
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 2, pp. 59–83. DOI:10.13154/tosc.v2017.i2.59-83

Human-readable Proof of the Related-Key
Security of AES-128

Khoongming Khoo1, Eugene Lee2, Thomas Peyrin3,4,5 and Siang Meng Sim3

1 Defence Science Organisation (DSO) National Laboratories, Singapore, Singapore
kkhoongm@dso.org.sg

2 Raffles Institution, Singapore, Singapore
bleh3@hotmail.com

3 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,
Singapore

crypto.s.m.sim@gmail.com
4 School of Computer Science and Engineering, Nanyang Technological University, Singapore,

Singapore
5 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore

thomas.peyrin@ntu.edu.sg

Abstract. The related-key model is now considered an important scenario for block
cipher security and many schemes were broken in this model, even AES-192 and
AES-256. Recently were introduced efficient computer-based search tools that can
produce the best possible related-key truncated differential paths for AES. However,
one has to trust the implementation of these tools and they do not provide any
meaningful information on how to design a good key schedule, which remains a
challenge for the community as of today.
We provide in this article the first human-readable proof on the minimal number
of active Sboxes in the related-key model for AES-128, without any help from a
computer. More precisely, we show that any related-key differential path for AES-128
will respectively contain at least 0, 1, 3 and 9 active Sboxes for 1, 2, 3 and 4 rounds.
Our proof is tight, not trivial, and actually exhibits for the first time the interplay
between the key state and the internal state of an AES-like block cipher with an
AES-like key schedule. As application example, we leverage our proofs to propose a
new key schedule, that is not only faster (a simple permutation on the byte positions)
but also ensures a higher number of active Sboxes than AES-128’s key schedule. We
believe this is an important step towards a good understanding of efficient and secure
key schedule designs.
Keywords: AES · related-key differential attack · security proof · key schedule

1 Introduction
Block ciphers and more generally symmetric key cryptographic primitives are very impor-
tant components in nowadays security systems. While one usually gets confidence in a
symmetric-key ciphering scheme only after a thorough cryptanalysis period of several years,
ensuring the soundness of the algorithm during the design phase is also primordial. In par-
ticular, it is today desired that newly proposed ciphers have very strong security arguments
regarding state-of-the-art attacks. The most common security arguments put forward by
designers is the resistance of the cipher against differential and linear cryptanalysis, that
proved to be very powerful tools to break many primitives.

The symmetric key cryptography community has now reached a quite good experience
in designing good permutations for which it is possible to provide such arguments. The

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-09-01, Revised: 2017-03-01, Accepted: 2017-05-02, Published: 2017-06-19

https://doi.org/10.13154/tosc.v2017.i2.59-83
mailto:kkhoongm@dso.org.sg
mailto:bleh3@hotmail.com
mailto:crypto.s.m.sim@gmail.com
mailto:thomas.peyrin@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

60 Human-readable Proof of the Related-Key Security of AES-128

current NIST block cipher standard AES [DR02] benefits from very simple yet powerful
proofs on the minimal number of active Sboxes in a differential path (active/inactive Sbox
refers to an Sbox containing/not containing a difference): it is very simple to prove that
any differential path for AES will contain at least 25 active Sboxes over 4 rounds. These
proofs are actually generic enough to be applied to other matrix sizes than the AES. From
the minimal number of active Sboxes and the best differential transition through the Sbox,
one directly deduces an upper bound on the probability of a differential path.

However, these AES security arguments only hold in the classical single-key security
model in opposition to the related-key security model where the attacker is allowed to insert
differences not only in the plaintext/ciphertext, but also in the key input of the block cipher.
The related-key attacks are much harder to protect against, and many ciphers eventually
got broken in this scenario. Even AES-192 and AES-256, respectively the 192-bit and
256-bit key versions of AES, were shown to be weak in this model [BK09, BKN09] (and
possible patches of the key schedule were proposed in [Nik10, CZK+11]).

Matsui [Mat94] was the first to present an algorithm that searches for the best possible
differential characteristics, and showed the soundness of such a strategy by applying it
to the previous block cipher standard DES. Based on his work, we have recently seen
the emergence of much more efficient computer assisted tools that can even work for
the related-key model [BN10, BN11, MWGP11, FJP13, SHW+14] (unfortunately, they
were introduced too late to avoid the issues on AES-192 and AES-256). These tools
are generally smart exhaustive search through all the possible differential paths. As such,
their efficiency is quite dependent on the parameters of the cipher analysed. This can
be considered a drawback and while analysing AES-128 is definitely doable, reaching
AES-256 is much harder and using a 8× 8 matrix as internal state would probably render
these strategies impossible to apply in practice. A second drawback is that one has to
trust the implementation that has been utilized. The tool will output the best possible
differential path that it found and because it was programmed to search exhaustively
among all the candidates, we conclude that it is the best possible differential path. However,
the mere knowledge of the best differential path found by the tool is not sufficient to be
fully convinced, and one would have to review the entire code. Finally, the last drawback,
and probably the most important, is that these tools don’t tell us anything about how
to design a good block cipher and in particular its key schedule component. No really
meaningful information is output that can help the designers to understand the interactions
going on between the key schedule part and the internal state part.

The problem of designing a good (i.e. secure and efficient) key schedule is actually very
important and can also serve to incorporate tweak inputs in a block cipher [JNP14d]. Yet,
it remains a difficult challenge for the designers as of today and no general construction has
so far emerged as being particularly good. The classical strategy is to build an efficient key
schedule function quite different from the internal state round function, in a hope that it
will be difficult for the attacker to arrange good interactions between the key state and the
internal cipher state (as for example in AES or in the PRESENT block cipher [BKL+07]).
However, the obvious drawback of this strategy is that while it makes things hard for the
cryptanalyst, it also makes it harder for anyone to prove or to get a good confidence in the
security of the construction. Some primitives take a more security-based approach, but
they suffer from efficiency loss. For example, the internal cipher of the WHIRLPOOL hash
function [BR11] has a strong key schedule function that is almost the same as the internal
state round function. This effectively ensures a good security in the related-key scenario,
but basically doubles the number of computations required. On the other extreme, LED
block cipher [GPPR11] has no key schedule at all and can trivially adapt the simple
AES single-key security proofs to the related-key scenario, but at the cost of a significant
increase in the number of rounds.

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 61

Our contributions
In this article, we provide the first human-readable proof on the minimal number of active
Sboxes for 1/2/3/4 rounds of AES-128 in the related-key model, without any external
computational help. Our bounds are tight regarding truncated differences.

Apart from the extra confidence that our proof provides to the AES-128 key schedule
(as the current proofs on AES-128 were produced with search tools), we believe our work
is a new step towards helping future designers to create efficient and secure key schedule
algorithms. It provides new insight on the important and complex interactions between
the key schedule state and the internal state in a AES-like cipher. As example of this new
insight, leveraging our proofs, we also propose a new fully linear key schedule for AES-like
function that is much faster than AES-128’s key schedule (it is basically composed of
only a simple permutation on the byte positions) and that guaranties more active Sboxes.
The holy grail would be to generate an efficient key schedule algorithm for which the
security against related-key attacks can be proven in a simple and generic way (i.e. for
any parameters of the cipher).

We note that this is the first proof of this kind, as to the best of our knowledge
all ad-hoc block ciphers that can prove resistance to related-key differential attacks
used computer-aided proofs [SIH+11, Nik10, JNP14c, JNP14a, JNP14b] or non-efficient
constructions [BR11, GPPR11, CZK+11, MHM+02].

In short, our article will be devoted to proving the following without any external
computational help: any non-null related-key differential path for 1, 2, 3 and 4 consecutive
rounds of AES-128 contains at least 0, 1, 3 and 9 active Sboxes respectively.

This article is organized as follows. Section 2 describes the structure of AES-128.
Section 3 presents the notations and preliminary lemmas that will be used in the proofs.
Section 4 and 5 provide the related-key security proofs for 1/2/3 and 4 consecutive rounds of
AES-128 respectively. Section 6 discusses the design of a new key schedule that improves
the related-key differential bounds. Section 7 concludes the article.

2 Description of AES-128
The AES-128 cipher takes as input a 128-bit plaintext and transforms it using a 128-bit
key to produce a 128-bit ciphertext. The cipher is composed of 10 successive applications
of a round function, and we denote by Si, S′i the internal input, output states of the round
function, and by Ki the internal state of the key schedule at the i-th round. Each state
can be viewed as a 4-by-4 array of bytes.

The AES-128 round is depicted in Figure 1a. At round i, AddRoundKey (AK) is
performed to xor the previous output state S′i−1 with the round key Ki, to form input
state Si. This is transformed by the round function to produce output state S′i. The
round function first performs SubBytes (SB), which nonlinearly transforms each byte of
the internal state by the AES Sbox. Then it does ShiftRows (SR), which shifts row r of
the internal state by (r − 1)-bytes to the left. Finally, MixColumns (MC) is applied, where
each column is mixed through multiplication by an MDS matrix. The round key Ki is
updated by a key schedule layer to form the next round key Ki+1. Please note that the
MixColumns operation is omitted in the tenth round of AES-128 and a final round key is
xored to produce the ciphertext.

The AES-128 key schedule function KS is given in Figure 1b. The key schedule
internal state is a 4-by-4 byte array which is initialized by the 128-bit key. To compute
the first column of Ki+1, the fourth column of Ki is upward rotated by 1-byte, and then
transformed by the AES Sbox and xored with round constant RCON, before being xored to
the first column of Ki. To compute subsequent columns c = 2, 3, 4 of Ki+1, column c of
Ki is xored to column c− 1 of Ki+1. Since round constant addition with RCON does not

62 Human-readable Proof of the Related-Key Security of AES-128

Ki

S′i−1 Si

8 bits

SB

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC

S′i

Ki+1

internal state round

key schedule

AK

(a) One AES-128 round.

Ki

Ki+1

↑S

(b) The AES-128 key sched-
ule (omitting the round con-
stant addition).

Figure 1: Overview of AES-128

affect differential cryptanalysis, we omit it in our subsequent analysis.

3 Preliminaries
3.1 Notation
In order to represent the various internal states and key state differences, we use the
notations given in Figure 2. The initial state (respectively final state) of each round is
denoted Sx (respectively S′x), where x is the round number (1 ≤ x ≤ 4). The key state is
denoted Kx.

S′0

K1

KS

S1

AES
round

S′1

K2

KS

S2

AES
round

S′2

K3

KS

S3

AES
round

S′3

K4

S4

AES
round

S′4

Figure 2: Notations for 4 rounds of AES-128.

Moreover, as depicted in Figure 3, we denote by S|j the byte column j (starting
the counting from 1) of state S and similarly we use notation S\j to represent the j-th
top-left bottom-right byte diagonal (starting the counting from 1) of state S. More
formally, for a state S, if one denotes Si,j the byte located at row i and column j
(starting the counting from 1), S|j represents the four bytes Si,j with i ∈ {1, 2, 3, 4}.
Then, for the diagonal, we have S\1 = {S1,1, S2,2, S3,3, S4,4}, S\2 = {S1,2, S2,3, S3,4, S4,1},
S\3 = {S1,3, S2,4, S3,1, S4,2} and S\4 = {S1,4, S2,1, S3,2, S4,3}. We will use interchangeably
column j or j-th column to denote S|j (similarly diagonal j or j-th diagonal to denote S\j).
Finally, in order to keep the notations light and since we will only deal with differences
and not the values, we will also use Sx, Kx, etc. to denote the difference on Sx, Kx, etc.
Then, |S| (respectively |S|i| and |S\i|) will stand for the number of active bytes in a state
S (respectively in a column |S|i| and diagonal |S\i|). A round x for which |Sx| = |S′x| = 0
will be called a zero or inactive round. A column such that |S|i| = 4 is called a fully active

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 63

column and in contrary if |S|i| = 0 we call it a zero or inactive column. We naturally
extend this column notation to diagonals.

S|1

S|2

S|3

S|4

S\1

S\2

S\3

S\4

Figure 3: Column/diagonal notations S|i and S\i.

3.2 Best possible related-key differential paths
Before we begin our analysis on the differential characteristics in AES-128, we would
like to exhibit an example of the best possible related-key truncated differential paths
for AES-128, so that the readers can get a glimpse of the shape of such paths. This is
done in Figure 4. We can observe that our example of the best path on 4 rounds actually
contains an example of the best path on 3 rounds, which in turns contains an example of
the best path on 2 rounds, etc.

AK1

KS

SB

SR MC AK2

KS

SB

SR MC AK3

KS

SB

SR MC AK4

SB

SR MC

best 1-round RK differential path

best 2-round RK differential path

best 3-round RK differential path

Figure 4: Example of best possible 1/2/3/4-round related-key truncated differential paths
for AES-128. The black/white cells represent active/inactive bytes.

We emphasize that these characteristics are truncated, thus they don’t consider the
actual value inside the active bytes. This might lead to non-valid candidates as instanti-
ating these differences might be impossible (due to the constraints imposed by the Sbox
differential transitions and by the coefficients of the MixColumns layer). It turns out that
this is actually the case here: the 4-round related-key path given in Figure 4 is impossible
for AES-128. However, this path would potentially become possible if another diffusion
matrix or another Sbox was utilised. Thus, these truncated differential paths tell a lot
about the structural security provided by the AES-128.

We summarise in Table 1 the bounds on the number of active Sboxes proven by the
computer-aided search tools [BN10, MWGP11, FJP13] in the related-key model and we
compare them to our proven bounds. One can see that we achieve the same bounds. In
other words, our bounds are tight. For completeness, we also provide the bounds proven
by computer-aided search tools when the truncated differences must be instantiated to
actual differences.

64 Human-readable Proof of the Related-Key Security of AES-128

Table 1: Summary of the proven bounds on the number of active Sboxes in a related-key
differential path for several rounds of AES-128. While previous works used computer-aided
search, we obtained our bounds without any computation help.

Rounds 1 2 3 4
computer-aided

bounds [BN10, FJP13] 0 1 5 13
(non-truncated differences)

computed-aided
bounds [BN10, MWGP11, FJP13] 0 1 3 9

(truncated differences)
our bounds 0 1 3 9(truncated differences)

3.3 Key schedule patterns
Studying the related-key security of AES-128 regarding differential cryptanalysis will of
course rely a lot on analysing how the truncated differences can spread through the key
schedule. In Figure 5, we provide the truncated differential propagation of a single active
byte, in both forward direction (key schedule function KS) and backward direction (inverse
of the key schedule function KS−1). One can see that there are four different patterns
obtained, depending on which column belongs the active byte in the starting key state Kx.
All these patterns are invariant by rotation along the columns, so one directly obtains all
the single active byte-induced patterns from this figure.

KS−1 KS

KS−1 KS

KS−1 KS

KS−1 KS

Kx−1 Kx Kx+1

Figure 5: Backward/forward truncated differential transitions through the AES-128 key
schedule when only a single byte is active in Kx. All these patterns are invariant by
rotation along the columns. The black/white cells represent active/inactive bytes.

As the analysis depends heavily on the propagation (especially in the backward direction)
of the active bytes through the key states, in Figure 6 we provide the detailed truncated
differential propagation of a single active column, in both forward and backward direction.
One can trace the propagation of each active cell in Kx through the same shade pattern.
The white cells represent inactive bytes, while the gray cells can be active or inactive
depending on the choice of active cells in Kx.

We emphasize that all these truncated differential transitions will happen with proba-
bility 1 (except for the bytes depicted in gray in Figure 6). This figure will be extensively
referred to in our proof, as it will allow us to extract some properties on the truncated
differential patterns when studying the various cases.

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 65

KS−1

KS−1 KS−1

KS−1 KS−1

KS−1 KS−1

KS−1 KS−1

KS

KS

KS

KS

Kx−3 Kx−2 Kx−1 Kx Kx+1

Figure 6: Backward and forward truncated differential transitions through the AES-128
key schedule when only one column is active in Kx. The propagation of each active cells in
Kx can be traced using the same shade pattern. The white cells represent inactive bytes,
while the gray cells can be either active or inactive.

3.4 Preliminary lemmas
3.4.1 Consecutive inactive rounds.

We first note that since we force a difference to be present in the key states, it is obviously
impossible to have two consecutive inactive rounds.

Lemma 1. It is impossible to have two consecutive inactive rounds when a difference is
inserted in the key.

Proof. Assume that |Sx| = |Sx−1| = 0. It implies that |Kx| = 0 which is impossible since
every subkey must contain a difference (the AES-128 key schedule is a permutation).

3.4.2 Adjacent key state bound.

We simply state here a simple bound due to the bitwise XOR operation during the key
addition phase of an AES-128 round.

Lemma 2. For any round x, we have |Sx| ≤ |S′x−1|+ |Kx| , but also |Kx| ≤ |Sx|+ |S′x−1|
and |S′x−1| ≤ |Kx|+ |Sx|.

Proof. Since XOR is a bitwise operation, and since Sx = Kx ⊕ S′x−1, we have that any
active byte in Sx must necessarily come from an active byte in Kx or in S′x−1 (or both)
at the same byte position. Thus, we directly deduce that |Sx| ≤ |S′x−1| + |Kx| and the
reasoning is identical for the two other inequalities.

We remark that this lemma also holds if we take any column or diagonal separately. For
example |K |ix | ≤ |S|ix |+ |S′|ix−1| or |K

\i
x | ≤ |S\ix |+ |S′\ix−1| for any i.

3.4.3 MixColumns diffusion bound.

We state here the simple branching number of the matrix underlying the MixColumns
diffusion layer of the AES-128 round.

66 Human-readable Proof of the Related-Key Security of AES-128

Lemma 3. For any round x, if a diagonal S
\i
x is active, then we have |S\ix |+ |S′|ix | ≥ 5.

Proof. Immediate since the branching number of the matrix underlying the MixColumns
layer is equal to 5.

3.4.4 Column sum bound.

We state here the relation between a subkey and two consecutive internal states columns
or diagonals, due to the branching number of the AES-128 diffusion matrix. This lemma
will be useful as it will give us a helpful bound on the number of active Sboxes given a
certain subkeys truncated differential characteristic.

Lemma 4. For any round x, we have |S\ix−1|+ |S
|i
x | ≥ 5− |K |ix | if |S′|ix−1| 6= 0. Otherwise,

we have |S\ix−1| = 0 and |S|ix | = |K |ix |.

Proof. First, if |S′|ix−1| = 0, we trivially deduce that |S\ix−1| = 0 by inverting the AES-128
round function. Moreover, since there is no active byte in S

′|i
x−1, the active/inactive bytes

pattern of S
|i
x and K

|i
x are exactly the same and thus |S|ix | = |K |ix |.

If |S′|ix−1| 6= 0, then the AES-128 diffusion matrix guaranties that |S\ix−1| ≥ 5− |S′|ix−1|.
Thus, |S\ix−1| + |S

|i
x | ≥ 5 + |S|ix | − |S′|ix−1| and from the column version of Lemma 2 we

deduce that |S\ix−1|+ |S
|i
x | ≥ 5− |K |ix |.

3.4.5 Diffusion in the key schedule.

We give here a few useful lemmas regarding the diffusion of the AES-128 key schedule in
the forward and backward direction.

Lemma 5. For any round x, if Kx has only a single active column, then |Kx+1| ≥ 2 · |Kx|,
|Kx−1| ≥ 2 · |Kx| and |Kx−2| ≥ 2 · |Kx|. Moreover, at least two columns of Kx+1, Kx−1
and Kx−2 will contain exactly |Kx| active bytes.

Proof. This can directly be observed from Figure 6 by considering different combination
of the active column.

Lemma 6. For any active row of Kx, if the rightmost active byte is in column c, where
1 ≤ c ≤ 4, then for the same row in Kx+c−4, the byte in the 4th column will be active.

Proof. One can observe from Figure 1b that the rightmost active byte will propagate (in
the backward direction) one column to the right (unless it is already on the 4th column)
without fail. Thus for any row with active byte, the rightmost active byte will propagate
to the 4th column within 3 inverse key schedule function.

Corollary 1. For any four consecutive rounds x to x + 3, if Kx+3 has k active rows, then∑x+3
i=x |K

|4
i | ≥ k.

Proof. A direct consequence of Lemma 6.

3.4.6 Internal inactive round bound.

The following lemma captures the intuition that if there is an inactive round at some point
in the truncated differential path, then many Sboxes will be active in the previous and
next round.

Lemma 7. For any inactive round x + 1 (i.e. |Sx+1| = 0), we have that |Sx|+ |Sx+2| ≥ 6.

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 67

Proof. Suppose first that Kx+1 contains only a single active column. From Lemma 5, one
has that |Kx+2| ≥ 2 ∗ |Kx+1|. Then, since |Sx+1| = |S′x+1| = 0, we have

|Sx|+ |Sx+2| = |Sx|+ |Sx+1|+ |S′x+1|+ |Sx+2|
≥ |Sx|+ |Sx+1|+ |Kx+2| (Lemma 2)
≥ 5− |Kx+1|+ |Kx+2| (Lemma 4)
≥ 5 + |Kx+1| (|Kx+2| ≥ 2 ∗ |Kx+1|)
≥ 6 (|Kx| 6= 0 for all x)

Suppose now that Kx+1 contains more than a single active column. Thus, there must
be a column u of Kx+1 such that |K |ux+1| > 0 and a column v > 1 of Kx+1 such that
|K |vx+1| > 0. Since the round x + 1 is inactive, we get that the active/inactive bytes pattern
between |S′x| and |Kx+1| are exactly the same (similarly, Sx+2 and Kx+2 also have the
same pattern). Thus, there must be a column u of S′x such that |S′|ux | > 0 and a column
v > 1 of S′x such that |S′|vx | > 0.

|Sx|+ |Sx+2| = |Sx|+ |Kx+2| (Sx+2 and Kx+2 have the same pattern)

≥ |S\ux |+ |S\vx |+ |Kx+2| (|Sx| =
∑

i |S
\i
x |)

≥ 1 + |S\vx |+ |Kx+2| (|S\ux | 6= 0)
≥ 6− |S′|vx |+ |Kx+2| (Lemma 3)

= 6− |K |vx+1|+ |Kx+2| (S′x and Kx+1 have the same pattern)

≥ 6− |K |vx+1|+ |K
|v−1
x+2 |+ |K

|v
x+2| (|Kx+2| =

∑
i |K

|i
x+2|)

≥ 6

The last inequality comes from the observation that |K |v−1
x+2 |+ |K

|v
x+2| ≥ |K

|v
x+1|. Indeed,

since v > 1 the AES-128 key schedule tells us that K
|v−1
x+2 ⊕ K

|v
x+2 = K

|v
x+1 and the

inequality is obtained by a reasoning on the XOR operation just like for Lemma 2.

From Lemma 7, one can draw some conclusions about the round key Kx+1 when the
bound is tight.

Corollary 2. For any inactive round x + 1 (i.e. |Sx+1| = 0), if |Sx|+ |Sx+2| = 6, then
the round key Kx+1 either has

• exactly 1 active byte in the 3rd column,

• or exactly 2 fully active columns. In addition,
∑x+2

i=x−1 |K
|4
i | ≥ 4.

Proof. If |Sx|+ |Sx+2| = 6, then all the inequalities in the proof of Lemma 7 must be tight.
Hence, we reconsider the proof but with equalities and observe their implication.

Suppose first that Kx+1 contains only a single active column. From the 5th equality,
we see that |Kx+1| = 1, Figure 5 and the 4th equality imply that the active byte is in the
3rd column of Kx+1, else |Kx+2| > 2 ∗ |Kx+1|.

Suppose now that Kx+1 contains more than a single active column. The 2nd equality
implies that Kx+1 contains at most 2 active columns, column u and v. The 3rd equality
implies |S\ux | = 1, by the branching number we know that K

|u
x+1 is fully active. The 6th

equality implies that Kx+2 contains at most 2 active columns, column v − 1 and v and
from the last equality we see that |K |v−1

x+2 |+ |K
|v
x+2| = |K

|v
x+1|. Now suppose v < 4, from

Figure 1b, we see that K
|u
x+1 will propagate to K

|u
x+2 and is fully active. Hence from the

previous equation, we must have u = v − 1 and |K |vx+1| = 4. On the other hand, if v = 4,

68 Human-readable Proof of the Related-Key Security of AES-128

then |K |1x+2| = 0 only if u = 1 and |K |vx+1| = 4. Therefore, Kx+1 has 2 fully active columns
and by Lemma 6,

∑x+2
i=x−1 |K

|4
i | ≥ 4.

3.4.7 Impossible internal states.

In general, identifying the minimum number of active bytes in the internal states in the
related-key scenario is much harder than the single-key scenario. Here we present a lemma
that helps us to filter several cases where the internal states have little active bytes as such
internal states are impossible.

Lemma 8. If |Sx| ≤ 1 and |Sx+1| ≤ 1, then |Sx+2| > 3.

Proof. If |Sx+1| = 0, by Lemma 7, |Sx|+ |Sx+2| ≥ 6, hence |Sx+2| ≤ 3 is impossible. If
|Sx| = 0, by Lemma 1, |Sx+1| 6= 0, this implies that Kx+1 is single active byte while S′x+1
has a fully active column. Since Sx+2 = S′x+1 ⊕Kx+2, one can observe from Figure 5 that
|Sx+2| ≤ 3 is impossible.

Finally for the case |Sx| = |Sx+1| = 1, since Sx is a single active byte, then S′x is a
single fully active column. Moreover, as Sx+1 is a single active byte, Kx+1 = S′x ⊕ Sx+1
must necessarily be either:

• a single fully active column,

• or 3 active bytes all located in the same column,

• or a single fully active column with an extra active byte located in another column.

For the first 2 cases, Kx+2 has at least 2 active columns of 4 (or resp. 3) active bytes.
Since S′x+1 is a single fully active column, |Sx+2| ≤ 3 is impossible. For the last case, if
the 3rd column is fully active, Kx+2 is expected to have 2 fully active columns in the next
round key, while the extra active byte will propagate and may cancel some active bytes in
one row1, but always adds an active byte in the 2nd column. Since Sx+1 cancels at most 1
column of active bytes, there are at least 4 remaining active bytes (3 in a column and 1 in
another column). If the fully active column is in the other columns, there will be more
fully active columns and the similar argument holds.

3.4.8 Round key bound under special internal state.

We give a few useful lemmas to better understand the lower bound of the number of active
Sboxes in the round keys under some specific internal state.

Lemma 9. For any four consecutive rounds x to x + 3, if |Sx+2| = 1 and |Sx+3| = 0, then∑x+3
i=x |K

|4
i | ≥ 4. In addition, Kx+1 has at least 2 fully active columns.

Proof. Since Sx+2 is a single active byte and Sx+3 is an inactive state, then Kx+3 = S′x+2

is a single fully active column. By Corollary 1, we have
∑x+3

i=x |K
|4
i | ≥ 4. By Lemma 5,

Kx+1 has at least 2 fully active columns.

Lemma 10. For any four consecutive rounds x to x + 3, if |Sx+2| = 2 and |Sx+3| = 0,
then either |Kx+3| = 3 and Kx+1 will have at least 2 active columns of 3 active bytes, or∑x+3

i=x |K
|4
i | ≥ 4.

Proof. Since Sx+2 has 2 active bytes, and Sx+3 is an inactive state, then Kx+3 = S′x+2
must necessarily be either:

1plus a single byte in another row if the extra active byte is in the 4th column, but adds two active
bytes in the 1st and 2nd columns, thus it is still impossible to reduce the number of active bytes in Sx+2
to less than 4.

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 69

• a single fully active column,

• or 3 active bytes all located in the same column,

• or 2 fully active columns.

For the 2nd case, by Lemma 5, Kx+1 has at least 2 active columns of 3 active bytes. For
the other 2 cases, by Corollary 1, we have

∑x+3
i=x |K

|4
i | ≥ 4.

Lemma 11. For any four consecutive rounds x to x + 3, if |Sx+2| = |Sx+3| = 1, then
either |Kx+3| = 3 and Kx+1 will have at least 2 active columns of 3 active bytes, or∑x+3

i=x |K
|4
i | ≥ 4.

Proof. Since Sx+2 is a single active byte, then S′x+2 is a single fully active column. Moreover,
as Sx+3 is a single active byte, Kx+3 = S′x+2 ⊕ Sx+3 must necessarily be either:

• a single fully active column,

• or 3 active bytes all located in the same column,

• or a single fully active column with an extra active byte located somewhere else.

For the 2nd case, by Lemma 5, Kx+1 has at least 2 active columns of 3 active bytes. For
the other 2 cases, by Corollary 1, we have

∑x+3
i=x |K

|4
i | ≥ 4.

4 Related-key security proof for 1/2/3 rounds of AES-128
Theorem 1. Any non-null related-key differential path for 1, 2 and 3 consecutive rounds
of AES-128 contains at least 0, 1, and 3 active Sboxes respectively.

4.1 For 1 and 2 rounds of AES-128
The best related key differential paths for 1 and 2 rounds of AES-128 have 0 and 1 active
Sboxes respectively and this is trivial to prove. For a single round, one simply inserts
the same difference in the key and in the plaintext to get a zero difference coming the
Sbox layer. For two rounds, Lemma 1 tells us that it is impossible to have two consecutive
inactive rounds, and thus there must be at least one active Sbox in any of the two rounds.
Thus, |S1| + |S2| + |K |41 | + |K

|4
2 | ≥ |S1| + |S2| ≥ 1. The best 2-round path is very easy

to build: force the top-left Sbox in S1 to be the only active one and choose K2 to have
only its first column to be fully active, so as to fully correct the difference coming from
|S′1| and ensure no active Sbox in S2 (|S1| = 1 and |S2| = 0). Inverting the key schedule
from K2, one can check that K1 will only have its two first columns active. Therefore,
|K |41 | = |K

|4
2 | = 0.

4.2 For 3 rounds of AES-128
The computer-aided search tools have shown that the best related-key differential paths
contain 3 active Sboxes. Proving that it is impossible to obtain less than 3 active Sboxes in
three consecutive AES-128 rounds is not so complicated once the Lemmas from Section 3.4
are introduced. First, one can observe that in order to have less than 3 active Sboxes,
the three rounds obviously can’t be all active. Moreover, Lemma 1 tells us that it is
impossible to have two consecutive inactive rounds. Thus, we are left with five cases,
{|S1| = 0, |S2| = 1, |S3| = 1}, {|S1| = 1, |S2| = 0, |S3| = 1}, {|S1| = 1, |S2| = 1, |S3| = 0},
{|S1| = 0, |S2| = 2, |S3| = 0} and {|S1| = 0, |S2| = 1, |S3| = 0}. Conveniently with
Lemma 8, we are left with one case to be analysed, that is {|S1| = 0, |S2| = 2, |S3| = 0}.

70 Human-readable Proof of the Related-Key Security of AES-128

For this special case {|S1| = 0, |S2| = 2, |S3| = 0}, one can observe that K2 = S2 and
K3 = S′2 since S1 and S3 are both inactive rounds. Since |S2| = 2, K3 must necessarily be
either:

• a single fully active column,

• or 3 active bytes all located in the same column,

• or 2 fully active columns.

However, one can see from Figure 5 that the key state K2 with 2 active bytes will not
propagate to any of the 3 patterns. Hence, this case is also not possible.

All these bounds are tight, as can be seen in Figure 4 where an example of best
differential paths is given. One can note that all the best possible related-key differential
paths on 1/2/3 rounds of AES-128 do not contain any active Sbox in the key schedule.
This will be different for the 4-round case, which will render the analysis much more
complex.

5 Related-key security proof for 4 rounds of AES-128
In this section, we would like to bound the minimal number of active Sboxes NSB for four
consecutive rounds of the AES-128, in the related-key model. More precisely, we will
prove that at least 9 will be active for 4 consecutive rounds of AES-128 in the related-key
model, matching the bound found by the computer-aided searches.

Theorem 2. Any non-null related-key differential path for 4 consecutive rounds of
AES-128 contains at least 9 active Sboxes.

5.1 Structure of the proof
In the case where no difference is inserted in the key input, the classical AES proof can
be applied and one can easily show that NSB ≥ 25. Therefore, we would like to prove
NSB ≥ 9 when a non-zero difference is inserted in the key input (since the AES-128 key
schedule is a bijection, we will have |Kx| 6= 0 for all x).

We note that the initial state S′0, the final state S5, and the final key K5 do not need
to be considered in our proof, since no Sbox will be applied to any of these states. Thus,

NSB =
4∑

x=1
|Sx|+ |K |4x |.

The proof will be decomposed in two steps. First we will show that one always has∑4
x=1 |Sx| ≥ 5 (see Section 5.2). In addition, in the event that the bound is tight, it is

necessary that
∑4

x=1 |K
|4
x | ≥ 4. This implies that for four consecutive rounds, we have

either NSB ≥ 9 or
∑4

x=1 |Sx| ≥ 6. For the latter case, NSB ≥ 9 when
∑4

x=1 |K
|4
x | ≥ 3.

Secondly, we will prove that if
∑4

x=1 |K
|4
x | < 3, then necessarily NSB ≥ 9 (see Section 5.3).

From there we directly conclude that NSB ≥ 9. We provide a graphical depiction of the
overall structure of the proof in Figure 7.

5.2 Internal state
In this section, we will show that there are always at least 5 active Sboxes in the internal
state of 4 consecutive rounds of AES-128, i.e.

∑4
x=1 |Sx| ≥ 5 (and in the event where∑4

x=1 |Sx| = 5, we will show that
∑4

x=1 |K
|4
x | ≥ 4). Lemma 7 directly tells us that when

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 71

Internal State Key Schedule

∑
|Sx| ≥ 5

Section 5.2,
Figure 8 ∑

|K |4x | ≥ 3
∑
|K |4x | < 3

∑
|Sx| = 5

∑
|Sx| ≥ 6

∑
|K |4x | ≥ 4

Lemma 9, 10, 11

NSB ≥ 9

Section 5.3,
Figure 10

Figure 7: General structure of the proof of Theorem 2. A thick arrow represents a proven
implication, a thin arrow represents a direct implication and hashed arrows represent
subcases that are split.

the second or third rounds are inactive, then
∑4

x=1 |Sx| ≥ 6. Thus, we only need to study
the cases where both the second and third rounds are active (i.e. |S2| 6= 0 and |S3| 6= 0),
and we will prove that all the configurations with

∑4
x=1 |Sx| < 5 are impossible. As there

are several cases and subcases of internal state, we provide a graphical depiction of the
overview of this section in Figure 8.

5.2.1 Case |S1| = 0.

Since S1 is an inactive round, K2 and S2 will be equal.

• Let’s first assume that |S2| = 1, by Lemma 8, |S3| ≤ 3 is impossible. For |S3| ≥ 5,
we have achieved

∑4
x=1 |Sx| ≥ 6. Lastly for |S3| = 4, since S2 = K2 with a single

active byte, S′2 is a fully active column, the only possible case for |S3| = 4 is when
the single active byte is in the 3rd column of K2 (see Figure 5) and S3 has a column
of 3 active bytes and a single active byte in a different column. This implies that
S′3 has at least 2 fully active columns. On the other hand, K4 has at most 6 active
bytes as K3 only has single active byte in the same row of the 3rd and 4th column.
Therefore, S4 is active and we have

∑4
x=1 |Sx| ≥ 6.

• Let’s now assume that |S2| = 2, we show that it is always
∑
|Sx| ≥ 6. We denote a

and b respectively the first and second active bytes of S2 = K2. If a and b are located
in the same diagonal, then they will be involved in the same MixColumns function in
the second round, in which case we obtain in |S′2| either 3 or 4 active bytes located
in the same column (due to the MixColumns diffusion property). Otherwise, a and b
will evolve in two different MixColumns functions and |S′2| will be composed of two
fully active columns.

72 Human-readable Proof of the Related-Key Security of AES-128

In
te
rn
al

St
at
e

(∗
,0

,∗
,∗

)
or

(∗
,∗

,0
,∗

)
(∗

,≥
1,
≥

1,
∗)

Le
m
m
a
7

(0
,≥

1,
≥

1,
∗)

(≥
1,
≥

1,
≥

1,
0)

(≥
1,
≥

1,
≥

1,
≥

1)

Le
m
m
a
8,

11

(0
,1

,≥
1,
∗)

(0
,2

,≥
1,
∗)

(0
,3

,≥
1,
∗)

(0
,≥

4,
≥

1,
∗)

(0
,3

,[
≥

2]
)

(≥
1,
≥

1,
2,

0)
(≥

1,
≥

1,
1,

0)
(≥

1,
≥

1,
≥

3,
0)

Le
m
m
a
9 (≥

2,
≥

2,
1,

0)
∑ |S

x
|≥

5

Le
m
m
a
2,

5
Le

m
m
a
8

∑ |S
x
|≥

6

Le
m
m
a
8,

Fi
gu

re
5

Fi
gu

re
5,

9

Le
m
m
a
8

Figure 8: General structure of the proof in Section 5.2 for the internal state part. A thick
arrow represents a proven implication, hashed arrows represent subcases that are split and
a square parenthesis represents the sum of two states. A hashed box denotes the fact that
it is subdivided into two subcases—

∑
|Sx| = 5 and

∑
|Sx| ≥ 6.

– if |S′2| = 3 (3 active bytes in the same column) or if |S′2| = 4 (one fully active
column). As in this scenario a and b must be in the same diagonal in S2 = K2,
then it is one of the 6 possible cases (up to row rotations) from Figure 9,

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 73

one can see that |S3| ≥ 4 except for the last case where S3 can have 3 active
bytes, of which 2 active bytes are in the same row. However, in that case,
after the MixColumns operation, S′3 will have at least a fully active column but
K4 will have an inactive row, hence S4 is active. Therefore, we always have∑4

x=1 |Sx| ≥ 6.

KS

KS

KS

Kx Kx+1

KS

KS

KS

Kx Kx+1

Figure 9: Key schedule patterns for two active bytes located in the same diagonal.

– if |S′2| = 8 (two fully active columns). S3 can be viewed as the XOR summation
of S′2, Ka and Kb, where the latter two are the forward propagation of a single
active byte a and b, in another word, Ka⊕Kb = K3. Suppose a is in the fourth
column, from Figure 5 one can see that Ka has a fully active row and 1 active
byte in another row. Then S′2 ⊕Ka will have at least 7 active bytes (3 rows of
2 active bytes and 1 row of 1 active byte). Regardless the position of b, it can
only erase up to 3 active bytes, hence we have |S3| ≥ 4. If b is in the fourth
column, the same argument holds. Otherwise, if both a and b are not in the
fourth column, there are at most 2 active rows in K3, at best two bytes per
column can be erased with K3 and we have |S3| ≥ 4.

• Let’s assume that |S2| = 3. For at most 5 active Sboxes, we have three cases {|S1| =
0, |S2| = 3, |S3| = 1, |S4| = 0}, {|S1| = 0, |S2| = 3, |S3| = 1, |S4| = 1} and {|S1| =
0, |S2| = 3, |S3| = 2, |S4| = 0} since |S3| 6= 0. Note that for all 3 cases, K2 = S2.
By Lemma 9, the first case is impossible as K2 should have at least 2 fully active
columns which contradicts with |S2| = 3. For the latter two cases with 5 active
Sboxes, by Lemma 10 and 11 we have either

∑4
x=1 |K

|4
x | ≥ 4, or K2 has at least 2

active columns of 3 active bytes which contradicts with |S2| = 3.

• Finally, let’s assume that |S2| = 4, the only possible tight
∑4

x=1 |Sx| = 5 case is
{|S1| = 0, |S2| = 4, |S3| = 1, |S4| = 0}. By Lemma 9, we directly get

∑4
x=1 |K

|4
x | ≥ 4

and we are done.

Note that cases where |S2| ≥ 5 can directly be discarded since |S3| 6= 0, so we always have∑4
x=1 |Sx| ≥ 6.

5.2.2 Case |S1| 6= 0 and |S4| = 0.

Since S4 is an inactive round, K4 and S′3 will be equal.

• Let’s first assume that |S3| = 1. After the application of the MixColumns function,
S′3 = K4 will be a single fully active column. By Lemma 5, both K2 and K3 have at
least 2 fully active columns. By Lemma 2, we have |K3| ≤ |S3|+ |S′2|. If |S2| = 1,
then |S′2| = 4 and the inequality does not hold. Thus, we must have |S2| ≥ 2. By

74 Human-readable Proof of the Related-Key Security of AES-128

the same lemma, if |S1| = 1, then |K2| ≤ |S2| + |S′1| will imply that |S2| ≥ 4 and∑4
x=1 |Sx| ≥ 6. Finally for the case where |S1| ≥ 2 and |S2| ≥ 2, since we assumed

|S3| = 1 and |S4| = 0, by Lemma 9,
∑4

x=1 |K
|4
x | ≥ 4 and NSB ≥ 9.

• Let’s now assume that |S3| = 2. The only possible configuration for
∑4

x=1 |Sx| < 5
is {|S1| = 1, |S2| = 1, |S3| = 2, |S4| = 0}, which is impossible by Lemma 8. Hence,
we have

∑4
x=1 |Sx| ≥ 5. Since we have |S3| = 2 and |S4| = 0, by Lemma 10, we have

either
∑4

x=1 |K
|4
x | ≥ 4, or K2 has at least 2 active columns of 3 active bytes. For the

latter case, suppose that |S1| = 1, then S′1 is a fully active column and S2 = S′1⊕K2
has at least one active column of 3 active bytes, hence

∑4
x=1 |Sx| ≥ 1 + 3 + 2 = 6.

Suppose |S1| = 2, then S′1 is either an active column (same conclusion as before) or
2 fully active columns, in which case S2 at least 2 active bytes, hence

∑4
x=1 |Sx| ≥

2 + 2 + 2 = 6. For |S1| ≥ 3, we immediately have
∑4

x=1 |Sx| ≥ 3 + 1 + 2 = 6.

• Finally, let’s assume that |S3| = 3, the only possible tight case is {|S1| = 1, |S2| =
1, |S3| = 3, |S4| = 0}. By Lemma 8, this is impossible.

Note that cases where |S3| ≥ 4 can directly be discarded since |S1| 6= 0 and |S2| 6= 0, so
we always have

∑4
x=1 |Sx| ≥ 6.

5.2.3 Case |S1| 6= 0 and |S4| 6= 0.

In this subpart, we study the event where all internal states are active (|Si| ≥ 1 for all
1 ≤ i ≤ 4). There are five cases where

∑4
x=1 |Sx| ≤ 5, namely {|S1| = 1, |S2| = 1, |S3| =

1, |S4| = 1}, {|S1| = 1, |S2| = 1, |S3| = 1, |S4| = 2}, {|S1| = 1, |S2| = 1, |S3| = 2, |S4| = 1},
{|S1| = 1, |S2| = 2, |S3| = 1, |S4| = 1} and {|S1| = 2, |S2| = 1, |S3| = 1, |S4| = 1}. By
Lemma 8, the only case that is left possible is {|S1| = 1, |S2| = 2, |S3| = 1, |S4| = 1}. By
Lemma 11, either we are done or K2 has at least 2 active columns of 3 active bytes. Since
S′1 has exactly a fully active column, it is not possible for |S2| = 2. Thus for all four states
to be active,

∑4
x=1 |Sx| ≤ 5 is impossible and we have

∑4
x=1 |Sx| ≥ 6.

5.3 Key schedule
In this section, we show that if

∑4
x=1 |K

|4
x | < 3, then necessarily NSB ≥ 9. In Figure 10,

we provide a graphical depiction of the overview of this section.
Before going on, we make the observation that the difference propagation of four

consecutive round keys is uniquely defined by their last columns. Precisely, if we let the
differential values in the last column of round keys K1, K2, K3, K4 be A, B, C, D, then we
can solve for every column of all four round keys via the AES-128 key schedule equation
(see Section 2).

This is shown in Figure 11 where N represents A ⊕ B ⊕ C ⊕ D and A′, B′ and C ′

represent the differential values of A, B and C after being rotated upward and sent through
the AES S-box (the truncated difference column patterns A′, B′ and C ′ are just rotated
versions of A, B and C respectively). A column with several variables in them represents
an XOR-sum. For example, the first column of K1 can be computed as N ⊕A′ ⊕B′ ⊕ C ′.

This gives us useful information by splitting cases on A, B, C and D, because they are
the only key schedule columns that contribute to active S-boxes (the Sbox is applied only
to the last column in KS - see Figure 1b). Since we are considering

∑4
x=1 |K

|4
x | < 3, we

look at the cases where there are 0, 1 or 2 active bytes among the columns A, B, C and D.
For the rest of this section, whenever we assume |S3| = 0, by Lemma 7 we have

|S2|+ |S4| ≥ 6. By Corollary 2, having a tight bound implies that K3 is either has

• exactly 1 active byte in the 3rd column,

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 75

K
ey

Sc
he

du
le

∑ |K
|4 x
|=

1
∑ |K

|4 x
|=

0
∑ |K

|4 x
|=

2

Si
ng

le
K
ey

Sc
en

ar
io

N
S

B
≥

25
|S

1|
=

0

Le
m
m
a
4,

Ta
bl
e
2

|S
1|
6=

0

Le
m
m
a
4,

7,
Ta

bl
e
2

B
ot
h
ac
tiv

e
Sb

ox
es

in
th
e
sa
m
e
co
lu
m
n

Le
m
m
a
4,

Ta
bl
e
3

A
ct
iv
e
Sb

ox
es

in
di
ffe

re
nt

co
lu
m
ns

X
O
R
-s
um

=
0

X
O
R
-s
um
6=

0

Le
m
m
a
4,

7,
C
or
ol
la
ry

2
∑ |S

x
|≥

8

∑ |S
x
|≥

7

Le
m
m
a
4,

7,
C
or
ol
la
ry

2,
Ta

bl
e
4

N
S

B
≥

9

Figure 10: General structure of the proof in Section 5.3 that
∑
|K |4x | < 3 implies NSB ≥ 9.

A thick arrow represents a proven implication, a thin arrow represents a direct implication
and hashed arrows represent subcases that are split.

• or exactly 2 fully active columns. In addition,
∑4

x=1 |K
|4
x | ≥ 4.

Since we are considering
∑4

x=1 |K
|4
x | < 3, we only need to check if K3 meets the first

description, else we conclude that the bound cannot be tight and we have |S2|+ |S4| ≥ 7.

76 Human-readable Proof of the Related-Key Security of AES-128

KS KS KS

K1 K2 K3 K4

A B C D
A
C’
D

A
B

B
C

C
D

A
B’
C

B
C’
D

A
C

B
D

N
A’
B’
C’

N
B’
C’

N
C’

N

Figure 11: 4-round difference propagation of AES-128 key schedule.

5.3.1 Zero active Sbox in key schedule.

This case means that A, B, C and D all have zero difference, which implies that the
entire key schedule has zero active bytes (see Figure 11). This contradicts our original
assumption that a non-zero difference is inserted in the key input of the cipher.

5.3.2 One active Sbox in key schedule, occurring in any of the columns A, B, C
and D.

By studying Figure 11 (see also Table 2), we see that an active byte in columns A, B, C or
D contributes at most 1 active byte to every column of the key schedule, except the first
column of K1, K2 and K3 which may contain 2 active bytes (propagated from active last
column). Also, we can see from Figure 11 that K2 contains at least 2 active bytes on the
same row.

Table 2: Number of active bytes in every column of K2, K3, K4 when we have a single
active byte in A or B or C or D.

Case K2 K3 K4

|A| = 1 1, 0, 1, 0 1, 1, 0, 0 1, 0, 0, 0
|B| = 1 2, 1, 1, 1 1, 0, 1, 0 1, 1, 0, 0
|C| = 1 2, 1, 0, 0 2, 1, 1, 1 1, 0, 1, 0
|D| = 1 1, 1, 0, 0 1, 0, 0, 0 1, 1, 1, 1

• Suppose |S1| = 0. Then S2 = K2 and hence it contains at least 2 active bytes on the
same row. Thus, S′2 contains at least two active columns u, v. By Lemma 4, we have:

4∑
x=1
|Sx| ≥ |S2|+ |S3| ≥ (|S\u2 |+ |S

|u
3 |) + (|S\v2 |+ |S

|v
3 |)

≥ (5− |K |u3 |) + (5− |K |v3 |) ≥ 3 + 4 = 7,

because there is at most one column of weight 2 in K3 while the rest are at most
weight 1. This bound is tight only if |K |u3 | = 2, |K |v3 | = 1 and the other 2 columns
to be inactive. However there is no such K3, hence we have at least 8 active Sboxes
in the main cipher together with 1 active Sbox in the key schedule, which gives
NSB ≥ 9 and we are done.

• Suppose |S1| 6= 0. If |S3| = 0, then by Lemma 7, we have |S2|+ |S4| ≥ 6. The bound
is not tight since there is no such K3 with a single active byte in the 3rd column.
Hence we have |S2|+ |S4| ≥ 7 which implies

∑4
x=1 |Sx| ≥ 8 because |S1| 6= 0. These

8 active Sboxes in the main cipher together with 1 active Sbox in the key schedule,
which gives NSB ≥ 9 and we are done. Otherwise, if |S3| 6= 0, we have at least one

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 77

active column u in S′1, one active column v in S′3 and note that K2 has at least 2
active columns. By Lemma 4, we have:

4∑
x=1
|Sx| ≥ (5− |K |u2 |) + min[(5− |K |w2 |), |K

|w
2 |] + (5− |K |v4 |) ≥ 3 + 1 + 4 = 8,

because there are at most 2 active bytes in each column of K2 and at most 1 active
byte in each column of K4. Thus we are done as before because we have 8 active
Sboxes in the main cipher.

Table 3: Number of active bytes in every column of K2, K3, K4 when we have two active
bytes in A or B or C or D, where n is either 3 or 4.

Case K2 K3 K4

|A| = 2 2, 0, 2, 0 2, 2, 0, 0 2, 0, 0, 0
|B| = 2 n, 2, 2, 2 2, 0, 2, 0 2, 2, 0, 0
|C| = 2 n, 2, 0, 0 n, 2, 2, 2 2, 0, 2, 0
|D| = 2 2, 2, 0, 0 2, 0, 0, 0 2, 2, 2, 2

5.3.3 Two active Sboxes in key schedule, occurring in one column of A, B, C and
D.

By studying Figure 11 (see also Table 3), we can verify that if one of the columns of
A, B, C or D contains 2 active bytes, then there will be at least two columns u, v in K2
and one column w in K4 with 2 active bytes. Hence by Lemma 4, we have:

4∑
x=1
|Sx| ≥ (|S\u1 |+ |S

|u
2 |) + (|S\v1 |+ |S

|v
2 |) + (|S\w3 |+ |S

|w
4 |)

≥ min[(5− |K |u2 |), |K
|u
2 |] + min[(5− |K |v2 |), |K

|v
2 |] + min[(5− |K |w4 |), |K

|w
4 |]

≥ 2 + 2 + 2 = 6,

Note that this inequality can be tight only if |S3| = 0, otherwise by Lemma 4, the third
term will be at least 3 and we get at least 7 active Sboxes in the main cipher. Again,
since no such K3 with a single active byte in the 3rd column, there are at least 7 active
Sboxes in the main cipher together with the 2 active Sboxes in the key schedule, which
gives NSB ≥ 9 and we are done.

Table 4: Number of active bytes in every column of K2, K3, K4 when we have a two active
bytes in A/B or A/C or A/D or B/C or B/D or C/D with XOR-sum = 0, where n is
either 0 or 1.

Case (XOR-sum = 0) K2 K3 K4

|A| = |B| = 1 1, 1, 0, 1 0, 1, 1, 0 0, 1, 0, 0
|A| = |C| = 1 1, 1, 1, 0 1, 0, 1, 1 0, 0, 1, 0
|A| = |D| = 1 0, 1, 1, 0 0, 1, 0, 0 0, 1, 1, 1
|B| = |C| = 1 n, 2, 1, 1 1, 1, 0, 1 0, 1, 1, 0
|B| = |D| = 1 1, 0, 1, 1 0, 0, 1, 0 0, 0, 1, 1
|C| = |D| = 1 1, 2, 0, 0 1, 1, 1, 1 0, 1, 0, 1

78 Human-readable Proof of the Related-Key Security of AES-128

5.3.4 Two active Sboxes in key schedule, distributed among two columns of A, B,
C and D.

We split the proof into two parts, on whether the two active columns cancel each other.

• Suppose the two active columns have XOR-sum = 0. Then from Figure 11 (see also
Table 4), we see that each column of K4 has at most one active byte. If |S3| = 0,
then by Lemma 7, we have |S2|+ |S4| ≥ 6. By Corollary 2, the tight case implies
that column B and D have to be active for K3 to meet the first description. Since
S′2 = K3 has 1 active byte, S2 has a fully active diagonal. However, since K2 for
this case has its 2nd column inactive, S′1 is active. Therefore, there are at least 7
active Sboxes in the main cipher, which together with the 2 active Sboxes in the key
schedule gives NSB ≥ 9 and we are done. Otherwise S′3 has an active column u and
by Lemma 4, we have:

|S3|+ |S4| ≥ 5− |K |u4 | ≥ 4,

because each column of K4 has at most 1 active byte. We can also verify from
Figure 11 that K2 contains at least two active columns, which implies |S1|+ |S2| ≥ 2
by Lemma 4. Having this bound to be tight implies two things, S1 is inactive and
K2 contains exactly two active columns of 1 active byte, which can only be the case
where columns A and D are active. Since S2 = K2 with 2 active bytes in the same
row (as A = D), |S′2| = 8 while |K3| = 1 implies that |S3| ≥ 7. Lastly, when the
bound is not tight,

∑4
x=1 |Sx| ≥ 3 + 4 = 7 active Sboxes in the main cipher, which

together with the 2 active Sboxes in the key schedule gives NSB ≥ 9 and we are
done.

• Suppose the two active columns have XOR-sum 6= 0. Then by studying Figure 11, we
can verify that every column of K4 has at most 2 active bytes, and that K2 and K4
have at least 5 active columns between them. Suppose |S3| = 0, then by Lemma 7,
we have |S2|+ |S4| ≥ 6. Once again by Corollary 2, the tight case is impossible as
no K3 fits the first description2. With at least 7 active Sboxes in the main cipher,
which together with the 2 active Sboxes in the key schedule gives NSB ≥ 9 and we
are done. Otherwise S′3 has an active column u and by Lemma 4, we have:

|S3|+ |S4| ≥ 5− |K |u4 | ≥ 3,

because each column of K4 has at most 2 active bytes. Besides this column, there are
at least 4 more active columns in K2 and K4, which by Lemma 4 ensures at least 4
more active Sboxes in the main cipher. Thus in total we get at least 7 active Sboxes
in the main cipher, which together with the 2 active Sboxes in the key schedule gives
NSB ≥ 9 and we are done.

6 On designing better key schedules for AES-128
As an example of the insight that our proofs provide on the interplay between the internal
state function and the key schedule, we propose a new fully linear key schedule that can
be used to replace the one in AES-128. Our new key schedule proposal is simple: it is
basically a permutation on the key state byte positions. More precisely, the key state
update function will simply:

• rotate respectively by (1, 0, 0, 2) positions to the right the bytes located in the
(1, 2, 3, 4)-th row of the key state matrix

2The case where column B and D are active may seem to fit the first description of Corollary 2, but
since XOR-sum 6= 0, the first column is active. Thus, it does not meet the first description.

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 79

• rotate the entire key state matrix by one position down

In other words, our key schedule proposal simply applies the following permutation on
the bytes positions of the 4× 4 key state matrix:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 −→

11 15 3 7
12 0 4 8
1 5 9 13
2 6 10 14

Note that this key schedule is extremely efficient when compared to the original

AES-128 key schedule. Not only it doesn’t use any Sbox layer, but it also doesn’t use
any XOR for diffusion. In particular, a byte permutation is very well suited for hardware
implementations at it merely consists in wiring, and one can also hard-code the entire key
for further efficiency gain on the area used to store the key bits.

Regarding security, even though we don’t use any Sbox nor XOR in our key schedule,
we can actually prove more active Sboxes in the related-key model than for AES-128
as shown in Table 5 (note that we only obtained lower bounds for new key schedule, so
the bounds might be even better than depicted in the table). These lower bounds on
the number of active Sboxes, especially the bounds for the high number of rounds, were
computed with computer-aided tools. However, the design of the key schedule directly
comes from an analysis of our proofs.

Table 5: Summary of the proven lower bounds on the number of active Sboxes in a
related-key differential path for several rounds of AES-128 with the key schedule replaced
with our candidate.

Rounds 1 2 3 4 5 6 7 8
AES-128 key schedule 0 1 3 9 11 13 15 21(truncated differences)
our new key schedule 0 1 5 10 14 18 21 25(truncated differences)

The key schedule proposed in [Nik10] requires 32-bit XORs and 4 Sboxes, achieving
related-key differential bounds of 1, 5, 10 and >11 active Sboxes for 2, 3, 4 and 5 rounds
respectively. Note that these include the active Sboxes in the key schedule. On the other
hand, our proposal does not require any XORs or Sboxes but yet already achieving 1, 5,
10 and 14 active Sboxes respectively.

Our strategy to build that key schedule was to look at our proof for 3 rounds (in order
to start with a simple proof) and analyse what modifications in the design could improve
the minimal number of active Sboxes (only 3 in the case of AES-128’s key schedule).
First, since no active Sbox will be involved in the key schedule state for the best 3-round
related-key differential paths on AES-128, one could actually directly remove the Sbox
layer in the key schedule without impacting the bound. Secondly, by removing the XORs
in the key update function, our goal was to reach a zero branching which will make the
analysis simpler (the tracking effort in the proof is reduced): the number of active bytes in
the key state always remains constant throughout the rounds.

We ended up with the key update function being simply a permutation on the key
byte positions (and not on the key bit positions themselves, as it would make the security
analysis very complex and software implementations very inefficient). One can see from
our proofs that a lot of complex cases arise during the analysis because some difference
introduced by a subkey can be corrected by the next (forward) or previous (backward)
subkey. The choice of the permutation was thus done with the following criteria in mind:

80 Human-readable Proof of the Related-Key Security of AES-128

we tried to minimise the overlap3 between KS and MC ◦ SR ◦ SB and between KS−1 and
SB−1 ◦ SR−1 ◦ MC−1. This criterion actually makes a lot of sense, but was never taken into
account in previous key schedule designs.

Note that several permutations and different choices than (1, 0, 0, 2) right rotate verify
this, but if the sum of the right rotate values is coprime with 4, then a key byte would go
through all 16 possible positions as the key schedule iterates (which is a desirable design
property). Finally, (1, 0, 0, 2) was the simplest choice that follows these two criteria.

Proving in the related-key model at least 3 active Sboxes for 3 rounds is trivial for
this key schedule: Lemma 1 tells us that it is impossible to have two consecutive inactive
rounds. Thus, as for AES-128 key schedule, for

∑4
x=1 |Sx| < 3 we are left with five cases,

{|S1| = 0, |S2| = 1, |S3| = 1}, {|S1| = 1, |S2| = 0, |S3| = 1}, {|S1| = 1, |S2| = 1, |S3| = 0},
{|S1| = 0, |S2| = 2, |S3| = 0} and {|S1| = 0, |S2| = 1, |S3| = 0}. It is very easy to see that
the first, second, fourth and fifth cases are impossible (|Sx| = 0 and |Sx+1| = u means that
all subkeys have u active bytes, which contradicts the internal state constraints for all four
cases). Finally, for the third case, |S2| = 1 and |S3| = 0 means that all subkeys have 4
active bytes because S′2 is a fully active column. Yet, thanks to the design criterion of the
key schedule, the active byte in S2 can’t be erased backward with the subkey active bytes,
and thus |S1| ≥ 4 which is a contradiction.

One could naturally tweak this design (without increasing the tracking effort) by adding
an Sbox layer every round to the entire first row of the key state. Because of the down
rotation in the key update function, we would be ensured that at least one Sbox will
necessarily be active in 4 consecutive key states. In addition, the number of active bytes in
the key state remains the same, hence we can easily see that in 4 consecutive rounds, the
number of active bytes in the key state will result in the same number of active Sboxes in
the key schedule. This would directly add to the lower bounds given in Table 5.

We emphasize that our goal here is to design a simple yet efficient key schedule that
maximizes the number of active Sboxes in the related-key model. Of course, other security
considerations than the number of active Sboxes should be taken into account when
designing a cipher, as the key schedule impacts many types of attacks. In particular,
one might be tempted to believe that having no diffusion or Sboxes in the key schedule
will result in the cipher being susceptible to key recovery attack like the Meet-in-the-
Middle (MitM) attack. Using the open source code provided by Derbez [DFJ13, DF16],
we analysed and found that MitM attack can reach up to 8 rounds of AES under this new
key schedule while the same attack can reach up to 7 rounds of AES-128. One can thus
observe that using a linear key schedule with no diffusion does not necessarily severely
weaken its resistance against key recovery attack like MitM attack. In addition, this new
key schedule is more efficient in area, throughput (no Sbox to compute in the key schedule),
and provides better related-key differential bounds. Besides, we argue that it is a better
strategy as a designer to reduce the attack surface that leads to a key recovery attack (for
example by forcing a higher number of active Sboxes), than just trying to make a key
recovery harder when such flaw is present.

7 Discussions and future works
Our work leads to many interesting future directions and open problems. First, it would be
interesting to look at what happens for 5 rounds, 6 rounds, etc. Indeed, the best related-key
truncated differential path from Figure 4 (like any 4-round path with this amount of active
Sboxes) is not iterative and one can hope for a better bound than 9 + 0 = 9 (9 active
Sboxes for 4 rounds and 0 for 1 round).

3By “overlap” we meant that if the internal cipher and the key schedule are well synchronized, it is
likely that good differential paths exist (see for example the attacks on the full Whirlpool hash function).

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 81

A second topic to explore is the scalability of our proof to higher dimensions: can
we prove anything when using bigger matrix sizes? This is actually quite an interesting
direction, because the computational complexity of the automated tools grows very fast
with the size of the internal state or key state matrix. For example, what would be the
best possible related-key truncated differential path of an AES-like primitive with a 8× 8
matrix size? Lightweight encryption schemes are likely to use smaller Sboxes and thus
likely to have bigger matrices to handle. Moreover, can our proofs easily be adapted to
bigger key sizes, such as AES-192 and AES-256?

A more difficult goal would be to obtain a proof on the best related-key differential path
for AES-128, with actual differences instead of truncated differences. Indeed, while our
bounds apply to the general structure of AES-128, we remark for example that the best
related-key truncated differential path from Figure 4 is actually impossible to instantiate,
due to some constraints coming from the coefficients of the MDS matrix in the MixColumns
function. Looking at Table 1, we can see that there is a lot of room for improvements.
Yet, we believe this would not be trivial to achieve, at least if the aim is to obtain tight
bounds, as incorporating the MDS coefficients inside the proof looks difficult. However,
improving a little the bounds we provide here looks feasible and such improvement would
be very meaningful since the minimal number of active Sboxes we have proven does not
directly place AES-128 out of target against related-key attacks: since the best differential
transition probability of the AES Sbox is 2−6 and since we can prove 9 + 9 + 1 = 19 active
Sboxes on the full 10-round AES-128 (9 active Sboxes for 4 rounds and 1 for 2 rounds),
one can only conclude that any related-key differential path will have a probability smaller
than 2−114 (> 2−128).

Finally, the most promising direction is constructive and extends the example we
proposed in Section 6: can we design an efficient key schedule for AES-128, such that very
good bounds on the number of active Sboxes in the related-key model can be guaranteed,
with a simple and clean proof (even though it represents an improvement over the state-of-
the-art, our key schedule from Section 6 suffers from the drawback that proving its security
for many rounds still requires the use of computed-aided proofs). Can we adapt the
AES-128 key schedule and hopefully remove the bottleneck parts of our proofs regarding
the number of active Sboxes? In particular, it seems that the best related-key truncated
differential paths always contain at least one inactive round (and this is reflected by the
fact that these cases were usually the hardest to handle in our proof). Thus, a natural
strategy would be to choose a key schedule that ensures that an inactive round necessarily
costs many active Sboxes in the other (active) rounds. Eventually, we believe this direction
will lead to a good understanding on how a key schedule should be designed when utilized
for an AES-like primitive.

Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments.
Also, the third author would like to thank Sareh Emami, Jérémy Jean and Yang Li
for fruitful discussions at ASK 2012 that initiated this work. The third and fourth
authors are supported by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06) and Temasek Labs (DSOCL16194).

References
[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the

Full AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology
- ASIACRYPT 2009, volume 5912 of LNCS, pages 1–18. Springer, 2009.

82 Human-readable Proof of the Related-Key Security of AES-128

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, volume 4727 of LNCS, pages 450–466. Springer, 2007.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
Related-Key Attack on the Full AES-256 (Extended Version). IACR Cryptology
ePrint Archive, 2009:241, 2009.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic Search for Related-Key Differential
Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia,
Khazad and Others. In Henri Gilbert, editor, Advances in Cryptology -
EUROCRYPT 2010, volume 6110 of LNCS, pages 322–344. Springer, 2010.

[BN11] Alex Biryukov and Ivica Nikolic. Search for Related-Key Differential Char-
acteristics in DES-Like Ciphers. In Antoine Joux, editor, Fast Software
Encryption - 18th International Workshop, FSE 2011, volume 6733 of LNCS,
pages 18–34. Springer, 2011.

[BR11] Paulo S. L. M. Barreto and Vincent Rijmen. Whirlpool. In Henk C. A.
van Tilborg and Sushil Jajodia, editors, Encyclopedia of Cryptography and
Security, 2nd Ed., pages 1384–1385. Springer, 2011.

[CZK+11] Jiali Choy, Aileen Zhang, Khoongming Khoo, Matt Henricksen, and Axel
Poschmann. AES Variants Secure against Related-Key Differential and
Boomerang Attacks. In Claudio Agostino Ardagna and Jianying Zhou, editors,
Information Security Theory and Practice. Security and Privacy of Mobile De-
vices in Wireless Communication - 5th IFIP WG 11.2 International Workshop,
WISTP 2011, volume 6633 of LNCS, pages 191–207. Springer, 2011.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. In CRYPTO, pages 157–184.
Springer, 2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round aes in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
pages 371–387, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation
of AES and Chosen-Key Distinguisher of 9-Round AES-128. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013, volume
8042 of LNCS, pages 183–203. Springer, 2013.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In Preneel and Takagi [PT11], pages 326–341.

[JNP14a] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.1, 2014. Sub-
mission to the CAESAR competition, http://www1.spms.ntu.edu.sg/
~syllab/Deoxys.

http://www1.spms.ntu.edu.sg/~syllab/Deoxys
http://www1.spms.ntu.edu.sg/~syllab/Deoxys

Khoongming Khoo, Eugene Lee, Thomas Peyrin and Siang Meng Sim 83

[JNP14b] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1.1, 2014. Sub-
mission to the CAESAR competition, http://www1.spms.ntu.edu.sg/
~syllab/Joltik.

[JNP14c] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Kiasu v1.1, 2014. Sub-
mission to the CAESAR competition, http://www1.spms.ntu.edu.sg/
~syllab/Kiasu.

[JNP14d] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Sarkar and Iwata [SI14], pages
274–288.

[Mat94] Mitsuru Matsui. On Correlation Between the Order of S-boxes and the
Strength of DES. In Alfredo De Santis, editor, Advances in Cryptology -
EUROCRYPT ’94, volume 950 of LNCS, pages 366–375. Springer, 1994.

[MHM+02] Lauren May, Matthew Henricksen, William Millan, Gary Carter, and Ed Daw-
son. Strengthening the Key Schedule of the AES. In Lynn Margaret Batten
and Jennifer Seberry, editors, Information Security and Privacy - ACISP
2002, volume 2384 of LNCS, pages 226–240. Springer, 2002.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
Linear Cryptanalysis Using Mixed-Integer Linear Programming. In Chuankun
Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology
- Inscrypt 2011, volume 7537 of LNCS, pages 57–76. Springer, 2011.

[Nik10] Ivica Nikolic. Tweaking AES. In Alex Biryukov, Guang Gong, and Douglas R.
Stinson, editors, Selected Areas in Cryptography - SAC 2010, volume 6544 of
LNCS, pages 198–210. Springer, 2010.

[PT11] Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and
Embedded Systems - CHES 2011, volume 6917 of LNCS. Springer, 2011.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other
Bit-Oriented Block Ciphers. In Sarkar and Iwata [SI14], pages 158–178.

[SI14] Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT
2014, volume 8874 of LNCS. Springer, 2014.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In
Preneel and Takagi [PT11], pages 342–357.

http://www1.spms.ntu.edu.sg/~syllab/Joltik
http://www1.spms.ntu.edu.sg/~syllab/Joltik
http://www1.spms.ntu.edu.sg/~syllab/Kiasu
http://www1.spms.ntu.edu.sg/~syllab/Kiasu

	Introduction
	Description of AES-128
	Preliminaries
	Notation
	Best possible related-key differential paths
	Key schedule patterns
	Preliminary lemmas

	Related-key security proof for 1/2/3 rounds of AES-128
	For 1 and 2 rounds of AES-128
	For 3 rounds of AES-128

	Related-key security proof for 4 rounds of AES-128
	Structure of the proof
	Internal state
	Key schedule

	On designing better key schedules for AES-128
	Discussions and future works

