
Cryptanalysis of PMACx, PMAC2x,
and SIVx

Kazuhiko Minematsu1 Tetsu Iwata2,∗

1NEC Corporation, Japan

2Nagoya University, Japan

FSE 2018
March 7, 2018, Bruges, Belgium

∗ Supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), 26280045. Work
was carried out while visiting Nanyang Technological University, Singapore.

Introduction : MAC
Message Authentication Code (MAC) : K ×M→ T
• Tag T = MACK(M) for message M , using key K

• If MACK is a PRF, it is a secure MAC

Blockcipher modes of operation for MAC : CBC-MAC, CMAC, etc.

2 / 18

MACs from TBC

Recent trend
Use tweakable blockcipher (TBC) for MAC to improve
simplicity/efficiency/security

TBC is an extension of ordinal BC, formalized by Liskov et al. [LRW02]
• Ẽ : K × T ×M→M, tweak T ∈ T is a public input
• (K,T) ∈ K × T specifies a permutation overM

3 / 18

MACs from TBC

Recent trend
Use tweakable blockcipher (TBC) for MAC to improve
simplicity/efficiency/security

TBC is an extension of ordinal BC, formalized by Liskov et al. [LRW02]
• Ẽ : K × T ×M→M, tweak T ∈ T is a public input
• (K,T) ∈ K × T specifies a permutation overM

3 / 18

MACs from TBC

Two TBC-based MACs :
• PMAC1 by Rogaway at Asiacrypt’04 [Rog04] :

– Simple. Introduced as an abstraction of PMAC for security proof
– Parallelizable
– Efficient, n msg bits per 1 n-bit-block TBC call
– Secure up to 2n/2 queries : birthday bound (upBB) security

• PMAC TBC1k by Naito at ProvSec’15 [Nai15] :
– Extend the chain value of PMAC1 in a similar to Yasuda’s

PMAC plus [Yas11]
– Parallelizable
– Efficient, almost the same # of TBC calls as PMAC1
– Secure up to 2n queries : beyond birthday bound (BBB) security

4 / 18

The proposals of List and Nandi, and our contributions
List and Nandi at CT-RSA’17 [LN17]: refine and extend [Nai15].
• PMAC2x and PMACx for MAC
• SIVx for Deterministic Authenticated Encryption (DAE)

Claimed BBB security for them : secure for q � 2n queries

Our contributions
We invalidate the security claims for all of them,
• by showing attacks w/ q ≈ 2n/2 queries (thus upBB-secure at

best).
• for both distinguisher and (very powerful) forgery

5 / 18

The proposals of List and Nandi, and our contributions
List and Nandi at CT-RSA’17 [LN17]: refine and extend [Nai15].
• PMAC2x and PMACx for MAC
• SIVx for Deterministic Authenticated Encryption (DAE)

Claimed BBB security for them : secure for q � 2n queries

Our contributions
We invalidate the security claims for all of them,
• by showing attacks w/ q ≈ 2n/2 queries (thus upBB-secure at

best).
• for both distinguisher and (very powerful) forgery

5 / 18

PMAC2x [LN17]

• Parallel application of TBC to message blocks M [i]

• 2n-bit chain and 2n-bit output (U, V)

• When the last block is full (|M [m]| = n): no pad

M [2]

Ẽ2,Ŷ
K

Ẽ3,X̂
K

2 2

M [1]

0n

2

Z[1]

0n

X[1]

Y [1]

msbt

msbt

M [m] ‖ 10∗

Ẽ0,1
K Ẽ0,2

K Ẽ0,m
K

Z[2]

X[2]

Y [2]

Z[m]
X

Y

U

V

6 / 18

PMAC2x [LN17]

• Parallel application of TBC to message blocks M [i]

• 2n-bit chain and 2n-bit output (U, V)

• When the last block is partial (|M [m]| < n): pad and change the
tweak of TBC for M [m]

M [2]

Ẽ2,Ŷ
K

Ẽ3,X̂
K

2 2

M [1]

0n

2

Z[1]

0n

X[1]

Y [1]

msbt

msbt

M [m] ‖ 10∗

Ẽ0,1
K Ẽ0,2

K Ẽ1,m
K

Z[2]

X[2]

Y [2]

Z[m]
X

Y

U

V

6 / 18

PMACx [LN17]
• n-bit-output variant of PMAC2x obtained by T = U ⊕ V
• Same handling of last block as PMAC2x

T

M [2]

Ẽ2,Ŷ
K

Ẽ3,X̂
K

2 2

M [1]

0n

2

Z[1]

0n

X[1]

Y [1]

msbt

msbt

U

V

M [m] ‖ 10∗

Ẽ0,1
K Ẽ0,2

K Ẽ1,m
K

Z[2]

X[2]

Y [2]

Z[m]
X

Y

Security bounds for PMAX2x and PMACx [LN17]
O(q2/22n + q3/23n), thus BBB-secure

7 / 18

PMACx [LN17]
• n-bit-output variant of PMAC2x obtained by T = U ⊕ V
• Same handling of last block as PMAC2x

T

M [2]

Ẽ2,Ŷ
K

Ẽ3,X̂
K

2 2

M [1]

0n

2

Z[1]

0n

X[1]

Y [1]

msbt

msbt

U

V

M [m] ‖ 10∗

Ẽ0,1
K Ẽ0,2

K Ẽ1,m
K

Z[2]

X[2]

Y [2]

Z[m]
X

Y

Security bounds for PMAX2x and PMACx [LN17]
O(q2/22n + q3/23n), thus BBB-secure

7 / 18

Differences from PMAC TBC1k [Nai15]

The structures are the same, but
1 Output extension (from n to 2n by PMAC2x), w/o additional cost
2 Refined security bounds
3 More efficient padding

– PMAC TBC1k : M is always padded. If |M | mod n = 0 (integral
blocks) we need one more block

– PMAC2x : M is padded only if |M | mod n 6= 0.
– Similar to PMAC1. Improved short-input efficiency

The last one seems a nice optimization,
but contains a significant flaw

8 / 18

Differences from PMAC TBC1k [Nai15]

The structures are the same, but
1 Output extension (from n to 2n by PMAC2x), w/o additional cost
2 Refined security bounds
3 More efficient padding

– PMAC TBC1k : M is always padded. If |M | mod n = 0 (integral
blocks) we need one more block

– PMAC2x : M is padded only if |M | mod n 6= 0.
– Similar to PMAC1. Improved short-input efficiency

The last one seems a nice optimization,
but contains a significant flaw

8 / 18

Birthday attack on PMAC2x

• Q = 2(n/2)−1, query 2Q = 2n/2 single-block messages
• The first set: distinct M1, . . . ,MQ s.t. |Mi| = n for 1 ≤ i ≤ Q

• The second set: distinct M ′1, . . . ,M
′
Q s.t. |M ′j | < n for 1 ≤ j ≤ Q

M ′
j ‖ 10∗

Ẽ1,1
K

X ′
j

Y ′
j

U ′
j

V ′
j

0n

2

0n

msbt

msbt

Ẽ
3,X̂′

j

K

Ẽ
2,Ŷ ′

j

K

Mi

0n

2

0n

msbt

msbt

Ẽ0,1
K

Xi

Yi

Ui

Vi

Ẽ2,Ŷi

K

Ẽ3,X̂i

K

9 / 18

Birthday attack on PMAC2x
• Two message sets are given to independent random permutations
• Thus, TBC outputs (•) can collide!
• W.H.P., Xi = X ′j for some i and j, in which case Yi = Y ′j
• (Ui, Vi) = (U ′j , V

′
j) for PMAC2x, but this is unlikely for a random

function that outputs 2n bits

M ′
j ‖ 10∗

Ẽ1,1
K

X ′
j

Y ′
j

U ′
j

V ′
j

0n

2

0n

msbt

msbt

Ẽ
3,X̂′

j

K

Ẽ
2,Ŷ ′

j

K

Mi

0n

2

0n

msbt

msbt

Ẽ0,1
K

Xi

Yi

Ui

Vi

Ẽ2,Ŷi

K

Ẽ3,X̂i

K

10 / 18

Birthday attack on PMAC2x
• Two message sets are given to independent random permutations
• Thus, TBC outputs (•) can collide!
• W.H.P., Xi = X ′j for some i and j, in which case Yi = Y ′j
• (Ui, Vi) = (U ′j , V

′
j) for PMAC2x, but this is unlikely for a random

function that outputs 2n bits

M ′
j ‖ 10∗

Ẽ1,1
K

X ′
j

Y ′
j

U ′
j

V ′
j

0n

2

0n

msbt

msbt

Ẽ
3,X̂′

j

K

Ẽ
2,Ŷ ′

j

K

Mi

0n

2

0n

msbt

msbt

Ẽ0,1
K

Xi

Yi

Ui

Vi

Ẽ2,Ŷi

K

Ẽ3,X̂i

K

10 / 18

Extension to longer blocks and forgery

The attack can be easily extended to two directions
• Distinguisher for longer messages

– One can prepend any fixed integer blocks
– Mi = Mpre ‖Mi[m] and M ′j = Mpre ‖M ′j [m], for |Mpre| = n(m− 1)
– works because TBC calls for message hashing are parallel

• Almost universal forgery attack
– Perform the above attack to detect collisions for Mi and M ′j
– Chang the prefix from Mpre to (any integer blocks of)M̂pre

– Query the tag for M̂i = M̂pre ‖Mi[m]

– The tag for M̂ ′j = M̂pre ‖M ′j [m] will be the same

Extension to PMACx
The attack can be extended to PMACx with slight modifications

11 / 18

Extension to longer blocks and forgery

The attack can be easily extended to two directions
• Distinguisher for longer messages

– One can prepend any fixed integer blocks
– Mi = Mpre ‖Mi[m] and M ′j = Mpre ‖M ′j [m], for |Mpre| = n(m− 1)
– works because TBC calls for message hashing are parallel

• Almost universal forgery attack
– Perform the above attack to detect collisions for Mi and M ′j
– Chang the prefix from Mpre to (any integer blocks of)M̂pre

– Query the tag for M̂i = M̂pre ‖Mi[m]

– The tag for M̂ ′j = M̂pre ‖M ′j [m] will be the same

Extension to PMACx
The attack can be extended to PMACx with slight modifications

11 / 18

SIVx : application to DAE

DAE : authenticated encryption (AE) w/o nonce
• introduced by Rogaway and Shrimpton at

EUROCRYPT’06 [RS06]
• takes associated data (AD) A, plaintext M
• outputs ciphertext C and tag T

(Generic) SIV [RS06] : DAE construction using PRF F and IV-based
encryption E

1 T ← FK(A,M)

2 C ← ETK′(M) (T as IV)
3 return (C, T)

Adopted by many DAE proposals: (BC-based instance of) SIV [RS06],
SCT at CRYPTO’16 [PS16], ZAE at CRYPTO’17 [IMPS17]

12 / 18

SIVx is an instance of SIV
• a variant of PMAC2x as F (vPMAC2x)

– PHASHx (PMAC2x w/o final TBCs) independently applied to A and
M , using distinct tweaks

– Take XOR of outputs, finalize as PMAC2x

• IVCTRT [PS16] as E

2 2

0n

2

0n

Ẽ4,1
K Ẽ4,2

K

M [2]

2 2

M [1]

0n

2

0n

M [m] ‖ 10∗

Ẽ6,1
K Ẽ6,2

K Ẽ7,m
K

A[1] A[2] A[a] ‖ 10∗

ZA[1] ZA[2] ZA[a]

XA[1] XA[2]

XA

Y A[1] Y A[2]

Y A

ZM [1] ZM [2] ZM [m]

XM [1] XM [2] XM

Y M [1] Y M [2] Y M

Ẽ5,a
K

Ẽ2,Ŷ
K

Ẽ3,X̂
K

msbt

msbt

X

Y

U

V

13 / 18

Birthday attack against SIVx

Forgery against vPMAC2x implies forgery against SIVx
• The padding-based attack works as well as PMAC2x
• E.g. by fixing M and attack AD part

2 2

0n

2

0n

Ẽ4,1
K Ẽ4,2

K

M [2]

2 2

M [1]

0n

2

0n

M [m] ‖ 10∗

Ẽ6,1
K Ẽ6,2

K Ẽ7,m
K

A[1] A[2] A[a] ‖ 10∗

ZA[1] ZA[2] ZA[a]

XA[1] XA[2]

XA

Y A[1] Y A[2]

Y A

ZM [1] ZM [2] ZM [m]

XM [1] XM [2] XM

Y M [1] Y M [2] Y M

Ẽ5,a
K

Ẽ2,Ŷ
K

Ẽ3,X̂
K

msbt

msbt

X

Y

U

V

14 / 18

Birthday attack against SIVx
Even if padding is safe (e.g. as PMAC TBC1k), still vulnerable
• Let Mi = Mpre‖Mi[m], Ai = Apre‖Ai[m] (the same length)
• Query (M1, A1), . . . , (Mq, Aq) for q = 2n/2

• The diff is only in the last blocks
• If Xi ⊕Xj = 0n, Yi ⊕ Yj = 2(Xi ⊕Xj) = 0n and the output collides

2 2

0n

2

0n

Ẽ4,1
K Ẽ4,2

K

M [2]

2 2

M [1]

0n

2

0n

M [m] ‖ 10∗

Ẽ6,1
K Ẽ6,2

K Ẽ7,m
K

A[1] A[2] A[a] ‖ 10∗

ZA[1] ZA[2] ZA[a]

XA[1] XA[2]

XA

Y A[1] Y A[2]

Y A

ZM [1] ZM [2] ZM [m]

XM [1] XM [2] XM

Y M [1] Y M [2] Y M

Ẽ5,a
K

Ẽ2,Ŷ
K

Ẽ3,X̂
K

msbt

msbt

X

Y

U

V

15 / 18

Birthday attack against SIVx
• Xi ⊕Xj = ZA

i [m]⊕ ZA
j [m]⊕ ZM

i [m]⊕ ZM
j [m]

• 2n/2 queries are enough to see a collision on 4 outputs of two
independent random permutations

• extension to a 6= m is possible (see the paper)

2 2

0n

2

0n

Ẽ4,1
K Ẽ4,2

K

M [2]

2 2

M [1]

0n

2

0n

M [m] ‖ 10∗

Ẽ6,1
K Ẽ6,2

K Ẽ7,m
K

A[1] A[2] A[a] ‖ 10∗

ZA[1] ZA[2] ZA[a]

XA[1] XA[2]

XA

Y A[1] Y A[2]

Y A

ZM [1] ZM [2] ZM [m]

XM [1] XM [2] XM

Y M [1] Y M [2] Y M

Ẽ5,a
K

Ẽ2,Ŷ
K

Ẽ3,X̂
K

msbt

msbt

X

Y

U

V

16 / 18

Concluding remarks : what went wrong
• (All) Wrong padding method : only useful for upBB-secure

schemes
– Each TBC output for M [i] must be distinct for BBB-security

• (SIVx) Wrong parallel composition (XOR) of PHASHx
– The cause is mostly from the fact that PHASHx is O(2−2n)-Almost

universal but not O(2−2n)-Almost XOR universal !
– (consider the single-block case: collision prob is zero but XOR

differential prob is 1/(2n − 1) or 0)

Fix on [LN17]
ePrint version of [LN17] fixed them
• Same padding as PMAC TBC1k
• Encode (A,M) and give to single PMAC2x for SIVx

Lessons learned
• Be careful when you adopt techniques used in upBB-secure

schemes to build BBB-secure schemes!

17 / 18

Concluding remarks : what went wrong
• (All) Wrong padding method : only useful for upBB-secure

schemes
– Each TBC output for M [i] must be distinct for BBB-security

• (SIVx) Wrong parallel composition (XOR) of PHASHx
– The cause is mostly from the fact that PHASHx is O(2−2n)-Almost

universal but not O(2−2n)-Almost XOR universal !
– (consider the single-block case: collision prob is zero but XOR

differential prob is 1/(2n − 1) or 0)

Fix on [LN17]
ePrint version of [LN17] fixed them
• Same padding as PMAC TBC1k
• Encode (A,M) and give to single PMAC2x for SIVx

Lessons learned
• Be careful when you adopt techniques used in upBB-secure

schemes to build BBB-secure schemes!

17 / 18

Concluding remarks : what went wrong
• (All) Wrong padding method : only useful for upBB-secure

schemes
– Each TBC output for M [i] must be distinct for BBB-security

• (SIVx) Wrong parallel composition (XOR) of PHASHx
– The cause is mostly from the fact that PHASHx is O(2−2n)-Almost

universal but not O(2−2n)-Almost XOR universal !
– (consider the single-block case: collision prob is zero but XOR

differential prob is 1/(2n − 1) or 0)

Fix on [LN17]
ePrint version of [LN17] fixed them
• Same padding as PMAC TBC1k
• Encode (A,M) and give to single PMAC2x for SIVx

Lessons learned
• Be careful when you adopt techniques used in upBB-secure

schemes to build BBB-secure schemes!
17 / 18

Thank you!

18 / 18

