash function H should fulfill some security requirements, among
which collision resistance is one of the key security properties. Collision resistance means it is
impossible to find two distinct messages M and M’ such that H(IV, M) = H(IV, M") in less than
2% hash computations, where 7 is the size of the hash value and 7V is the standard initial value of
H. Semi-free-start collision resistance means it is impossible to find (IV’, M) and (IV’, M’) such
that HIV’, M) = H(IV', M") in less than 22 hash computations, where IV is not always equal to
IV. In Merkle-Damgard [Dam89, Mer89] construction, if the compression function is collision
resistant, we can get that the corresponding hash function is also collision resistant. Thus, the
semi-free-start collision attack on Merkle-Damgard hash functions is of great significance.
Because of the break-through progresses in MD-SHA hash function cryptanalysis [WLF*05,
WYO05, WYYO05b, WYY05a, YWYP06, YWZWO0S5], especially the analysis of MD5 [WYO05] and
SHA-1 [WYYO05a], NIST started a four-year hash function competition to design a new hash
standard SHA-3 [SHA]. Many techniques such as advanced message modification [WLF*05]
and tunnels [K1i06] are proposed in the past decade. Recently, the free-start collision attack
for the full SHA-1 [SKP16] speeds up the removal of SHA-1. The SHA-2 and SHA-3 hash
functions are recommended to be deployed sooner in many products and services that used to
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rely on SHA-1. Among the MD-SHA family, only SHA-2 [DEM14, MNS11, MNS13] and
RIPEMD-160 [MNSS12, MPS*13] compression functions are still unbroken.

RIPEMD-family is a subfamily of the MD-SHA-family. The first hash function of the RIPEMD-
family is RIPEMD (denoted by RIPEMD-0) [BP95] which is devised in the framework of the EU
project RIPE (RACE Integrity Primitives Evaluation, 1988-1992). The compression function of
RIPEMD-0 consists of two parallel MD4-like functions with 48 steps. The early cryptanalysis of
RIPEMD-0 was from Dobbertin [Dob97] and the practical collision attack was proposed by Wang
et al. [WLF*05]. Due to the experience of evaluating MD4 and RIPEMD-0, RIPEMD-128 and
RIPEMD-160 [DBP96] were proposed in 1996 by Dobbertin et al. as reinforced hash functions
for RIPEMD-0. RIPEMD-128 and RIPEMD-160 were standardized by ISO/IEC [Int11], which
have 128/160-bit output and 64/80 steps respectively. A series of collision attacks on reduced
RIPEMD-128 are presented in [MPRR06, MNS12, WWO08, Wan14, WY 15] and a semi-free-start
collision attack on the full RIPEMD-128 is proposed in [LP13] (the extended version is [LP16]).
However, RIPEMD-160 is unbroken until now. Therefore, the continuous analysis of the security
margin of RIPEMD-160 is of great significance.

Related Work

At ISC 2006, Mendel et al. [MPRRO06] examined to what extent the attacks [Dob97, WLF*05]
can apply to RIPEMD-128 and RIPEMD-160. At ISC 2012, Mendel et al. [MNSS12] presented a
practical semi-free-start collision attack on 36-step RIPEMD-160 (not starting from the first step).
Later at ASTACRYPT 2013, Mendel et al. [MPS*13] proposed semi-free-start collision attacks
on 42-step RIPEMD-160 (not starting from the first step) and the first 36-step RIPEMD-160. As
for the preimage attack, at INSCRYPT 2010, Ohtahara et al. [OSS10] gave a preimage attacks
on the first 30-step and the last 31-step RIPEMD-160. At ISC 2014, Wang and Shen [WS14]
presented a preimage attack on the first 34-step RIPEMD-160. Finally, at ACNS 2012, Sasaki
and Wang [SW12] presented distinguishing attacks on up to 51-step RIPEMD-160 (not starting
from the first step). The above are all the previous results that we are aware of on the analysis of
RIPEMD-160.

In the semi-free-start collision attack on 42-step RIPEMD-160 [MPS*13], the authors firstly
construct relatively sparse differential paths by choosing a proper message difference. The non-
linear differential paths are constructed using very efficient automated search techniques [MNS11,
MNS13]. The automated search algorithms are very effective to obtain the non-linear differential
paths, and other non-linear differential path automated search algorithms include [DCRO06] etc.
After the differential paths in each branch of RIPEMD-160 are constructed, the authors leverage
the method for using the freedom degrees proposed by Landelle and Peyrin [LP13] to get a semi-
free-start collision. The method [LP13] uses some message words to ensure the nonlinear parts
located in the middle of both branches hold, and use the remaining message words to merge both
branches. Mendel et al. [MPS*13] point out that it is hard to calculate the differential probability
for each step of a given differential path of RIPEMD-160, not as the case for RIPEMD-128. This
is due to the step function in RIPEMD-160 is no longer a T-function (a function for which the i-th
output bit depends only on the i first lower bits of all input words). The authors [MPS*13] left the
problem of theoretically calculating the step differential probability of RIPEMD-160 as an open
problem.

Our Contributions

As a first contribution, we propose a method to theoretically calculate the real step differential
probability when only one internal variable has difference and the difference is a power of 2. That
means we partially answer the open problem raised in [MPS*13]. Furthermore, from the way
of computing the differential probability, we can implement the message modification such that
a step differential of RIPEMD-160 hold with probability 1. As a second and main contribution,
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Table 1: Summary of the Attacks on RIPEMD-160

Attack Type Steps | Generic | Complexity | Reference
semi-free-start collision | 36* 280 practical [MNSS12]
semi-free-start collision | 42* 280 2755 [MPS*13]
semi-free-start collision | 36 280 2704 [MPS*13]
semi-free-start collision | 48" 280 2764 Section 3.2

pseudo-preimage 30 2160 2148 [0SS10]
preimage 30 2160 2155 [OSS10]
pseudo-preimage 31" 2160 2148 [OSS10]
preimage 31" 2160 2155 [OSS10]
pseudo-preimage 34 2160 215581 [WS14]
preimage 34 2160 215891 [WS14]
distinguishing 48* practical [MNSS12]
distinguishing 51 2160 2158 [SW12]

* The attack starts from an intermediate step.

we improve the semi-free start collision attack on reduced RIPEMD-160 from 42 steps to 48
steps by using the 48-step differential path in [MPS*13]. The improvement is mainly due to
the generalized message modification technique, using which we can calculate some bits of the
chaining variables X37 and X3g (Y39 and Y3;) even though X34 (Y29 and Y3) is unknown by adding
some conditions in advance. This method was used by Landelle, Peyrin [LP13] and Mendel et
al. [IMPS™13] to improve the uncontrolled probability respectively. We extend it by incorporating
more sophisticated techniques. Furthermore, some conditions of X37, X33, Y39 and Y3, can be
satisfied using the message modification technique [WLF*05, WYO05], which is very powerful to
improve the probability of the differential path. Therefore, a semi-free start collision attack on
48-step RIPEMD-160 is obtained because the probability of the differential path is improved after
the generalized message modification. The previous results and our results on RIPEMD-160 are
summarized in Table 1.

Organization of the Paper

The rest of the paper is organized as follows: In Section 1, we describe the notations and the
RIPEMD-160 algorithm. Section 2 proposes a method to theoretically calculate the differential
probability of a given differential path of RIPEMD-160, and the message modification technique
for RIPEMD-160. Section 3 shows the detailed description of the semi-free start collision attack
on 48-step RIPEMD-160. Finally, we summarize the paper in Section 4.

1 Preliminaries

1.1 Notations

In order to describe our attack conveniently, we recall some notations [WLF*05] as follows.
1. M = (mg,my,....,my5) and M’ = (ma, m, ..., m’ls) represent two 512-bit messages.
2. X; denotes the output of the i-th step for compressing M in left branch, where 1 < i < 80.
3. Y; denotes the output of the i-th step for compressing M in right branch, where 1 < i < 80.
4. X denotes the output of the i-th step for compressing M” in left branch, where 1 < i < 80.

5. Y/ denotes the output of the i-th step for compressing M” in right branch, where 1 < i < 80.
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+ denotes addition modulo 232.
<« s represents the circular shift s bit positions to the left.

A*x; = x| — x; denotes the modular difference of two words x; and x/.

© ® =N

Ax; denotes a bitwise signed difference of two words x; and x!. It is noted that Ax; expresses
not only modular difference but also XOR difference.

10. x;; represents the j-th bit of x;, starting the counting from 0.
11. Ax; = [j] denotes x; ; = 0, x;’j =1land x4 = xlf’k O <k<3l,k+)).
12. Ax; = [—j] denotes x; ; = 1, x,',’j =0and x;; = x;‘,k O <k<3l,k+)).

13. Ax; = [£]1, %2, ..., =ji] denotes the ji-th, jo-th, ..., ji-th bits of x; and x] are different. The
"+" sign means x; ; = 0 and x; ; = 1, and the "-" sign means x; ; = 1 and x; ; = 0.

1.2 Description of RIPEMD-160

The hash function RIPEMD-160 compresses any arbitrary message less than 2% length into a
hash value with length of 160 bits. The input message is padded, and then processed in 512-bit
blocks in the Merkle-Damgérd iterative structure. For each 512-bit message block, RIPEMD-160
compresses it into a 160-bit hash value by the compression function, which is composed of two
parallel operations: left branch and right branch. Each branch contains 5 rounds, and each round
contains 16 steps. The boolean functions in each round are as follows:

F(X.Y,Z) = XeYaZ
(X, Y,Z) = (XAY)V(=XAZ),
F(X,Y,Z) = (Xv-Y)®Z
FiX,Y,Z) = (XAZ)V (Y A=2Z),
Fs(X,Y,Z) = XY V-2).

Here X, Y, Z are 32-bit words. The five boolean functions are all bitwise operations. — represents
the bitwise complement of X. A, @ and V are bitwise AND, XOR and OR respectively.

The Message Expansion. The 512-bit input message block M is divided into 16 words m;
of 32 bits each. At step i, the expanded message word which will be used to update left branch and
right branch are denoted by m,;, and m,;, where the permutations 7'(i) and 7" (i) can be seen in
Table 2.

Initialization. The input chaining variable of the compression function is denoted by cv =
(cvo, cvy, cva, cv3, cv4), and the standard initial value can be found in [DBP96]. The initialization
process of both branches are as follows:

X 4=Y_ 4 =cvy> 10, X 3=Y_3=cvy>> 10,
X_2 = Y_2 = Ccvy > 10, X_1 = Y_1 = CVy, XO = Y() =CVy.
State Update Transformation. The state update transformation starts from a 160-bit input
chaining variable cv = (cvy, cvy, cva, cv3, cva) and updates them in 80 steps (5 rounds, each round

contains 16 steps). As depicted in Figure 1, in round j (1 < j < 5), X;and ¥; (1 < i < 80) are
updated as follows:

X = (Xi_q << 10) + ((x,-_5 << 10) + Fj (Xi_1, Xi-a, (X;_3 << 10)) + mgg, + ki.) <«< s,



Gaoli Wang, Yanzhao Shen and Fukang Liu 181

Table 2: Order of the Message Words and Rotation Values in RIPEMD-160

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ZH 10 1 2 3 4 5 6 7 9 10 11 12 13 14 15
@5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

sso|11 14 15 1205 8 7 9 13 14 15 6 7 9 8

s |8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

i | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
@0 | 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
@6 113 7 0 13 5 10 14 15 8 12 4 9 1 2

s |7 6 8 1311 9 7 15 7 12 15 9 11 7 13 12

s l9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11

i |33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
@ |3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
@115 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

ss |11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5

ss |9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5

i |49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Ao |1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2
P@| 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

ss 112 14 15 14 15 9 8 9 14 5 6 8 6 5 12

ss |15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

i |65 66 67 68 69 70 71 72 73 74 75 176 77 718 79 80
7| 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13
P@12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

Fl9 15 5 11 6 8 13 12 5 12 13 14 11 8 5 6

s |8 5 12 9 12 5 14 6 8 13 6 5 15 13 11 11

Y=Yy << 10) + ((Yi_s < 10) + Fo_j (Yi—1, Yiea, (Y3 << 10)) + mypry + kj) S

where the boolean function F';, the constants ki. and k; depend on round j (j = L%J) and left/right

branch. The order of message words 7'(i), 7" (i) and the details of the shift positions sf, 57 can be

seen in Table 2. For the details of RIPEMD-160, we refer to [DBP96].

The Finalization. The output of compressing the block M is obtained by combining the ini-
tial value cv with the outputs of both branch operations. The five 32-bit words ¢v; composing the
output chaining variable are calculated by:

cvy = ovy + Xq9 + (Y73 << 10), vy = cova + (X753 < 10) + (Y77 < 10),

cv’2 =cv3+ (X77 < 10) + (Y76 << 10), ¢V = cvy + (X76 << 10) + Y50,
CV:1 = cvy + Xgo + Yr9.

2 Some Properties and the Message Modification

For RIPEMD-160, Mendel et al. [MPS*13] pointed out that it is difficult to theoretically calculate
the differential probability for each step of a given differential path and left it as an open problem.
Daum [Dau05] proposed a method to calculate the probability that X satisfies the equation (X +
CoxS=XxS)+C e, PriX| X+Cy) xS =X« S)+C(C]), where Cy and C, are
random constants. We find that from the calculation of such a probability, the probability of the
modular difference of the differential probability can be calculated. Moreover, from Theorem 2
in [FLN], we can also compute the differential probability for each step under some particular



182 Cryptanalysis of 48-step RIPEMD-160

| Xis I Xi1 | Xi2 I Xi3 | Xia |

<<<10

:
hls ]

BN EREREYEYS

Figure 1: The left branch of step update transformation of RIPEMD-160

circumstances. In this section, we present some properties to compute the differential probability
accurately under the circumstance that only one internal state word contains difference and the
difference is a power of 2. Moreover, the way of computing the differential probability sheds light
on the message modification, so we propose a method to implement the message modification
such that the sufficient conditions of a step differential hold with probability 1 after message
modification.

2.1 Calculating the Differential Probability

In order to express the following propositions easily, we simplify the i-th step function

X; = (Xi_q << 10) + ((Xi_5 << 10) + F; (Xi-1, X2, (Xi—3 << 10)) + mq;) + kﬁ) < s

as X; = (X;_4s << 10) + ((XH < 10) + f(Xi—1, Xi2, (X3 << 10) )+ m + k) <« s, where m, k and
s depend on the step i. If AX;_;, AX; >, AX;_3, AX;_s and Am are all zero, for any given value
a, the probability of AX; = a can be calculated easily as in RIPEMD-128. However, if AX;_s,
Af(Xi1, Xi—2, (X;_3 << 10)) or Am is not zero, then the probability of AX; = a can not be computed
as the case for RIPEMD-128. When there is only one internal state word containing difference
among X;_1, X;—», X;_3, X;—s and m, and the difference is a power of 2, the following propositions
can be used to compute the step differential probability.

Proposition 1. Lety = x; + (x2 + x3) << 5, ¥ = x1 + (02 + X)) < s, here x1, X2, x3 and x;
are 32-bit words. If Axz = [i] (i.e., x3; = 0, x’li =1, x3; = x/3,/< (0 < k < 31,k # i), then the
probability that A*y equals to 242 can be computed as follows:

1

]—m, i+S$3],

Pr[Aer — 2i+s(m0d32)] —

1 i+s>31.

T 32
Proof. Letr; = xp + x3, 12 = 1| << 5, 1] = X2 + X3, r;, = 1} << 5, then it is obvious that
Aty = A*r,.

Therefore,
Pl"[A+y — 2i+s(mod32)] — Pr[A+r2 — 2i+x(mod32)].
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Case 1: When i + s < 31, then

ATr, =2 = Ar =[]
or Arp=[-i,i+1]
or  Ar =[—i,—(i+1),i+2] 1)

or Arp=[-i,—-@{+1),..,—(30-15),31 —5].

From Ax; = [i] we can get A*r; = 2'. Thus Ary = [i] (i.e. A*r; = 2/ and r;; = 0) holds with
probability % In a similarly way, Ar; = [—i,i+1] (i.e. ATry =27, ri; = 1 and ry ;11 = 0) holds with
probability 2% Therefore, the probability of event (1) is % + 2% + 2% + ...+ 232% =1- (%)32’” .

Case 2: When i + s > 31, then

Atry =273 = Ar =i]
or Ar;=[-i,i+1]
or  Ary =[—i,—(+1),i+2] )

or Ar; =[-i,—-(+1),...,-30,31].
It is easy to see that the probability of event (2) is % + 21—2 + 2—‘; o+ # =1- (%)32—"_ O

Corollary 1 Lety = x; + (x2 + x3) << 5, ' = x1 + (X2 + x}) << 5, here x1, xp, x3 and x} are 32-bit
words. If Axs = [—i] (i.e., x3; = 1, X3 =0, 0=, (0<k<3Lk# i), then we can get

1

I—W, i+SS31,

Pr[A+y — _2i+s(mod32)] —

1 i+s>31.

S

2.2 Message Modification

In order to find a collision of a Merkle-Damgard hash function (esp. RIPEMD-160), a high
probability (after the accelerating process) differential path must be constructed on the basis of a
proper differences of the message and/or the initial value. Then a set of sufficient conditions that
ensure the differential path hold is deduced. In order to find a pair of messages which satisfy the
sufficient conditions, many accelerating techniques are proposed. Message modification [WYO0S5,
WYYO05a] is one of the powerful techniques to accelerate the process of finding a pair of messages
following the differential path.

For the sufficient conditions of each step of a given differential path of RIPEMD-128, it is easy
to use the message modification techniques to fulfill the conditions. However, it is not the case for
RIPEMD-160 due to the step function of RIPEMD-160 is not a T-function (i.e., the i-th output bit
depends only on the i first lower bits of all input words). The derivation process of the sufficient
conditions of the differential path in RIPEMD-160 is different from that in RIPEMD-128, which
will be illustrated through the following example. The differential characteristic in step 37 of the
left branch is

(AX3; = [-10,-16],AX33 = [-21,-24,30], AX34 = [-7], AX35 = [21,24], AX36 = [-7])

— AXz; = [21],

and

X37 = (X33 << 10) + ((X32 << 10) + F3(X36, X35, (X34 << 10)) + mo + kg) <« 14.
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According to the structure of the nonlinear function F3, the conditions X357 = 1, X3429 = 1,
X36,21 =0, X34,11 =1 and X36,24 = 1 ensure that (AX3¢ = [-7],AX35 = [21,24],AX34 = [-7])
result in AF3(Xs6, X35, (X34 <« 10)) = [7,21, =17]. Denote

T37 = (X3 <« 10) + F3(X36,X35, (X3 10)) + mg + ké, P37 = T3 <« 14,

obviously, we anticipate that the differences [+17] in AF3 cancels out the difference [-21] in AX33.
However, if the differences [+17] in AF5 spreads to the 18-th bit, then the corresponding difference
of P37 not only locates in bit 31, but also in bit 0. Thus, A*X3; = 22! can not be hold. Therefore,
the set of conditions X357 = 1, X3429 = 1, X3621 = 0, X3411 = 1, X3624 = 1 and X3721 = 0is nota
set of sufficient conditions of the 37-th step differential path. Thus, in the message modification,
we must make sure A*X37 = 22! and X371 = 0 hold simultaneously. So the message modification
for RIPEMD-160 is very complex. We present two examples (the second example is illustrated in
Appendix B) to illustrate part of the process of the message modification.

Example 1. For the i-th step function X; = (X;-4a <« 10) + ((Xi,s < 10) + f(Xi-1, Xi2,

(Xi_3 < 10))+m + k) < 5, where m, k and s depend on the step i. Denote
r = X5 < 10) + f(Xi—lin—Z, X3 x 10)) +m+k,

r = Xiss << 10) + f(Xiz1, Xi—2, (X;_3 << 10)) + m’ + &,
rn=r K5, r=r) <.

Let A*m = 2% and s = 3, in order to ensure AX; = [1], the message modification can be processed
as follows.

Step 1. If A*X; # 2, from the proof of Proposition 1, we know that Ar; = [-30,-31], i.e.
rizo =r131 = 1and r;,” = ”'1,31 = 0. The message word m can be modified in the following three
different ways:

(D

me—m=+23",

then after this modification, the most two significant bits of 7y and | are r1 30 = 1, 7131 = 0, ri,30 =0
and 7 ., = 1, which means Ar; = [-30, 31], thus Ar, = [—1,2]. Therefore, A*X; = =2 + 2% = 2.

2

131
m<—m—230,

then after this modification, the most two significant bits of r; and r| are r130 = 0, r131 = 1,

130 =1and 7 ,, = 1, which means Ar; = [30], thus Ar, = [1]. Therefore, A*X; = 2.

3)

1,31

me—m+ 2%,

I
L

then after this modification, the most two significant bits of r; and r| are ri30 = 0, r131 =
150 = 1 and r{ 5, = 0, which means Ar; = [30], thus Ar, = [1]. Therefore, ATX; =2.

Step 2. If X;; # 0, we modify the message word m according to the following three circum-
stances.

(1) If ri30 =0and r 3 = 0 (ie. rmo =1 andr131 = 0), m can be modified as: m «— m + 2%.

After the modification, the most two significant bits of 7; and r] are r130 = 1, 7131 = 0, 1] 30 = =0
and 71,31 = 1. On the one hand, r; 3 is flipped, so r, is flipped, thus X;; is flipped. On the other,
after the modification, there is A*r, = =2 + 2% = 2. Therefore, A*X; = 2 still holds.

() If rizo = 0and ri3; = 1, (ie. r] ;) = 1 and r| 5, = 1), m can be modified as: m «— m — 230,

After the modification, the most two significant bits of rpand v are ri30 = 1, 1131 = 0, 7} 30 = =0
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Figure 2: The traditional (left-hand side) and new (right-hand side) approach for collision search
on double-branch compression functions [LP13]

Non Linear

and r ;; = 1. Therefore, X; ; is flipped and A*X; = 2 still holds.

(3) If rizo = 1 and ri3; = 0, (i.e. r] ;) = 0 and rf 5, = 1), m can be modified as: m «— m + 230,
After the modification, X;; is flipped and A*X; = 2 still holds.

3 Improved Semi-free-start Collision Attack on Reduced
RIPEMD-160

The key point of collision attacks on RIPEMD family hash functions is searching a low probability
non-linear part and a high probability linear part. In the traditional collision attacks [Dob97,
MNS12, MNSS12, Wan14, WLF*05], the non-linear parts are located in the first steps and linear
parts in the remaining ones. This restricts the space of the possible differential paths and usually
fail to implement a collision attack. In this circumstance, Landelle and Peyrin [LP13] propose a
new method to utilize both the freedom of the message words and the freedom of the initial value,
which gives a semi-free-start collision attack on the full RIPEMD-128. The non-linear part is fixed
in the intermediate steps. Some message words are used to ensure the non-linear part hold and
the remaining ones are used to merge both branches. Figure 2 shows the differences between the
previous strategy and the strategy in [LP13].

Mendel et al. [MPS*13] constructs a differential path for 48-step RIPEMD-160, which is lo-
cated between steps 17-64. Using the differential path, they obtain a semi-free-start collision attack
on 42-step RIPEMD-160 with complexity 273, Meanwhile, they measure that the probability of
the differential path from step 58 to 64 is about 2713, So the complexity of 48-step attack is about
2868 Obviously, if the differential probability between steps 17-58 is improved, the collision attack
on 48-step RIPEMD-160 may be obtained.

In this section, we provide a method to compute the values of X37; (i = 2,7,17,21), X33,
(i=17,21), Y3, (i =9,15,21,27,30,31) and Y3, 59 by adding some conditions on the chaining
variables in advance, even though X3¢, Y29 and Y3; are unknown. Thus, the complexity of the
collision attack on 42-step RIPEMD-160 is decreased and a semi-free-start collision attack on
48-step RIPEMD-160 is constructed.

3.1 Review the General Strategy of the Attack on 42-step RIPEMD-160

At a high level, the process of getting a semi-free-start collision attack on 42-step RIPEMD-160
[MPS*13] consists of the following three phases:

Phase 1: A 48-step differential path (between steps 17-64) is constructed by inserting differences
in the message word m.

Phase 2: The message words m; (0 <i < 15,i # 1,4,7, 13) are modified such that the conditions
between steps 17-35 and X37; (i = 2,7) in the left branch and the conditions between steps 17-28
in the right branch are fulfilled. The candidate (the internal state variables and the corresponding
message words) at the end of this phase is called a starting point.
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Phase 3: Using the remaining free message words m, my4, m7 and m;3 to merge the initial states
of both branches to the same value. If the rest conditions of the differential path of 42-step
RIPEMD-160 are fulfilled, a semi-free-start collision is obtained.

In phase 2 of searching a starting point, firstly, the internal states words (Xa6, X27, X28, X29, X30)
in the left branch and (Y31, Y22, Y23, Y24, Y25) in the right branch are fixed. Then the message words
are modified in the fOHOWng order mp, mys, mg, ms, mpp, Mmy4, My, Ny, Ms, My, Ny and meg.
That means the conditions in the internal states in both branches are satisfied in the following
order: X31, Y26, (X32, Y27), X33, Y28, (X25, Y20), (X34, X35, Y19), Xo4, (X23, Y18), (X22, X372, X377),
(X215 X020, X19, X18) and Xj7. After finding a starting point, the remaining free message words m,
my, my and m3 are used to make sure that the five initial words of both branches have a match, i.e.,
X; =Y; (i = 12,13, 14,15, 16), which holds with a probability of 2732,

After Phase 2 and Phase 3, the sufficient conditions in steps 36-58 of the left branch (except
X372, = 0 and X377 = 1) and the sufficient conditions in steps 29-58 of the right branch are not
modified. [MPS*13] measures the probability of both branches by experiment. The probability
of the differential path in steps 36-58 of the left branch (except X372 = 0 and X377 = 1) is 288
The probability of the differential path in steps 29-58 of the right branch is 27366, Moreover,
the probability of merging the initial states of both branches to the same value in Phase 3 is
2732 Therefore, the uncontrolled probability of the differential path of 42-step RIPEMD-160 is
2732 % 2788 % 27366 = 2774 Thus, in Phase 2, it needs to generate 277 starting points, which
requires 273 42-step RIPEMD-160. Moreover, the merging costs about 27! calls of the 42-step
compression function. Therefore, the complexity of the semi-free start collision attack on 42-step
RIPEMD-160 is 273 + 2774719 & 2753,

3.2 Semi-free-start Collision Attack on 48-step RIPEMD-160

Mendel et al. [MPS*13] proposes a differential path for 48-step RIPEMD-160 (in Table 7) and
gets a collision attack on 42-step RIPEMD-160. The conditions on X; (i = 36,37, 38,57, ...,64)
and Y; (i = 29,...,33,60, ..., 64) of the differential path [MPS*13] are presented in Table 8 and
Table 9. In this section, by using the generalized message modification technique, we can obtain a
semi-free-start collision attack on 48-step RIPEMD-160 by decreasing the number of the starting
points needed in Phase 3.

In Phase 2 of searching a starting point, firstly, similar to [MPS*13], we fix the internal state
variables (Xa6, X27, Xo8, X29, X30) in the left branch and (Y21, Y22, Y23, Y24, Yas) in the right branch.
Then the message modification is used to make sure the conditions on the chaining variables
X, (i =17,..,25,31,..,35) and ¥; (i = 18,19,20,26,27,28) hold. Moreover, the message
words my, my, m7 and m3 are used to merge the initial values of both branches, i.e., X; = Y;
(i=12,13,14,15,16) in Phase 3, thus X34, Y29 and Y3; (depend on m4, m4 and m; respectively)
are unknown.

However, by adding some other conditions on the chaining variables in both branches in
advance, we can calculate the values of X37; (i = 2,7,17,21), X33, (i = 17,21) of the left branch
and Y30, (i = 9,15,21,27,30,31), Ya;20 of the right branch correctly. The computation of the value
of these bits is verified by the experiment. Furthermore, the conditions of X37,; (i = 2,7,17,21),
X38; (i =17,21), Y39, (i = 15,21,27,30,31) and Y359 can be fulfilled by modifying or searching
the message words. The above 12 conditions are marked with blue in Table 7. That means we
can ensure 10 more conditions hold in the starting point compared with [MPS*13]. Therefore, the
probability of the differential path can be improved and the needed starting points in phase 3 is
decreased after the generalized message modification. Thus, a semi-free-start-collision attack on
48-step RIPEMD-160 can be obtained. The comparison of the starting points in [MPS*13] and in
this paper are shown in Table 4. The procedure of the above calculation is illustrated in Table 3.

The process of computing X37,; (i = 2,7,17,21), X33, (i = 17,21), Y30, (i = 9,15,21,27,30,31)
and Y35 is independent of X34, Y29 and Y3, which follow the differential paths. The calculation is
described in the following. Furthermore, experiments are conducted, which confirm our reasoning
and calculation process. Our C implementation can be found in [verl6a, ver16b].
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Table 3: The Process of Finding a Starting Point

Step 1 2 3 4 5 6
Message word my mis mg ms mig mo
MCV X3 Y26 X33, Yo7 X33 Xos, Yoo | X34
Step 7 8 9 10 11 12
Message word my ms mio my my mg
MCV X4, X35, Y19 | Xo3, Y13 Yo X2, X37, X33, | X21, X0, | X17
Y30, Y32 X19, X138

MCYV denotes Modified Chaining Variable.

Table 4: The Comparison of the Components of the Starting Points

The Components of the Starting Points Reference
X (i=17,..35),Y;(i=18,..,28), X357, (i =2,7) [MPS*13]
X (i=17,..35),Y (=18,..,28), Section 4.2

X37: (i=2,7,17,21), X35,; (i = 17,21), AX37 =0x200000, AX33 =0
Y30J' (l = 9, 15,21,27,30,31), Y32,2(), AY30 =0x8200000

Calculate X37; (i = 2,7,17,21)

The message word my is used in the process of merging both branches, so in the process
of finding a starting point, X3¢ is unknown. From F3(Xze, X35, (X314 <« 10)) = (X36 V = X35) @
(X34 << 10), we know that X3¢ will have no influence on the output of the boolean function F if
X35 = 0 is satisfied. Therefore,

X3 = (X33 << 10) + (X3 << 10) + F3(X36, X5, (X34 << 10)) + mg + k) << 14
can be calculated under the condition that X35 = 0.

1. In order to calculate X37; (i = 17,21), the conditions X35; = 0 (i = 0,...,3,5,6) are
added (there is the condition X357 = 1 in the differential path). Then bits 0-3, 5, 6 of
F3(X36, X35, (X34 << 10)) can be calculated. Let

Ti = (X3 << 10) + (X34 << 10) A Oxe£) + (mg A Oxef) + &S,

then T can be deduced. We can choose mg such that 7, ; = 0 (i = 2, 3,5). Meanwhile, we
add the extra condition X33; = 0 (i = 6,8,9) which is ensured to hold by modifying m;.
Thus, the carry coming from bit 16 (19) to bit 17 (20) in the process of computing X37 is
stopped. Thanks to X367 = 1 being hold in the conditions of the differential path, we can
compute bit 7 of F3(X36, X35, (X34 << 10)), then X37,; can be calculated. Therefore, bits 17
and 21 of X37 can be calculated correctly if the differential path hold.

The above procedure will definitely compute X37; (i = 17,21) correctly under the con-
dition that X34 is unknown, which is confirmed by the experiment. For the randomly chosen
X; (i = 32,...,,36) and mg such that the above conditions are satisfied. On one hand, X37 is
calculated as

X371 = (X33 < 10) + ((X32 <« 10) + F3(X36, X35, (X34 << 10)) + mg + ké) <« 14.
On the other hand, X537 is computed as

X37 = (X33 << 10) + ((X32 << 10) + ((=X34 << 10) A Oxef) + (mg A Oxef) + kg) <« 14.
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The experiment shows that the two methods of calculation obtain the same value of X377
(X3721) with probability 1, for randomly chosen X3¢ which satisfies the conditions of the
differential path. This means X377 and X37,; can be computed correctly independent of
X36. The additional conditions of computing X37; (i = 2,7,17,21) and X3, (i = 17,21) are
shown in Table 10. It is worth noting that these extra conditions are not contradictory to the
conditions of the differential path.

2. X37,; (i = 2,7) can be computed as follows. Let X35; = 0 (i = 17, ...,25), then bits 17-25 of
F3(X36, X35, (X34 << 10)) can be computed. Let

T, = (X3 « 10) + ((—|X34 <« 10) A OX3feOOOO) + (mg A 0x3fe0000) +k{,

and force 7517 = 0. Let §| = (X3, < 10) + k%, and add the conditions S ;=03 =16,17).
Let So = F3(X36, X35, (X34 <« 10)) + mg, and force S,,16 = 0. Then there will be no carry
coming from bit 17 to bit 18 in the process of computing 7. Therefore, the 8 lowest bits of
X37 especially X37; (i = 2,7) can be calculated correctly by

X33 < 10) + ((X32 <« 10) + ((=X34 << 10) A 0x3£e0000) + mg + ké) <« 14.

In [MPS*13], in order to compute X37; (i = 2,7), the conditions that the 16-th bit of (X3, <
10) + (F3(X36,X35, (X34 << 10)) A Ox3ffOOOO) + (mg A Ox3££0000) + ké equals to zero and
X35, =0 =17,...,25) are added. The experiment shows that the probability of X37; (i = 2,7)
being computed correctly is less than 1. It is due to the carry from bit 17 to bit 18 can not always
be stopped when computing (X3, <« 10) + F3(X36, X35, (X34 << 10)) + mg + ké.

Calculate X33; (i = 17,21)
Since F3(X37, X3, (X35 << 10)) = (X37 V = X36) ® (X35 << 10) and X34 is unknown, then the
output of F3 can be computed if X37 =0xf £ £ £ £ ££f. Taking into consideration the fact that

X35 = (X34 << 10) + ((X33 < 10) + F3(X37, X36, (X35 << 10)) + mys + ké) <« 9,

we had better obtain bits 0-12 of F3(X37, X36, (X35 <« 10)) in order to compute X3g; (i = 17,21).
Thus, we need to force X37;, = 1 (i = 0,...,12). We have computed X37, (i = 0, ...,7) above.
Furthermore, X37,; (i = 8, ..., 12) can be calculated in the same way as the above method by forcing
X35, = 0 (i = 26, ...,30). However, there is X37, = 0 in the differential path. Thanks to X3¢, = 1 in
the conditions of differential path, so we can get bit 2 of F3(X37, X36, (X35 <« 10)). Thus, bits 0-12
of F3(X37, X36, (X35 << 10)) can be obtained. Let

Ty = (X33 << 10) + ((0x1££0 @ (X35 << 10) A OXLEEE) + (mys A OxLELE) + Kb,

and force T3 7 = 0. Moreover, we add the extra condition X346 = 0 by modifying m,o. Therefore,
the carry will be stopped at bit 16 in the process of computing X3g. Thus, X33; (i = 17,...,21) can
be calculated correctly by

X3 <« 10)+ (T3 <« 9).

We verify the above computations by experiments, which show that X37; (i = 2,7,17,21)
and X3g; (i = 17,21) can be calculated correctly with probability 1 independent of X35. Our C
implementation verifying the computation of X37; (i = 2,7,17,21) and X33; (i = 17,21) can be
found in [verl6a].

Moreover, we give an example in Table 5, where X; and X (i = 17, 18, 19, 20, 21) satisfy the
conditions of the differential path in the left branch in Table 7. Then for randomly chosen X3¢ and
X (which satisfy the conditions of the differential path), we can get that X37; = 0 (i = 2,21),
X3, =1G=0,1,3,...,12,17), X33; = 0 (i = 17,21), AX37 =0x200000 and AX3s = O hold,

which means X37, X}, X33 and X} follow the differential path in Table 7. Therefore, the conditions
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Table 5: An Example of the 17-38 Steps Differential Path in the Left Branch

X7 X3 Xi9 Xa0 X2 X36 €
el7af3a8 | cc966a05 | b7573bfe | 9336419%9e | £6920500 RV
X1 Xis X X5 X5 X6
el7af3e8 | cc966a05 | b7573bfe | 9336419 | £6930500 RV’
my ny ms ms me ng
T7ed471ba | 7e3d71dl | 1edb7709 | a3d9op37f | 70477536 | bdb9fab58
my mio mij miy mi4 mis
2e63c462 | b0477764 67740efc | £9e7b23c | 50321425 61b8f506a
(X37,X5,) (X33, X5g)
X37;, =0 =2,21), X3, =031 =17,21)
X37,=1G=0,1,3,...,12,17)
AX37 =200000 AX33 =0

¢ X36 and X can be random values (RV) which satisfy the conditions of the differential path.
The values in the table are in hexadecimal notation, and "0x" is omitted because of limited space.

of X37, X};, X33 and X)¢ in Table 5 can be guaranteed to be hold even though X34 is unknown. Our
C implementation of verifying the instance in Table 5 can be found in [verl6c¢].

Calculate Y309

We need to know Y309 in the process of computing Y3329, so we calculate Y39 in advance. Be-
cause F4(Y29, Yos, (Y7 10)) = (Y29 A (Y < 10)) \% (ng A =(Yry 10)) and Y,g is unknown,
if the condition Y,7 = 0 is added, then

Yao = (Yas << 10) + ((Yas << 10) + Fy(Yo, Yas, (Yo7 << 10)) + mo + K3) << 15

can be calculated. It is obviously that bits 23, 24, 26 of F4(Y29, Y23, (Y27 << 10)) can be calculated
by adding the extra conditions Y»7; = 0 (i = 13, 14, 16) (Y2715 = 1 is a condition of the differential
path). Let

Ty = (Y5 << 10) + (Yog A 0x5800000) + mg + k;,

R, = (Y25 S 10) + F4(Y29, ng,(Y27 S 10)) + mg + k;, Ql =R 15,
Ry = (Yos << 10) + mg + k5, Rz = F4(Ya, Yog, (Y27 << 10)),

and force Ty; = 0 (i = 23,24), Ry; = 0 (i = 23,24,25), and R3,3 = 0 (which is equivalent to
Y2323 = 0 and Y5713 = 0). Therefore, R;; = T4; (i = 24,26) can be calculated correctly because
the carry is stopped at bit 23 in the process of computing R;. Thus, Q;; (i = 7,9) can be computed
correctly and Q7 = 0. Furthermore, we add the extra condition Y55; = 0 (i = 29,30), which
will stop the carry coming from the lower bits when computing Y309 combined with the condition
Q17 = 0. Therefore, Y309 can be calculated correctly by

(Yas << 10) + (Y25 << 10) + (Y23 A 0x5800000) + mg + k5) <« 15.

The process of computing Y3g; (i = 15,21,27,30,31) and Y3550 can be seen in Appendix. The
additional conditions of computing Y3p; (i =9, 15,21,27,30,31) and Y3,¢ are shown in Table 11,
which are not contradictory to the conditions of the differential path.

We verify the above computations by experiment, which show that even though Y»9 is unknown,
Y30 (i = 9,15,21,27,30,31) can be calculated correctly with probability 1, and Y3;,9 can be
obtained correctly with a probability of more than 0.9. Our C implementation verifying the
computation of Y3p; (i =9, 15,21,27,30,31) and Y330 can be found in [ver16b].

Moreover, we give an example in Table 6, where Y; and Y; (i = 17,18,19,20,21) satisfy
the conditions of the differential path in the right branch in Table 7. Then for randomly chosen
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Table 6: An Example of the 17-32 Steps Differential Path in the Right Branch
Yi7 Yis Yio Y2 Y2 Y20, Y31 7
f2c0a544 | 9453c4fc | b6052b22 | eflc7569 | cb2693e7 RV
Yy Yig Yo Y Y Yoo 13,
f2c0ab544 | 9453c4fc | b6052b22 | eflc7529 | cb2293e7 RV’
ny ms mg mgy mio mi2
74£1£030 | £3bf86cl | 87££d902 | 47c76e30 | 8f04abfl | 9df619cl
mi3 mig mis
b5eb9%e8d | bc9e3al9 | 10630dee
(Y30, Yéo) (YSZa Yéz)
Y30, =0 (i =21,27,30,31), Y3015 = 1 Y3200 =0
Y, =0 =30,31), Y, =1(@=15,21,27) Y00 =0
4 Yoo, Y}y, Y31 and Y75, can be random values (RV) which satisfy the conditions of the differential

path. The values in the table are in hexadecimal notation, and "0x" is omitted because of limited
space.

Y29, Y}y, Y31 and Y;, (which satisfy the conditions of the differential path), we can get that
Y30, = 0 (0 = 21,27,30,31), Y3015 = 1, Y35, = 0 G = 30,31), ¥}y, = 1 (0 = 15,21,27) and
Y3000 = Yéz,zo = 0 hold with a probability of more than 0.9. Therefore, the conditions of Y39, ¥,
Y33 and Y}, in Table 6 can be guaranteed to be hold with a probability of more than 0.9 even though
Y59 and Y3, are unknown. Our C implementation of verifying the instance in Table 6 can be found
in [verl6d].

A starting point example is presented in Table 7, which follows the differential path in [MPS*13].
Furthermore, for randomly chosen X36 and X’ which satisfy the conditions of the differential path,
the starting point makes sure that X37; = 0 (i = 2,21), X37;, = 1 (i = 7,17), AX37 =0x200000,
X3817 = 0 and AXzg = 0 hold with probability 1. Meanwhile, for randomly chosen Y29, Y7,
Y31 and Y}, which satisfy the conditions of the differential path, the starting point ensures that
Y30, =0(i =21,27,30,31), Y3015 = 1 and AY3p =0x8200000 hold with probability 1. Moreover,
Y3220 = 0 holds with a probability of more than 0.9 even though Y,9 and Y3, are unknown. Our C
implementation of verifying the starting point in Table 7 can be found in [verl6e].

In this paper, one of the main works focuses on providing a method to compute the values
of X37’,‘ (l = 2, 7, 17, 21), X3g!,‘ (l = 17, 21), Y30‘,' (l = 9, 15, 21, 27, 30, 31) and Y32!2() under the
condition that X3¢, Y59 and Y3; are unknown (these bits are listed in Table 4). Then the conditions
on these bits are satisfied by message modification or exhaustive search. Y399 is computed correctly
in the starting point example shown in Table 7, and the purpose of computing Y39 is to compute
Y3220. It is noted that there is no condition on Y39 in the differential path. There is a condition
X331 = 0 in the differential path. We had no high performance computer to make the condition
X331 = 0 hold. However, the value of X33, is computed correctly (which is the most important
part) in the starting point example shown in Table 7.

Uncontrolled probability.

1. After a starting point is discovered, the remaining free message words m,, m4, m7 and m3
are used to make sure that there is a perfect match on the values of the five initial words of
both branches, i.e. X; = Y; (i = 12, 13, 14, 15, 16). Furthermore, the success probability of
the match phase is 2732

2. In the left branch, after finding a starting point with the generalized message modification,
there are 5 conditions X36; = 0 (i = 11,21), X36; = 1 (i = 2,7,24) in Table 8 (except Xs7, ...,
Xe64) that are not modified. Moreover, the uncontrolled probability of the left branch until
step 56 is 274 by experiment.
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3. In the right branch, the conditions Y3; (i = 15,21,27,30,31) and Y3, in Table 9 are
satisfied in the starting points. Therefore, there are only 24 uncontrolled conditions between
Y59 and Y33. Moreover, the uncontrolled probability of the right branch until step 59 is 2729
by experiment.

4. The collision probability of the differential path in steps 57-64 of the left branch and in steps
60-64 of the right branch is 273 by experiment [MPS*13].

Therefore, the uncontrolled probability is 2732 x 2754 x 27296 x 27113 % 0.9 = 27785 in total.

Complexity evaluation.

1. The 2783 starting points do not need to be generated from the beginning. A new start point
can be produced by randomizing mg. Once all the possible choices of mg have been used, the
freedom degrees of my, mg and ms can be used. According to Table 7, mg is used to fulfill
one condition on X;7. In order to use the freedom degree of mg, we can randomly choose X7
satisfying the condition X;7¢ = 0 and deduce mg. Therefore, the complexity of finding a new
starting point from a known one is about 2 + (48 X 2) ~ 2736 of the 48-step compression
function. For randomizing my, mg and ms, the corresponding number of times we have to
regenerate them is not the bottleneck of the attack on 48-step RIPEMD-160. Therefore, the
complexity of generating all the required starting points is 278 x 2736 = 2729,

2. The process of merging both branches is the same as the merging process proposed by Mendel
et al. [MPS*13]. The values of m3 and m4 can be deduced from X 4 = Y16 and X153 = Y13
respectively, and the complexity can be negligible. The bottleneck of the merging complexity
is finding m; and m; from the conditions X5 = Y;5 and X4 = Y14. The problem of finding
the values of m; and m; is equivalent to solving the equation X + Cy = (C; + X <« 8) >> 15,
where Cy and C; are constants. The attackers pre-compute m; and m7 and store them in a
table for all the 2% possible values of C and Cy, with a time complexity of 23 and memory
complexity of 2%4. Moreover, in the merging process, the table lookup is estimated using
a RAM access and the implementation of one merging needs about 145 cycles, while the
OPENSSL implementation of RIPEMD-160 compression function is about 1040 cycles.
Therefore, one merging costs about 145 + (1040 x 48 + 80) ~ 272! calls of the 48-step
compression function.

From the reasoning above, we can conclude that the complexity of the semi-free start collision
attack on 48-step RIPEMD-160 is 2783721 = 2764,

4 Conclusions

In this paper, we present a method and give a partial answer to calculate the theoretical probability
of a given differential path in RIPEMD-160, the step function of which is no longer a T-function.
Furthermore, we propose a method to carry out the message modification such that a step differential
path holds with probability 1 after message modification. Meanwhile, we propose a semi-free
start collision attack on 48-step RIPEMD-160, and our result improves the previously best known
semi-free start collision by 6 rounds. Our semi-free start collision attack uses the differential path
constructed by Mendel et al. and improves the probabilistic part by a factor of about 2'°. The future
work includes completely answering the open problem of computing the theoretical probability of
a given differential path in RIPEMD-160.
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A Some propositions of computing the differential proba-
bility

Proposition 2 Lety = x1 +(x2+x3) << 5, )" = x1 +(x2 +x}) << s, here x1, x2, x3 and x} are 32-bit

words. If Ax3 = [i, j] (.e., x3; =0, x3; =0, xéﬁi =1, xg’j =1, x3; = x’3’k (0<k<3l,k+#1i,j)and

i < j <31 — s, then the probability that A*y equals to 275 + 2/* can be computed as follows:

1 1

PV[A+y=2i+S+2j+s] =1- W - W

Proof. Letri =xp +x3, 1 =1 K 5, ri =x+ xg, ré = r; < s, if the i-th bit difference of Axs
results in

Arp =i,
or Arp = [-i,i+1],
or Ary = [-i,—-(+1),i+2],
or Arp = [-i,—({+1),...—(-2),j—1],

and the j-th bit difference of Ax; results in

Arp =[],
or Arp = [-j,j+1],
or Ary = [—j,—(+1),j+2],

or Arp = [-j,-(+1),..,-(30-1),31-5s],

then ATy = 2+ + 2/%5 hold obviously.
Meanwhile, besides the above circumstances, it is not difficult to observe that A*ry = 275 +2/*S
(i.e., ATy = 2% + 2/*%) is equivalent to

Arp = [-i,—-(+1),..—-(G—-1),j+1],
or Ary = [-i,—(+1),....—(G-1,-(+1),j+2],
or Ary = [-i,-(+1),...-(G-1,-(G+1,-(+2),...,—(30 -s),31 — 5],

Therefore,

PrAty = 215 4 27%5]

1 1 1 1 1 1 1 1 1
= (5 + 1 +..+ F) X (5 + I +..+ 232_S_j) + = + Y +..+ Py
_ 1 1
- 232-s5-i 232-s5-j"

From Proposition 2, it is easy to get the following corollary.
Corollary 2 Lety = x; + (x2 + x3) <€ 5, y" = x1 + (x2 + x;) << s, here x1, X2, x3 and x} are 32-bit
words. If Axz = [-i,—jl (i.e., x3; =1, x3; = 1, x’3‘l. =0, x’3,_,- =0, x34 = x’3’k O <k<3l,k+1,}J)
and i < j < 31 — s, then the probability that Ay equals to =25 — 2/*5 can be computed as follows:

1 1

+., i+s +s71 _
Pr[ATy = =2 =271 =1 - T T e
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Proposition 3 Lety = x; +(x+x3) << 5, = x1 +(x2 +x;) < s, here x1, x2, x3 and x are 32-bit
words. If Axz = [i, j] (i.e., x3;, =0, x3; = 0, x’3,i =1, xg)j = lA, X3 = x;,k O <k<3,k+#1i,))
and 32 < i+ s < j + s, then the probability that A*y equals to 275732 + 2/+5-32 can be computed as

follows:
1 1

PV[A+y — 2i+s—32 + 2j+s—32] =1= 232_i _ 232_]--

Proof. Let ry = x, + x3, r} = xp + xj, from Aty = 215732 4 2745732 'ye can get that the i-th bit
difference of Axj; results in

Arp = [i],
or Ary = [—i,i+1],
or Ary = [-i,—-@G+1),i+2],
or Ary = [-i,—-(@(+1),..,-30,31],

and the j-th bit difference of Ax; results in

Arp = [jl,
or Arp = [-j,j+1],
or Ary = [-j,—-(+1),j+2],
or Ary = [-j-(+1),..,-30,31].
It is obvious that the above circumstances except for Ar; = [—i, —(i + 1), ..., =30, 31] (from the i-th

bit difference of Ax3) and Ary = [—j,—(j + 1), ..., =30, 31] (from the j-th bit difference of Ax;) will
lead to Aty = 21*5732 4 27+s=32 Therefore,

Pr[A+y - 2i+s—32 + 2j+S—32]
1 1 1 1 1 1 1 1 1 1

- (§+?+§+...+%)X(§+§+§+~--+z32—1)_2324X232*f
1 ! 1

= (1- 232—1‘) x(1- 232_j) T 932-i x 232-j

= T oma T o

[m]

Proposition 4 For the i-th step function X; = (X;4 < 10)+((Xi_5 < 10)+ f(Xi_1, Xi2, (X3 <

10)) + m + k) <« 5, where m, k and s depend on the step i. If the input difference is (AX;_s,
AXi_4, AX;_3, AX;», AX;—1)=(0, 0, 0, 0, 0), and the message difference Am=[], then there are the
following properties:

1. When j+ s < 31, the probability of AX; = [-(j+ ), —(j+s+1),...,—(+s+t—-1), j+s+1]
isz,%x(l—#),wherej+s+ts31.

2. When j + s > 31, the probability of AX; = [-(j+ s —32),-(j+s+1-32),...,—(j+s+1—

1-32),j+s+1t-32]is 37 X (1 — 55), where j + s+t — 32 < 31.

Especially, when ¢ = 0, the probability of AX; = [j + s(mod32)] is % X (1- #) (j+s<3Dor
Ix(I=545) G+ s> 30).
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Proof. (1) When j+ s <31,

A+X,' — 2‘/’+s
Xijes =1
, . - . Xijrs+1 =1
AXi=[-(j+s),—-(+s+1),.,—(+s+t-1),j+s+1] =
Xi,j+s+t—1 =1
Xi,j+s+t =0

Combined with Proposition 1, we can get the probability of AX; = [-(j + 5),—(j+ s+ 1),...,—(j +
s+i=1),j+s+1]is 507 X (1 = 555).
(2) When j+ s > 31,

AXi=[-(j+s-32),-(j+s+1-32),..,—(j+s+t-1-32), j+s+1-32]

_ Ajts=32
A+Xi = QJts
Xijrs-32 =1
Xijrse1-32 = 1

Xijrser-1-32 =1
Xi,j+s+t—32 =0

Combined with Proposition 1, we can get the probability of AX; = [-(j +s—-32),-(j+ s+ 1 —
32),—(j+ s +1=1=32), j+5+1-32]is 50r X (1 = 59). o

B The second example to illustrate the process of message
modification

The first example of the message modification is shown in Section 2.2. Following is the second
example to illustrate the message modification.

Example 2. For the i-th step function X; = (X;—4 < 10) + ((X,-_S < 10) + f(Xi—1, Xi, (Xj3 <

10)) + m + k) < 5, where m, k and s depend on the step i. Denote r; = (X;—5 <« 10) +
fXic1, Xi, Xiss << 10)) + m+ k, 1) = (Xizs << 10) + f(Xi1, X2, (Xio3 << 10)) +m’ + k,
rp=r < sand 7, = r; << 5. Let Am = [26] and s = 3, in order to ensure AX; = [29], the
message modification can be processed as follows.

Step 1. If A*X; # 2% from the proof of Proposition 1, we know that Ar; = [-26, —27, -28, 29],
[-26,-27,-28,-29,30], [-26,-27,-28,-29, =30, 31] or [-26,-27, —28, —29, —30, —31]. In
order to ensure A*X; = 2%, the message word m can be modified as m «— m + 22, m «— m + 2%’
or m «— m + 2%, The reasons are explained as follows.

() Ifri3 =1and ri’n = 0, in order to make A*X; = 2%°, m can be modified in the follow-
ing ways:

@ The message word m can be modified as m «— m — 2?8, then the most six significant bits
of ry and rj are ri, = 1 (¢t = 26,27,29,30,31), rips = 0, r}, = 1 (¢t = 28,29,30,31), and
r;’t =0 (¢t = 26,27), which means Ar; = [-26,-27,28], thus Ar, = [-29, —30, 31]. Therefore,
A+X,' — _229 _ 230 + 231 — 229.

@ Similarly, m can be modified as m «— m + 2%, then r|, = 1 (t = 26,27), r;;, = 0 (t =
28,29,30,31), ri’t =0(=26,27,29,30,31), and ri,zs = 1, which means Ar; = [-26,-27, 28],
thus A*X; = 229,
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@ The message word m can be modified as m «— m — 2?7, then the most six significant bits
of r; and ri are ri, = 1 (t = 26,28,29,30,31), rio7 = 0, ri‘l =1(¢=27,28,29,30,31), and
7} 56 = 0, which means Ary = [-26,27], thus Ar, = [-29, 30]. Therefore, A*X; = —2% +230 = 2%,

@ Similarly, m can be modified as m «— m + 277 then riy =0 =27,28,29,30,31), r126 = 1,
r;’t =0(r = 26,28,29,30,31), and r;‘27 = 1, which means Ar; = [-26,27], thus A*X; = 2%.

® The message word m can be modified as m «— m — 226 then the most six significant bits
of ry and r| are r; = 1 (¢t = 27,28,29,30,31), ri26 = 0 and ri’, =1(t=26,27,28,29,30,31),
which means Ar; = [26], thus Ar, = [29]. Therefore, A*X; = 2%°.

©® Similarly, m can be modified as m «— m + 2%, then r;, = 0 (t = 26,27,28,29,30,31),
ri 2 = 1 and rit =0 (r = 27,28,29,30,31), which means Ar; = [26], thus A*X; = 2%°.

(2) If Ary equals to [-26, —27, —28, 29], [-26, —27, 28, 29, 30] or [-26, —27,-28, 29, -30, 31],
similar to Step (1), the message word m can be modified according to one of the following three
ways: m «— m + 22 m «— m + 2% or m «— m + 2°°. After the message modification, we will
get Ary = [-26,-27,28], Ar; = [-26,27] or Ar; = [26], respectively. Thus A*X; = 2% can be
obtained.

Step 2. After Step 1, we can get A*X; = 2%, which means Ar; equals to [26], [-26,27] or
[—26,-27,28]. If X; 9 # 0, the message word m can be modified as m «— m+2%° or m «— m—2%°
according to different circumstances. We give two examples to illustrate the modification.

(1) If 7| 5,56 = 000001 and r; 3126 = 000000, then the modification of m as m «— m — 226
will violate the condition A*X; = 22°. Therefore, m can only be modified as m «— m + 226 This
modification will ensure A*X; = 22° and Xi 29 1s flipped.

(2) If r{ 55 6 = 101 and ry 2526 = 100, then m can be modified as m «— m + 226 or m «— m — 2%,

Both modification will ensure A*X; = 222 and Xi 29 is flipped.

C The Process of Computing Y3; (i = 15,21,27,30,31) and
Y320
C.1 The Process of Computing Y35

Y»9 is unknown, from F4(Y29, Yo, (Y7 << 10)) = (Y29 A Yy 10)) \Y (ng A=Yy < 10)) we
can get that bit 0 of F4(Y29, Y25, (Y27 <& 10)) can be calculated by adding the extra conditions
Y2720 = 0. Meanwhile, Yy9; = 0 (i = 30,31) hold in the conditions of the differential path, which
will make bits 30, 31 of F4(Y29, Y2s, (Y27 << 10)) can be calculated. Let

Ts = (Y5 10)+(Y28 A (=Y << 10) A OXCOOOOOOl)+m9 +k£,

Ry = (Y5 << 10) + F4(Y29, Yos, (Yo7 < 10)) + mg + k;, 04 =Ry x 15,

and force 7s; = 0 (i = 30,31). Then bits 0, 31 of R4 can be calculated correctly, which means bits
14, 15 of Q4 can be computed correctly. Furthermore, we add the extra condition Y64 = 0 (which
has been hold in the differential path), which will make bit 15 of

Yao = (Yas << 10) + ((Yas << 10) + Fy(Yo, Yas, (Yo7 << 10)) + mo + K3) << 15
can be calculated correctly by

(Yo << 10) + ((Y25 << 10) + (Yog A (=Y27 << 10) A 0xc0000001) + mg + kg) <« 15
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since the carry is stopped in bit 14 when computing Y3.

C.2 The Process of Computing Y3,

Y29 is unknown, then bit 6 of F4(Y29, Y2, (Y27 <« 10)) can be calculated by adding the extra
condition Y5723 = 0. There is Y2727 = | in the differential path, so bit 5 of F4(Y29, Yas, (Y27 << 10))
can not be calculated. From Y54 = 0 and Y94 = 0 in the differential path, we can get that bit
4 of F4(Ya9, Yag, (Yo7 <« 10)) equals to zero. Similarly, by adding the conditions Y»7,5 = 0 and
Y253 = 0, we can get that bit 3 of F4(Y29, Yas, (Y27 << 10)) equals to zero. Let

R5 = (YZS S ]O) + mg + k;,

and force Rs; = 0 (i = 3,4,5), then there is no carry from bit 3 to 4 when computing Rs, and
Rs4 =0, Q¢,19 = 0, where

R¢ = (Y5 << 10) + F4(Y29, Yos, (Yo7 << 10)) + mg + kr, Q() = R¢ < 15.

Combined with the conditions Y»6; = 0 (i = 9, 10) (which have been hold in the differential path),
Y3021 can be calculated correctly by

(Yas << 10) + ((Yas << 10) + (Yag A (2¥y7 << 10) A 0x78) + mo + k) << 15

because the carry can be stopped at bit 20 when computing Y3.

C.3 The Process of Computing Y3; (i = 27,30, 31)

Y>9 has no influence on the bits 10,11,13,...,16 of F4(Y29, Y23, (Y27 <« 10)) by adding the conditions
Y»7;, =0(@G =0,1,3,...,6) (in fact, Y27, = 0 (i = 0,1) already hold in the conditions of the
differential path). Thanks to the condition Y59 ;> = 1 in the differential path, we can compute bit 12
of F4(Y29, Yos, (Yo < 10)) Let
T7 = (Ya5s <€ 10) + ((Yo3 A 0x1£c00) V 0x1000) + mg + k;,
and force 7710 = 0 and 77, = 1. Let
R; = (Y5 << 10) + F4(Y29, Yas, (Y7 < 10)) + mg + kS, 07 =R« 15,

thus, R;7; (i = 11,...,16) can be obtained correctly since the carry is stopped in bit 10 when
computing R;. Obviously, Q7; (i = 26, ...,31) can be obtained correctly and Q7,5 = 1 hold.
Combined with the condition Y»6 16 = 1 (which has been satisfied in the conditions of the differential
path), we can deduce that Y39; (i = 27, ..., 31) can be obtained correctly by

(Yas << 10) + ((Yas << 10) + (Y25 A 0x1£c00) V 0x1000) + mo + k) << 15

since there is always a carry in bit 26 when computing Y3g.

C.4 The Process of Computing Y3,

From the step function, we know that
Y3 = (Yog << 10) + ((Y27 < 10) + F4(Y31, Y30, (Y29 << 10)) + my + kg) <« 11.

There is Y2931 = O in the conditions of the differential path, which makes Y3 ¢ has no influence
on the output of the 9th bit of F4(Y3;, Y30, (Y29 << 10)). Meanwhile, we can compute Y3 in the
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Table 8: The Conditions of Steps 36-38, 57-64 in Left Branch

Chaining | Conditions on the Chaining Variable
Variable
X36 X36; =00 =11,21), X3, =1 (i =2,7,24)
X37 X3, =00=2,21), X357, =11 =7,17)
X33 X33, =0 =17,21)
Xs57t0 Xs9 | Xs726 =0, Xsgp6 = 1, X504 =0
Xo1t0 X3 | Xo14 =1, X615 = 0, X114 = X60,14» X63,14 = 1, X63,15 = 0

Table 9: The Conditions of Steps 29-33, 60-64 in Right Branch

Chaining | Conditions on the Chaining Variable

Variable
Y9 Y29 =0 =0,4,15,30,31), Y2926 = Y2826,

Y,=1@G=10,11,12,14,17,20)

Y30 Y30, =0 (i =21,27,30,31), Y30; = 1 (i = 11,15), Y305 = Y295
Y31 Y31, =1 =5,10,21,30), Y3120 # Y3020, Y3104 = Y3024

Y3 Y35=0,Y3;=1(=10,21)

Y33 Y3321 =1,Y3300 =101 Y320 =0

Y60 t0 Yea | Y14 = Y6026, Y624 = 1, Y634 =0

previous computations. Therefore, the output of bit 9 of F4(Y31, Y30, (Y29 <« 10)) can be obtained.
Let
Ts = (Yr7 << 10) + (Y30 A 0x200) + my + k5,

Rg = (Y7 << 10) + F4(Y31, Y30, (Yo << 10)) +my + kS, Os = Rg < 11,
Ry = (Y < 10) +my + k;,

and force Ry; =0 (i = 6,7, 8).
Moreover, we add the conditions that Y3; = 0 (i = 6,7,8,9), then Y3;,0 can be obtained
correctly with a probability of more than 0.9 by

(Yos << 10) + (Y27 << 10) + (Y30 A 0x200) + mp + k) << 11.

D The conditions on some chaining variables

Table 10: The Extra Conditions of the Generalized Message Modification in the Left Branch

Chaining | Extra Conditions on the Chaining Variable
Variable

X33 X33,=0({=6,8,9)

X34 X346=0

X35 X35,=0(=0,..3,56,17,...,30)

X7 X37,=1({=0,1,3,..,12)
T,;,=001=2,3,5,T17=0,T37=0,5,, =03 =16,17),S216 =0
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Table 11: The Extra Conditions of the Generalized Message Modification in the Right Branch

Chaining | Extra Conditions on the Chaining Variable
Variable

Y26 Y26,i = O (l = 29, 30)

Y7 Y27, =0(@{=3,...,6,13,14,22,25)

ng Y28,i = O (l = 3, 6, veey 9, 23)

T4;=0(=23,24),T5;, =0 =30,31),7T7, =0( =9,10)
Ry;i=0(=23,24,25),R5; =0(=3,4,5),R9; =0(i =6,7,8)
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