Security of Even-Mansour Ciphers under Key-dependent Messages

Pooya Farshim, Louiza Khati, Damien Vergnaud

ENS, Paris

ANSSI, Oppida

Wednesday, March 7th, 2018

- KDM for "Key Dependent Message" [BRS03]
 - ► Encryption Scheme Security in Presence of Key Dependent Message

- Disk Encryption [BHHO08]
 - ► Circular-Secure Encryption from Decision Diffie-Hellman

- KDM for "Key Dependent Message" [BRS03]
 - ► Encryption Scheme Security in Presence of Key Dependent Message

$$\mapsto E_k(k)$$
 secure ?

- Disk Encryption [BHHO08]
 - ► Circular-Secure Encryption from Decision Diffie-Hellman

- KDM for "Key Dependent Message" [BRS03]
 - ► Encryption Scheme Security in Presence of Key Dependent Message

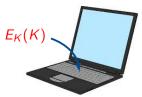
$$E_k(k)$$
 secure ?

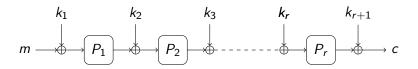
- Disk Encryption [BHHO08]
 - ► Circular-Secure Encryption from Decision Diffie-Hellman

- KDM for "Key Dependent Message" [BRS03]
 - Encryption Scheme Security in Presence of Key Dependent Message

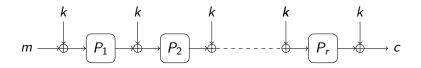
$$\mapsto E_k(k)$$
 secure ?

- Disk Encryption [BHHO08]
 - ► Circular-Secure Encryption from Decision Diffie-Hellman

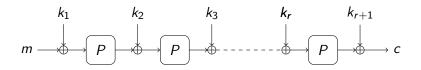




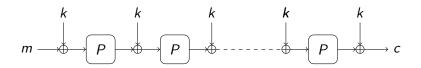
- *r* public random permutations: equal; **independent**; related.
- r+1 keys: equal; **independent**; key schedule.



- *r* public random permutations: equal; **independent**; related.
- r+1 keys: **equal**; independent; key schedule.



- r public random permutations: equal; independent; related.
- r+1 keys: equal; **independent**; key schedule.



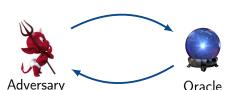
- *r* public random permutations: **equal**; independent; related.
- r+1 keys: **equal**; independent; key schedule.

Even-Mansour: Previous works

- Even-Mansour [EM97]
 - ▶ 1-r: SPRP up to the birthday bound
- 2-r Even Mansour [CLL+14]
 - ▶ Master key, $P_1 = P_2$, 2-r EM secure beyond BB in RPM.
- Related Key Attack security [CS15], [FP15]
 - ▶ A can apply offset Δ to keys: $k_i \oplus \Delta$,
 - Single key, 2-r EM is xor-RKA CPA secure,
 - Single key, 3-r EM is xor-RKA CCA secure.
- Indifferentiability from an Ideal Cipher [DSST17]
 - ▶ 5-r EM necessary and sufficient.
- KDM security ?

Security Model: KDM security

Encryption: ϕ is a function (including constants)

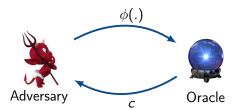


(b=1) Ideal world

(b=0) Real world

Security Model: KDM security

Encryption: ϕ is a function (including constants)



(b=1) Ideal world

$$c=\pi_E(\phi(K))$$

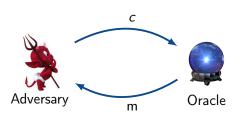
(b=0) Real world

 EM_K, EM_K^-

$$c = EM_K(\phi(K))$$

Security Model: KDM security

Decryption: c is constant



Decrypting c such that $c = O(\phi(.))$ with $\phi(.) \neq$ constant is forbidden!!

(b=1) Ideal world

$$m=\pi_D(c)$$

(b=0) Real world

 EM_K, EM_K^-

$$m = EM_K^-(c)$$

No restriction on set Φ

No restriction on set Φ

Example: $\phi_i(.)$ = Set the i-th bit of K to 0 and Id

No restriction on set Φ

Example: $\phi_i(.)$ = Set the i-th bit of K to 0 and Id

 ${\cal A}$ makes two queries: *Id* and ϕ_i for a chosen *i*.

No restriction on set Φ

Example: $\phi_i(.)$ = Set the i-th bit of K to 0 and Id

 ${\cal A}$ makes two queries: Id and ϕ_i for a chosen i.

If $Enc(Id(K)) = Enc(\phi_i(K))$ then the i-th bit of K is 0

No restriction on set Φ

Example: $\phi_i(.)$ = Set the i-th bit of K to 0 and Id

 ${\cal A}$ makes two queries: ${\it Id}$ and ϕ_i for a chosen i.

If $Enc(Id(K)) = Enc(\phi_i(K))$ then the i-th bit of K is 0

Key Recovery Attack!

No restriction on set Φ

Example: $\phi_i(.)$ = Set the i-th bit of K to 0 and Id

 ${\cal A}$ makes two queries: Id and ϕ_i for a chosen i.

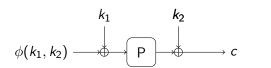
If $Enc(Id(K)) = Enc(\phi_i(K))$ then the i-th bit of K is 0

Key Recovery Attack!

Φ must be Claw-Free: It is hard to find $\phi_1 \neq \phi_2$ such that $\Pr[\phi_1(K) = \phi_2(K)]$ "is high".

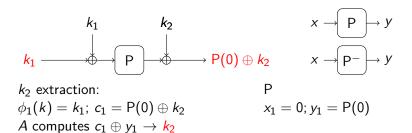
KDM security: Even-Mansour 1 round

Key extraction with a claw-free set Φ



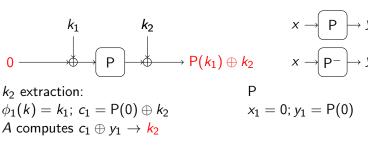
KDM Attack on 1-r Even-Mansour

Key extraction with a claw-free set Φ



KDM Attack on 1-r Even-Mansour

Key extraction with a claw-free set Φ



$$k_1$$
 extraction: P^-
 $\phi_2(k) = 0$; $c_2 = P(k_1) \oplus k_2$; $x_2 = z$; $y_2 = P^-(z)$
 A computes $z = k_2 \oplus c_2$
 $y_2 \rightarrow k_1$

Even-Mansour KDM security under a set Φ

r	Perm	Keys	Set Φ ind. P_i
1	Р	K_1, K_2	cf, offset-free*
2	P, P	K, K, K	cf, offset-free*
2	P,P	K_1, K_2, K_3	cf, ox-free
2	P_1, P_2	K_1, K_2, K_3	cf
3	P, P, P	K, K, K, K	cf, offset-free*
3	P, P, P	K_1, K_2, K_3, K_4	cf
3	P_1, P_2, P_3	K, K, K, K	cf
n	P, P, \dots, P	K, K, \ldots, K	cf, offset-free*

offset:
$$(\phi, X)$$
 such that $\phi(K_1, K_2) = K_1 \oplus X$.
ox: (ϕ, X) such that $\phi(K_1, K_2, K_3) = K_1 \oplus K_2 \oplus X$.

^{*} Sliding attack if the set Φ is not offset-free.

KDM security of Even-Mansour 2 rounds

- Independent random permutations: P_1^{\pm}, P_2^{\pm}
- Independent random keys: K_1, K_2, K_3

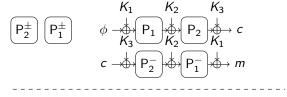
KDM rules:

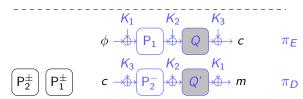
- Encryption/Decryption of oracle answers
- No repeat queries

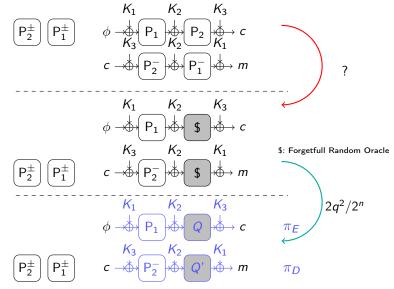
 - $ightharpoonup c_1 \neq c_2$

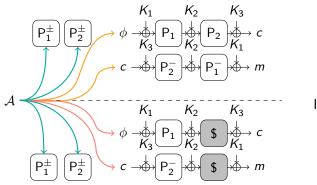
The set Φ is:

- Claw-Free
- Functions ϕ independent of P_i^{\pm}

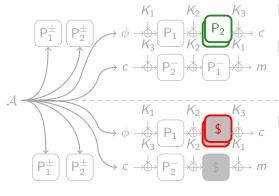








Inconsistencies?

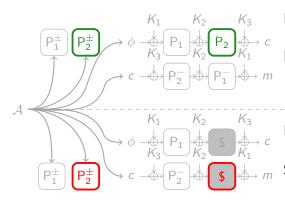


Reductions

Forgetfull game:

- no repeated queries on \$
- no "circular queries"

PRF/PRP switching lemma



Reductions

Forgetfull game:

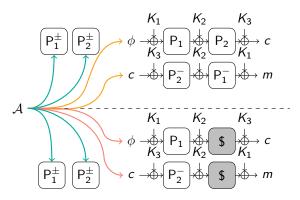
- no repeated queries on \$
- no "circular queries"

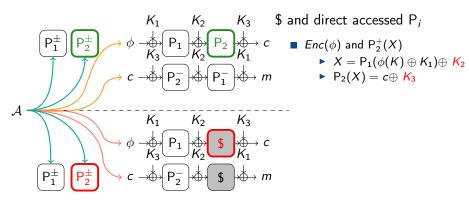
PRF/PRP switching lemma

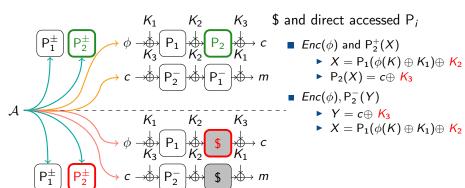
Splitting game:

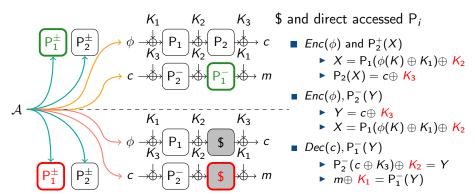
- no repeated queries on \$
- no "circular queries"

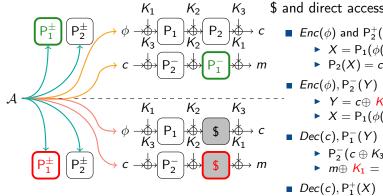
PRF/PRP switching lemma





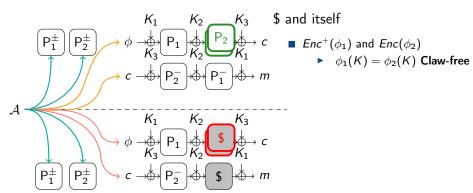


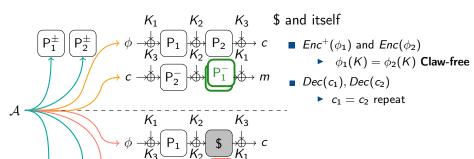


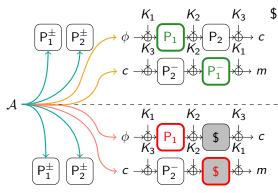


\$ and direct accessed P_i

- \blacksquare Enc(ϕ) and P₂⁺(X)
 - $\triangleright X = P_1(\phi(K) \oplus K_1) \oplus K_2$
 - $ightharpoonup P_2(X) = c \oplus K_3$
 - $Y = c \oplus K_3$
 - $X = P_1(\phi(K) \oplus K_1) \oplus K_2$
 - $P_2^-(c \oplus K_3) \oplus K_2 = Y$
 - ▶ $m \oplus K_1 = P_1^-(Y)$
 - $P_2^-(c \oplus K_3) \oplus K_2 = P_1^+(X)$
 - $ightharpoonup m \oplus K_1 = X$

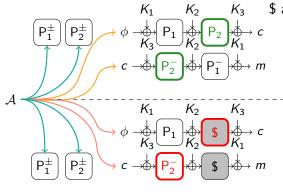






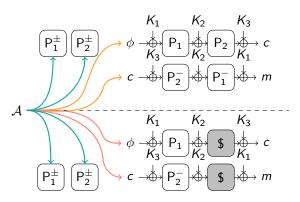
\$ and internal P_i

- $Dec(c_1)$ then $Enc(\phi_2)$
 - $m_1 \oplus K_1 = \phi_2(K) \oplus K_1$ Claw-free or forbidden
 - $P_2^-(c_1 \oplus K_3) \oplus K_2 = P_1(\phi_2(K) \oplus K_1)$

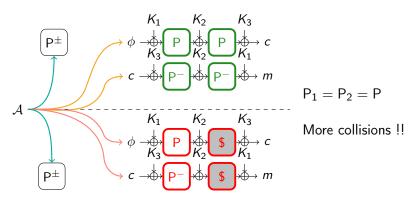


\$ and internal P_i

- $Dec(c_1)$ then $Enc(\phi_2)$
 - $m_1 \oplus K_1 = \phi_2(K) \oplus K_1$ Claw-free or forbidden
 - $P_2^-(c_1 \oplus K_3) \oplus K_2 = P_1(\phi_2(K) \oplus K_1)$
- $Enc(\phi_1)$ then $Dec(c_2)$
 - $P_1(\phi_1(K) \oplus K_1) \oplus K_2 = P_2^-(c_2 \oplus K_3)$
 - $c_1 \oplus K_3 = c_2 \oplus K_3$ forbidden



 Φ -KDM Security up to the birthday bound with a set Φ that is Claw-Free and P_i independent.



Conclusion

To sum up:

 KDM security of 2 rounds Even-Mansour different keys, different permutations

In the paper:

- General framework to analyse with a two stage-adversary
 - KDM security, RKA security,
 - Different block ciphers.
- KDM security for Ideal Cipher;
- Analysis of different Even-Mansour configurations

Even-Mansour KDM security under a set Φ

r	Perm	Keys	Set Φ ind. P_i
1	Р	K_1, K_2	cf, offset-free*
2	P, P	K, K, K	cf, offset-free*
2	P,P	K_1, K_2, K_3	cf, ox-free
2	P_1, P_2	K_1, K_2, K_3	cf
3	P, P, P	K, K, K, K	cf, offset-free*
3	P, P, P	K_1, K_2, K_3, K_4	cf
3	P_1, P_2, P_3	K, K, K, K	cf
n	P, P, \dots, P	K, K, \ldots, K	cf, offset-free*

offset: (ϕ, X) such that $\phi(K_1, K_2) = K_1 \oplus X$. ox: (ϕ, X) such that $\phi(K_1, K_2, K_3) = K_1 \oplus K_2 \oplus X$.

^{*} Sliding attack if the set Φ is not offset-free.

Thank you for your attention! Questions?

Security of Even-Mansour Ciphers under Key-dependent Messages

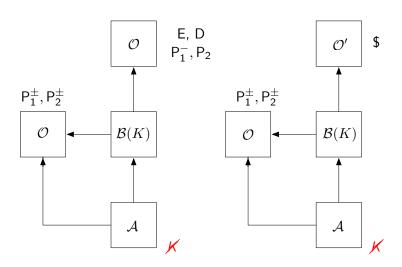
Pooya Farshim, Louiza Khati, Damien Vergnaud

ENS, Paris

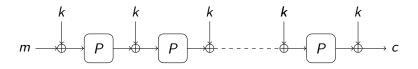
ANSSI, Oppida

Wednesday, March 7th, 2018

General Framework: Two-stage adversary



Sliding attack: Even-Mansour r rounds



$$\begin{split} \phi_1 &= 0 \text{ then } EM(0) = P(k) \oplus k = c_1 \\ \phi_2 &= c_1 \oplus k \text{ then } c_2 = \mathsf{P}(\mathsf{P}(k) \oplus k) \oplus k \\ \mathcal{A} \text{ asks } x &= c_1 \text{ to } \mathsf{P} \text{ then } y = P(c_1) = \mathsf{P}[\mathsf{P}(k) \oplus k] \\ \mathcal{A} \text{ can computes } k \colon c_2 \oplus y \end{split}$$

Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption from decision Diffie-Hellman. In David Wagner, editor, <u>CRYPTO 2008</u>, volume 5157 of <u>LNCS</u>, pages 108–125. Springer, Heidelberg, August 2008.

John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, <u>SAC 2002</u>, volume 2595 of LNCS, pages 62–75. Springer, Heidelberg, August 2003.

Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Steinberger.

Minimizing the two-round Even-Mansour cipher.

In Juan A. Garay and Rosario Gennaro, editors, <u>CRYPTO 2014</u>, <u>Part I</u>, volume 8616 of <u>LNCS</u>, pages 39–56. Springer, Heidelberg, August 2014.

On the provable security of the iterated Even-Mansour cipher against related-key and chosen-key attacks.

In Elisabeth Oswald and Marc Fischlin, editors, <u>EUROCRYPT 2015</u>, <u>Part I</u>, volume 9056 of <u>LNCS</u>, pages 584–613. Springer, Heidelberg, April 2015.

Indifferentiability of iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are necessary and sufficient.

Cryptology ePrint Archive, Report 2017/042, 2017. http://eprint.iacr.org/2017/042.

Shimon Even and Yishay Mansour.

A construction of a cipher from a single pseudorandom permutation. Journal of Cryptology, 10(3):151–162, 1997.

Pooya Farshim and Gordon Procter.

The related-key security of iterated Even-Mansour ciphers. In Gregor Leander, editor, <u>FSE 2015</u>, volume 9054 of <u>LNCS</u>, pages 342–363. Springer, Heidelberg, March 2015.