Cryptanalysis of PMACx, PMAC2x,
and SIVx

Kazuhiko Minematsu! Tetsu Iwata®*

INEC Corporation, Japan

2Nagoya University, Japan

FSE 2018
March 7, 2018, Bruges, Belgium

* Supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), 26280045. Work
was carried out while visiting Nanyang Technological University, Singapore.

Introduction : MAC

Message Authentication Code (MAC) : K x M — T
e Tag T = MACk (M) for message M, using key K
e If MACx is a PRF, it is a secure MAC

M, Ta,
Alice (&) » Bob

Tag = MACk (M)
(M', Tag')

Eve

Blockcipher modes of operation for MAC : CBC-MAC, CMAC, etc.

18

MACs from TBC

Recent trend
Use tweakable blockcipher (TBC) for MAC to improve
simplicity/efficiency/security
TBC is an extension of ordinal BC, formalized by Liskov et al. [LRW02]
e E:KxT xM— M,tweak T € T is a public input
e (K,T) € K x T specifies a permutation over M

M

MACs from TBC

Recent trend
Use tweakable blockcipher (TBC) for MAC to improve
simplicity/efficiency/security
TBC is an extension of ordinal BC, formalized by Liskov et al. [LRW02]
e E:KxT xM— M,tweak T € T is a public input
e (K,T) € K x T specifies a permutation over M

M

Ef

MACs from TBC

Two TBC-based MACs :

 PMAC1 by Rogaway at Asiacrypt’04 [Rog04] :
— Simple. Introduced as an abstraction of PMAC for security proof
— Parallelizable
— Efficient, n msg bits per 1 n-bit-block TBC call
— Secure up to 2"/2 queries : birthday bound (upBB) security

e PMAC_TBC1k by Naito at ProvSec’15 [Nai15] :
— Extend the chain value of PMAC1 in a similar to Yasuda’s

PMAC plus [Yas11]

— Parallelizable
— Efficient, almost the same # of TBC calls as PMACT
— Secure up to 2" queries : beyond birthday bound (BBB) security

18

The proposals of List and Nandi, and our contributions
List and Nandi at CT-RSA’17 [LN17]: refine and extend [Nai15].

* PMAC2x and PMACx for MAC

o SIVx for Deterministic Authenticated Encryption (DAE)
Claimed BBB security for them : secure for ¢ < 2™ queries

The proposals of List and Nandi, and our contributions

List and Nandi at CT-RSA’17 [LN17]: refine and extend [Nai15].
 PMAC2x and PMACx for MAC
o SIVx for Deterministic Authenticated Encryption (DAE)
Claimed BBB security for them : secure for ¢ < 2™ queries

Our contributions
We invalidate the security claims for all of them,

« by showing attacks w/ ¢ ~ 2™/ queries (thus upBB-secure at
best).

« for both distinguisher and (very powerful) forgery

18

PMAC2x [LN17]

» Parallel application of TBC to message blocks M [i]
» 2n-bit chain and 2n-bit output (U, V')
¢ When the last block is full (|M[m]| = n): no pad

M[1] M2 M(m]
! ' }
E?{,l E}o{,z . Eg(,m
Z[1] Z[2] Z[m] $— X _
n P ~27Y4>
' X[| X et
o —»——>¢ ——»é— cee Hf%ME?{;X% Vv
Y[1] Y[2] Y

18

PMAC2x [LN17]

« Parallel application of TBC to message blocks M [i]

* 2n-bit chain and 2n-bit output (U, V)

o When the last block is partial (|M[m]| < n): pad and change the
tweak of TBC for M[m]

M) M[2) M([m] | 10*
} } }

E(]](J E(}){,Z L E}(,m

Z[1] Z12] Z[m] ¥ _

n e = ~27Y4>
" X[x[2] 5 i
2 2 2 Ebt
Y[1] Y[2] Y K

18

PMACX [LN17]
 n-bit-output variant of PMAC2x obtained by T'=U & V'

» Same handling of last block as PMAC2x

ﬁ
!

MI[1] M[2] M[m] | 10*
! } !
EY! E%? £
Z[1] ¢+ Z[2] +— Z[m] +— X _
o 4 y 52y
X[X[2) - K{
2 2 msbz
or H,ﬁé—>,ﬁ®i .. * t ESA,)?
Y[1] Y[2] Y K

T

18

PMACx [LN17]

 n-bit-output variant of PMAC2x obtained by T'=U & V'

» Same handling of last block as PMAC2x

:
1)

MI[1] M[2] M[m] | 10*
! } !
E%l E?{,Z E;{lm
Z[1] ¢+ Z[2] +— Z[m] +— X _
o y 52y
X[X[2) - K{
2 2 mez
i 4.,4.(%—>,an .. $ 1 ES,)?
Y[1] Y[2] Y K

Security bounds for PMAX2x and PMACx [LN17]
O(q?/2?" + ¢3/23"), thus BBB-secure

T

Differences from PMAC_TBC1k [Nai15]

The structures are the same, but
@ Output extension (from n to 2n by PMAC2x), w/o additional cost

® Refined security bounds

©® More efficient padding
— PMAC_TBC1k : M is always padded. If |[M| mod n = 0 (integral
blocks) we need one more block
— PMAC2x : M is padded only if |[M| mod n # 0.
— Similar to PMAC1. Improved short-input efficiency

Differences from PMAC_TBC1k [Nai15]

The structures are the same, but
@ Output extension (from n to 2n by PMAC2x), w/o additional cost

® Refined security bounds
® More efficient padding
— PMAC_TBC1k : M is always padded. If |M| mod n = 0 (integral
blocks) we need one more block
— PMAC2x : M is padded only if |M| mod n # 0.
— Similar to PMAC1. Improved short-input efficiency

The last one seems a nice optimization,
but contains a significant flaw

Birthday attack on PMAC2x

o Q =2"/2-1 query 2Q = 2"/? single-block messages
 The first set: distinct My, ..., Mg s.t. |[M;|=nforl <i<Q
» The second set: distinct M7, .. .,Mé? s.t.]M;] <nfor1<;<Q

M; M; | 10*
} !
B B
n ! ~2,Yz_> . n 7 J ~2vY]/_>
0 ; EK Ui 0 ; EK Ujl
met IIlet
f msb; i msby
n A t “'3.)/(\1_> 5 n - A t N‘S‘)/(\’_> /

Birthday attack on PMAC2x

» Two message sets are given to independent random permutations

e Thus, TBC outputs (e) can collide!

* WH.P, X; = X/ for some i and j, in which case V; = Y/

o (Ui, Vi) = (U}, V) for PMAC2x, but this is unlikely for a random
function that outputs 2n bits

M; ZW; || 10*
} !
750,1 1,1
Ey Ey
[o
. X! —
o X; Elﬁ L v i Y I =27, g
v K ‘ T "1Ek J
msb; msb;
3 msb; 3 msby
1 ~3 X, 1 ~3,X7 /
or 5 E3,XL_> Vz on ~ 8 Fos i X/J
v, LE v, Ex

10/18

Birthday attack on PMAC2x

» Two message sets are given to independent random permutations

e Thus, TBC outputs (e) can collide!

* WH.P, X; = X/ for some i and j, in which case V; = Y/

o (Ui, Vi) = (U}, V) for PMAC2x, but this is unlikely for a random
function that outputs 2n bits

M; ZW; || 10*
} !
750,1 1,1
Ey Ey
[o
. X! —
o X; Elﬁ L v i Y I =27, g
v K ‘ T "1Ek J
msb; msb;
3 msb; 3 msby
1 ~3 X, 1 ~3,X7 /
or 5 E3,XL_> Vz on ~ 8 Fos i X/J
v, LE v, Ex

10/18

Extension to longer blocks and forgery

The attack can be easily extended to two directions

 Distinguisher for longer messages
— One can prepend any fixed integer blocks
— M; = My || M;[m] and M} = My || M}[m], for |[Mpre| = n(m — 1)
— works because TBC calls for message hashing are parallel

e Almost universal forgery attack
— Perform the above attack to detect collisions for A; and M
— Chang the prefix from M, to (any integer blocks of)J\Z/pre
— Query the tag for M; = My, || M;[m]
— The tag for M = My || M}[m] will be the same

11/18

Extension to longer blocks and forgery

The attack can be easily extended to two directions

 Distinguisher for longer messages
— One can prepend any fixed integer blocks
— M; = My || M;[m] and M} = My || M}[m], for |[Mpre| = n(m — 1)
— works because TBC calls for message hashing are parallel

e Almost universal forgery attack
— Perform the above attack to detect collisions for A; and M
— Chang the prefix from M. to (any integer blocks of) M.
— Query the tag for M; = My, || M;[m]
— The tag for M = My || M}[m] will be the same

Extension to PMACXx
The attack can be extended to PMACx with slight modifications

11/18

SIVx : application to DAE

DAE : authenticated encryption (AE) w/o nonce

e introduced by Rogaway and Shrimpton at
EUROCRYPT 06 [RS06]

» takes associated data (AD) A, plaintext M
e outputs ciphertext C' and tag T’

(Generic) SIV [RS06] : DAE construction using PRF F' and IV-based
encryption £

Q7T «— Fg(A M)
® C «— &L, (M) (T as IV)
@ return (C,T)

Adopted by many DAE proposals: (BC-based instance of) SIV [RS06],
SCT at CRYPTO’16 [PS16], ZAE at CRYPTO’17 [IMPS17]

12/18

SIVx is an instance of SIV

 avariant of PMAC2x as I’ (vPMAC2x)

— PHASHx (PMAC2x w/o final TBCs) independently applied to A and
M, using distinct tweaks
— Take XOR of outputs, finalize as PMAC2x

« IVCTRT [PS16] as £

18

Birthday attack against SIVx

Forgery against vPMAC2x implies forgery against SIVx
» The padding-based attack works as well as PMAC2x
o E.g. by fixing M and attack AD part

All] A2
b !
IS £
ZA [1] ZA[Q]
0" —~& &
X.-'l [1]
2
'
o
YAUJ
MI1] M[2)
!
A
ZM1) ZM[2)
0" —~& &
XM[1)
2
!
)/!l! “1

14/18

Birthday attack against SIVx
Even if padding is safe (e.g. as PMAC_TBC1Kk), still vulnerable
o Let M; = Mpye||M;[m], A; = Aprel|Ai[m] (the same length)
o Query (My, Ay),..., (M, A,) for ¢ = 27/
e The diff is only in the last blocks
e f X; @ X; =0"Y; @Y =2(X; @ X;) = 0" and the output collides

Al A2] Ala] || 107
ZAN1) ZA[2) Za)

o —& & D

x| x4
2

15/18

Birthday attack against SIVx
o X;©X; =Z{m| @ Z{m] ® Z}M[m] © Z)[m]

« 2"/2 queries are enough to see a collision on 4 outputs of two
independent random permutations

o extension to a # m is possible (see the paper)

=

1] 4

1,

=
&
iy

16/18

Concluding remarks : what went wrong

 (All) Wrong padding method : only useful for upBB-secure
schemes
— Each TBC output for M [i] must be distinct for BBB-security
» (SIVx) Wrong parallel composition (XOR) of PHASHx
— The cause is mostly from the fact that PHASHx is O(2~2")-Almost
universal but not O(272")-Almost XOR universal !
— (consider the single-block case: collision prob is zero but XOR
differential prob is 1/(2™ — 1) or 0)

17/18

Concluding remarks : what went wrong

 (All) Wrong padding method : only useful for upBB-secure
schemes
— Each TBC output for M [i] must be distinct for BBB-security
e (SIVx) Wrong parallel composition (XOR) of PHASHx
— The cause is mostly from the fact that PHASHx is O(2~2")-Almost
universal but not O(272")-Almost XOR universal !
— (consider the single-block case: collision prob is zero but XOR
differential prob is 1/(2™ — 1) or 0)

Fix on [LN17]
ePrint version of [LN17] fixed them

o Same padding as PMAC_TBC1k
» Encode (A, M) and give to single PMAC2x for SIVx

Concluding remarks : what went wrong

 (All) Wrong padding method : only useful for upBB-secure
schemes
— Each TBC output for M [i] must be distinct for BBB-security
e (SIVx) Wrong parallel composition (XOR) of PHASHx
— The cause is mostly from the fact that PHASHx is O(2~2")-Almost
universal but not O(272")-Almost XOR universal !
— (consider the single-block case: collision prob is zero but XOR
differential prob is 1/(2™ — 1) or 0)

Fix on [LN17]
ePrint version of [LN17] fixed them
o Same padding as PMAC_TBC1k
» Encode (A, M) and give to single PMAC2x for SIVx

Lessons learned

o Be careful when you adopt techniques used in upBB-secure
schemes to build BBB-secure schemes!

Thank you!

