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Abstract. We propose new constructions of Message Authentication Codes (MACs)
from tweakable or conventional block ciphers. Our new schemes are either stateless
and deterministic, nonce-based, or randomized, and provably secure either in the
standard model for tweakable block cipher-based ones, or in the ideal cipher model
for block cipher-based ones. All our constructions are very efficient, requiring only
one call to the underlying (tweakable) block cipher in addition to universally hashing
the message. Moreover, the security bounds we obtain are quite strong: they are
beyond the birthday bound, and nonce-based/randomized variants provide graceful
security degradation in case of misuse, i.e., the security bound degrades linearly with
the maximal number of repetitions of nonces/random values.
Keywords: MAC · tweakable block cipher · nonce-misuse resistance · graceful security
degradation

1 Introduction
MACs. A Message Authentication Code (MAC) is a fundamental symmetric primitive
allowing two entities sharing a secret key to verify that a received message originates from
one of the two parties and was not modified by an attacker. Most existing MACs are built
from a block cipher, e.g., CBC-MAC [BKR00] or OMAC [IK03], or from a cryptographic
hash function, e.g., HMAC [BCK96]. At a high level, many of these constructions follow
the well-established UHF-then-PRF design paradigm: the message M is first mapped onto
a short string through a universal hash function (UHF), and then “encrypted” through a
fixed-input-length PRF to obtain a short tag.1 This method is simple (in particular, it is
deterministic and stateless), yet its security caps at the so-called birthday-bound since any
collision at the output of the UHF, which translate into a tag collision, is usually enough to
break the security of the scheme. Better security bounds can be obtained by incorporating
in the tag computation a nonce (a value that never repeats), e.g., in Wegman-Carter type
MACs [WC81, Sho96, Ber05, CS16] or a random value [BGK99, JJV02, JL04, Min10].

Our Contribution. We propose new MAC constructions, which are either nonce-
based/randomized or stateless and deterministic, and which are based on a universal hash
function and either on a (conventional) block cipher or a tweakable block cipher. Hence,
in total, we propose four new constructions, two of which can be analyzed in two slightly
different (but related) security models (namely nonce-based or randomized). Tweakable

1Actually, this kind of construction yields a variable-input-length PRF rather than a mere MAC.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-03-01, Accepted: 2017-05-01, Published: 2017-06-19

https://doi.org/10.13154/tosc.v2017.i2.27-58
mailto:benoitcogliati@hotmail.fr
mailto:hicalf@kaist.ac.kr
mailto:yannick.seurin@m4x.org
http://creativecommons.org/licenses/by/4.0/


28 New Constructions of MACs from (Tweakable) Block Ciphers

block ciphers (TBCs) are a generalization of conventional block ciphers which, in addition
to a message and a cryptographic key, take another (public, or even controlled by the
adversary) input called a tweak. This tweak should provide inherent variability to the
block cipher and plays a similar role to an IV or a nonce in an encryption scheme. The
security notion for this primitive was first formalized in [LRW02], where it was pointed out
that tweakable block ciphers are very useful for building various higher level cryptographic
schemes.

Our two TBC-based constructions follow the traditional UHF-then-PRF approach,
the PRF being “instantiated” from the TBC Ẽ. The starting point of our nonce-based
construction, called NaT (Nonce-as-Tweak) and depicted on Figure 1 (top left), is the
simple remark that, as long as tweaks do not repeat, a tweakable block cipher behaves as
a random function. Hence, if the hash of each message is encrypted with a fresh nonce
as tweak, collisions among hash values don’t matter since the hashes are encrypted by
“independent” random functions ẼNK . Even if tweaks (i.e., nonces) repeat, the security loss
is negligible as long as the number of repetitions is small. The provable security bound
for the NaT construction is dominated by terms of the form µqε, where µ denotes the
maximal number of repetitions of any nonce, q denotes the number of adversarial (MAC
or verification) queries, and ε is the parameter characterizing the collision probability of
the UHF. A typical value (e.g., for polynomial-based hashing [Sho96, Ber07]) for ε is `/2n,
where n is the output length of the UHF (which is also the block length of the TBC) and
` is the maximal length of messages in n-bit blocks. Hence, in the nonce-respecting case
(i.e., µ = 1) the adversary’s advantage is of the form q`/2n, whereas in the nonce-misusing
case (where µ might be as large as q), it becomes q2`/2n, i.e., a birthday-type bound. The
security bound degrades linearly with µ, the maximal number of repetitions of nonces. We
note that the NaT construction is used in version 1.41 of the authenticated encryption
scheme Deoxys [JNPS16], a third round candidate of the CAESAR competition.

To obtain a stateless deterministic TBC-based construction, one simply replaces the
nonce by an independent hash of the message. The resulting construction is called HaT
(Hash-as-Tweak), see Figure 1 (top right). This construction is secure beyond the birthday
bound. Both NaT and HaT are provably secure in the standard model, assuming only that
the TBC is a secure pseudorandom tweakable permutation.

Our two block cipher-based constructions, on the other hand, depart from the standard
UHF-then-PRF approach, since the output transformation is unkeyed. Actually, they can
be seen as block cipher-based instantiations of a new paradigm (which, to the best of our
knowledge, has not been formally explored yet), which could be dubbed UHF-then-RO:
the tag is computed as T = G(HK(M)), where H is a (keyed) uniform and universal hash
function, and G is a (keyless) cryptographic hash function. It is easy to prove (and we do
so in Appendix B) that this construction is a secure MAC (in fact, a variable-input-length
PRF) in the random oracle (RO) model for G.2 Obviously, the output transformation
must be hard to invert (as otherwise the adversary can compute the output of the UHF
from the tag), which for the nonce-based construction implies that we must use the block
cipher in Davies-Meyer mode. The resulting variants of NaT and HaT, called respectively
NaK (Nonce-as-Key) and HaK (Hash-as-Key), are depicted in Figure 1 (bottom). They
are provably secure in the ideal cipher model [BRS02].

We provide a comparison of our new constructions with existing UHF-based MAC
constructions in Table 1.

Proof Technique. Our proofs rely on the H-coefficients technique, which has been
introduced by Patarin [Pat08b], and has recently been highlighted by Chen and Steinberger
for analyzing the iterated Even-Mansour cipher [CS14]. This method is typically used

2A natural question is whether standard security assumptions on G are sufficient to prove MAC/PRF
security.
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Figure 1: Top: the TBC-based constructions NaT (left) and HaT (right) based on a TBC
Ẽ and AU hash functions H and H ′. The tweak input is on top of the ẼK box, while the
block input is on the left. Bottom: the block cipher-based variants NaK (left) and HaK
(right) based on a block cipher E and AU and almost uniform hash functions H and H ′.
The solid line materializes the key input for E.

to prove information-theoretic pseudorandomness of constructions such as Feistel net-
works [Pat90, Pat91, Pat10], the XOR of permutations [Pat08a, Pat13] or Even-Mansour
constructions [CLS15, CS15b, CS15a, Men15, HT16]. The use of the H-coefficients tech-
nique to study the security of MAC constructions (in particular, to directly handle
verification queries rather than appealing to generic results resulting in looser bounds) was
previously introduced by Cogliati and Seurin [CS16].

More Related Work. Several other MAC constructions based on tweakable block
ciphers have been proposed. For example, TBC-MAC [LRW02] and TBC-MAC2 [LST12]
are two such constructions. They are similar in design to CBC-MAC, however the chaining
in these constructions is done through the tweak. Because of their structure, these two
constructions require as many calls to the tweakable block cipher as the number of blocks
in the message, whereas our constructions only require one call to the TBC and one to
the universal hash function, which can be much more efficient depending on the choice of
the UHF. Moreover, the proven security of TBC-MAC is still birthday bound and, while
TBC-MAC2 has a security bound comparable to our bounds, it requires the underlying
TBC to have a tweak length much larger than the block length, which is not the case in
our constructions.

Black and Cochran [BC09] also proposed a nonce-based MAC construction, called
WMAC, which is based on a PRF and a universal hash function. Our NaT construction
can actually be seen as a particular case of WMAC, where the PRF is instantiated by a
tweakable block cipher. However, our security bound is actually tighter than what would
be achieved by simply applying [BC09, Theorem 6] to our construction.

Naito [Nai15] and more recently List and Nandi [LN17] have proposed TBC-based
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Table 1: Comparison of our new constructions with prominent existing MAC constructions
based on an arbitrary (xor-)universal hash function. WC stands for Wegman-Carter; SD
stands for stateless deterministic; “prim.” indicates which primitive is used in addition to
the UHF; “# calls” gives the number of calls to the underlying primitive (in addition to the
UHF call); “BBB” indicates whether the construction is secure beyond the birthday bound
(when nonces are not repeated for nonce-based ones); “NMR” indicates whether nonce-
based constructions are nonce-misuse resistant; “proof” indicates whether the security
proof is in the standard model (SM) or the ideal cipher model (ICM).

construction type prim. # calls BBB NMR proof ref.
UHF-then-BC SD BC 1 × — SM [BS, Section 7]

HaT SD TBC 1 X — SM this paper
HaK SD BC 1 X — ICM this paper

PRF-based WC nonce PRF 1 X × SM [WC81]
BC-based WC nonce BC 1 × × SM [Sho96, Ber05]

EWCDM nonce BC 2 X X SM [CS16]
NaT nonce TBC 1 X X SM this paper
NaK nonce BC 1 X X ICM this paper

EHtM rand. PRF 2 X — SM [Min10]
NaT rand. TBC 1 X — SM this paper
NaK rand. BC 1 X — ICM this paper

constructions of stateless deterministic MACs that do not use a generic UHF, but instead
construct the UHF from the underlying TBC (so that the resulting constructions are entirely
TBC-based). In principle, the two UHFs of our construction HaT can be instantiated for
example with PMAC1 [Rog04] (the TBC-based generalization of PMAC [BR02]) to obtain
a similarly “purely” TBC-based construction, however the resulting construction makes
two TBC calls per message block, whereas Naito’s and List-Nandi’s constructions only
make one, so that we do not claim to compete with them in terms of efficiency.

Organization. We first establish the notation and recall standard security definitions
in Section 2. We also give a general lemma allowing to translate any security bound
for a nonce-based MAC that provides graceful security degradation with respect to the
number of nonce repetitions to the corresponding randomized scheme (where “nonces” are
chosen uniformly at random). We then describe and prove the security of our TBC-based
constructions in Section 3 and of our block cipher-based constructions in Section 4. In
Section 5, we give a simple generic result about the security loss induced by tag truncation
that might be of independent interest.

2 Preliminaries
2.1 General Definitions
Basic Notation. Given a non-empty set X , we let X ←$ X denote the draw of an
element X from X uniformly at random. The set of all functions from X to Y is denoted
Func(X ,Y), and the set of all permutations of X is denoted Perm(X ). The set of binary
strings of length n is denoted {0, 1}n. The set of all functions from {0, 1}n to {0, 1}n
is simply denoted Func(n), and the set of all permutations of {0, 1}n is simply denoted
Perm(n). For integers 1 ≤ b ≤ a, we will write (a)b = a(a−1) · · · (a−b+1) and (a)0 = 1 by
convention. Remark that, using our notation, the probability that a random permutation
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P ←$ Perm(n) satisfies q equations P (Xi) = Yi for distinct Xi’s and distinct Yi’s is
exactly 1/(2n)q.

PRFs. A keyed function with key space K, domain X , and range Y is a function
F : K × X → Y. We write FK(X) for F (K,X). A (q, t)-adversary against F is an
algorithm A with oracle access to a function from X to Y , making at most q oracle queries,
running in time at most t, and outputting a single bit. The advantage of A in breaking the
PRF-security of F , i.e., in distinguishing F from a uniformly randomly chosen function
R←$ Func(X ,Y), is defined as

AdvPRF
F (A) =

∣∣Pr
[
K ←$ K : AFK = 1

]
− Pr

[
R←$ Func(X ,Y) : AR = 1

]∣∣ .
Block Ciphers and Tweakable Block Ciphers. A block cipher with key space
K and message space X is a mapping E : K × X → X such that for any key K ∈ K,
X 7→ E(K,X) is a permutation of X . We write EK(X) for E(K,X). The security proofs
for block cipher-based constructions studied in this paper will be done in the ideal cipher
model (ICM): this means that a block cipher E is drawn uniformly at random from the set
of all block ciphers with key space K and message space X , and given as an oracle (both
in the encryption and decryption directions) to the adversary.

A tweakable permutation with tweak space W and message space X is a mapping
P̃ :W ×X → X such that, for any tweak W ∈ W, X 7→ P̃ (W,X) is a permutation of X .
We let Perm(W,X ) denote the set of all tweakable permutations with tweak space W and
message space X . As in the case of simple permutations, we let Perm(W, n) denote the
set of all tweakable permutations with tweak space W and message space {0, 1}n.

A tweakable block cipher Ẽ with key space K, tweak space W and message space X is
a mapping Ẽ : K×W ×X → X such that for any key K ∈ K, (W,X) 7→ Ẽ(K,W,X) is a
tweakable permutation with tweak space W and message space X . We write EK(T,X)
or ETK(X) for E(K,T,X). A (q, t)-adversary against the security of Ẽ as a tweakable
pseudorandom permutation (TPRP-security) is an algorithm A with oracle access to a
tweakable permutation with tweak spaceW and message space X , making at most q oracle
queries, running in time at most t, and outputting a single bit. The advantage of A in
breaking the TPRP-security of Ẽ is defined as

AdvTPRP
Ẽ

(A) =
∣∣∣Pr
[
K ←$ K : AẼK = 1

]
− Pr

[
P̃ ←$ Perm(W,X ) : AP̃ = 1

]∣∣∣ .
Note that we do not require the “strong TPRP”-security for E, i.e., when the adversary is
allowed to adaptively query an encryption and a decryption oracle, since the underlying
tweakable block cipher in our construction will only be queried in one direction.

MACs. We define three security notions for MACs: stateless and deterministic MACs
(SD-MACs), nonce-based MACs, and randomized MACs.
Definition 1 (SD-MAC). Let K,M, and T be non-empty sets. Let F : K×M→ T be a
keyed function. For K ∈ K, let VerK be the verification oracle which takes as input a pair
(M,T ) ∈M×T and returns 1 (“accept”) if FK(K,M) = T , and 0 (“reject”) otherwise. A
(qm, qv, t)-adversary against the sdMAC-security of F is an adversary A with oracle access
to the two oracles FK and VerK for K ∈ K, making at most qm “MAC” queries to its first
oracle and at most qv “verification” queries to its second oracle, and running in time at
most t. We say that A forges if any of its queries to VerK returns 1. The advantage of A
against the sdMAC-security of F is defined as

AdvsdMAC
F (A) = Pr

[
K ←$ K : AFK ,VerK forges

]
,

where the probability is also taken over the random coins of A, if any. The adversary is
not allowed to ask a verification query (M,T ) if a previous query M to FK returned T .
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Given four non-empty sets K, N , M, and T , a nonce-based keyed function with
key space K, nonce space N , message space M and range T is simply a function F :
K ×N ×M→ T . Stated otherwise, it is a keyed function whose domain is a cartesian
product N ×M. We write FK(N,M) for F (K,N,M). Given an adversary with oracle
access to FK for some key K, the multiplicity µ of a nonce N in an attack is the number
of times it is used in oracle queries to FK (e.g., µ = 1 for all nonces for a nonce-respecting
adversary).

Definition 2 (Nonce-Based/Randomized MAC). Let K, N , M, and T be non-empty
sets. Let F : K ×N ×M→ T be a nonce-based keyed function. For K ∈ K, let VerK be
the verification oracle which takes as input a triple (N,M, T ) ∈ N ×M×T and returns 1
(“accept”) if FK(N,M) = T , and 0 (“reject”) otherwise.

• A (µ, qm, qv, t)-adversary against the nonce-based MAC-security of F is an adversary
A with oracle access to the two oracles FK and VerK for K ∈ K, making at most qm
MAC queries to its first oracle with maximal nonce multiplicity at most µ and at
most qv verification queries to its second oracle, and running in time at most t. We
say that A forges if any of its queries to VerK returns 1. The advantage of A against
the nonce-based MAC-security of F is defined as

AdvnMAC
F (A) = Pr

[
K ←$ K : AFK ,VerK forges

]
,

where the probability is also taken over the random coins of A, if any. The adversary
is not allowed to ask a verification query (N,M, T ) if a previous query (N,M) to
FK returned T . When µ = 1, we say that A is nonce-respecting, otherwise A is said
nonce-misusing.

• For K ∈ K, let F $
K be the probabilistic algorithm which takes as input M ∈ M,

internally generates a uniformly random N ←$ N , computes T = FK(N,M), and
outputs (N,T ). A (qm, qv, t)-adversary against the randomized MAC-security of F
is an adversary A with oracle access to the two oracles F $

K and VerK for K ∈ K,
making at most qm MAC queries to its first oracle and at most qv verification queries
to its second oracle, and running in time at most t. We say that A forges if any of its
queries to VerK returns 1. The advantage of A against the randomized MAC-security
of F is defined as

AdvrMAC
F (A) = Pr

[
K ←$ K : AF

$
K ,VerK forges

]
,

where the probability is also taken over the random coins of F $
K and of A, if any.

The adversary is not allowed to ask a verification query (N,M, T ) if a previous query
M to F $

K returned (N,T ).

For the three notions above, in case the function F is built from a block cipher and the
security proof is done in the ideal cipher model, the advantage additionally depends on
the number qe of ideal cipher queries made by the adversary. The notation is modified in
the natural way (e.g., we will talk of a (µ, qe, qm, qv, t)-adversary against the nonce-based
MAC security of F ).

Almost Uniform and AU Hash Functions. We will need the following definitions
of almost uniform and almost universal (AU) hash functions.

Definition 3 (Almost Uniform and AU Hash Functions). Let ε > 0, and let H : Kh×X →
Y be a keyed hash function for three non-empty sets Kh, X , and Y.

• H is said to be ε-almost uniform if for any X ∈ X and any Y ∈ Y,

Pr [Kh ←$ Kh : HKh
(X) = Y ] ≤ ε;
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• H is said to be ε-almost universal (ε-AU) if for any distinct X and X ′ ∈ X ,

Pr [Kh ←$ Kh : HKh
(X) = HKh

(X ′)] ≤ ε.

Remark 1. Recall that for an ε-AU hash function with n-bit outputs one has ε & 2−n [Sti96].
(In fact, ε can be slightly less than 2−n, but when the domain X is much larger than the
range Y it can only be negligibly smaller.) In order to simplify our bounds, we will always
assume that the ε-AU hash functions used in our constructions are such that ε ≥ 2−n.

2.2 From Nonce-Based to Randomized MACs
Let F be a nonce-based MAC with nonce spaceN . In some situations, it can be cumbersome
to maintain a state on the MAC generation side to avoid repeating nonces. However, as
suggested by Definition 2, any nonce-based MAC can easily be turned into a randomized
MAC by letting the MAC generation algorithm choose “nonces” uniformly at random.
Of course, these are no longer real nonces since they will start to repeat after roughly
|N |1/2 adversarial MAC queries. For some schemes (e.g., Wegman-Carter MACs), security
might completely collapse as soon as a single nonce is repeated. However, if the original
nonce-based scheme is sufficiently resilient to nonce repetition (in particular, if security
only degrades linearly with the maximal nonce multiplicity), the resulting randomized
scheme will still enjoy good security bounds. This is captured by the following lemma,
which holds for MACs provably secure in the standard or ideal cipher model. (Note that
for µ0 = 1, the first term is exactly a birthday term.)

Lemma 1. Let F : K × N × M → T be a nonce-based keyed function (potentially
constructed from some underlying block cipher E). Then, for any ((qe), qm, qv, t)-adversary
A against the rMAC security of F , and for any integer µ0 ≤ qm, one has

AdvrMAC
F (A) ≤ qµ0+1

m

(2|N |)µ0
+ max

A′

{
AdvnMAC

F (A′)
}
,

where the maximum is taken over all (µ0, (qe), qm, qv, t)-adversaries against the nMAC
security of F .

Proof. Let us fix a ((qe), qm, qv, t)-adversary A against the rMAC-security of F . We
make the randomness of the MAC oracle F $

K explicit through a random function R :
{1, . . . , qm} → N . Let F(qm,N ) denote the set of every such function. For every function
R ∈ F(qm,N ), let

µ(R) def= max
i∈{1,...,qm}

|{j ∈ {1, . . . , qm} : R(j) = R(i)}|

be the maximal multiplicity of any element in the image of R.
We define a (µ(R), (qe), qm, qv, t)-adversary AR against the nMAC security of F as

follows: AR runs A, answering its verification queries (and potentially its ideal cipher
queries) using his own oracles, and answering A’s i-th MAC query by querying his own
MAC oracle FK using the same message and nonce R(i), for i = 1, . . . , qm. Then, one has

AdvrMAC
F (A) =

∑
R′∈F(qm,N )

Pr
[
R←$ F(qm,N ) : R = R′ and A(E),FK ,VerK

R′ forges
]

=
∑

R′∈F(qm,N )

Pr [R = R′] · Pr
[
A(E),FK ,VerK

R′ forges
]

≤ Pr [µ(R) ≥ µ0 + 1] + 1
|N |qm

∑
R′∈F(qm,N )
µ(R′)≤µ0

Pr
[
A(E),FK ,VerK

R′ forges
]
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≤ Pr [µ(R) ≥ µ0 + 1] + max
R′∈F(qm,K)
µ(R′)≤µ0

{
AdvnMAC

F (AR′)
}

≤ Pr [µ(R) ≥ µ0 + 1] + max
A′

{
AdvnMAC

F (A′)
}
,

where the maximum is taken over all (µ0, (qe), qm, qv, t)-adversaries A′ against the nMAC
security of F (since for every function R′ such that µ(R′) ≤ µ0, AR′ is a (µ0, (qe), qm, qv, t)-
adversary against the nMAC security of F ).

We now upper bound the first term. Assume first that qm ≥ µ0 + 1. Then, one has

Pr [µ(R) ≥ µ0 + 1] = Pr [∃ 1 ≤ i1 < . . . < iµ0+1 ≤ qm : F (i1) = . . . = F (iµ0+1)]

≤ (qm)µ0+1

(µ0 + 1)! · |N |µ0
≤
(
qm
|N |

)µ0

· qm
(µ0 + 1)! ≤

qµ0+1
m

(2|N |)µ0
,

where, for the last inequality, we used the fact that (µ0 + 1)! ≥ 2µ0 for every integer
µ0 ≥ 0. Note that this upper bound also holds when qm < µ0 + 1, since in that case
Pr [µ(R) ≥ µ0 + 1] = 0. This concludes the proof.

2.3 The H-Coefficients Technique
In this work, we prove the security of our stateless deterministic and nonce-based MAC
constructions using the H-coefficients technique [Pat08b, CS14], which we explain here.
The details will be slightly different depending on whether the construction is proven secure
in the ideal cipher model or the standard model. We start by describing the formalism for
block cipher-based constructions proven secure in the ideal cipher model.

Let MAC[E] denote a SD or nonce-based MAC construction based on a block cipher
E ∈ Perm(K, n). In all the following, nonces N and multiplicity µ will be written in
parenthesis to indicate that they are omitted for a SD-MAC. Let K′ denote the key space
for MAC[E], and let Ver[E]K′ be the verification oracle for key K ′ ∈ K′. Let A be a
((µ), qe, qm, qv, t)-adversary against the sd/nMAC security of MAC[E] and recall that

Adv(sd/n)MAC
MAC[E] (A) = Pr

[
E ←$ Perm(K, n),K ′ ←$ K′ : AE,MAC[E]K′ ,Ver[E]K′ forges

]
.

It will be more convenient to express this quantity as the advantage of a distinguisher
trying to distinguish the real world (E,MAC[E]K′ ,Ver[E]K′) and an ideal world defined
as follows. Let Rand denote a perfectly random oracle with the same domain and range as
MAC[E]K′ , and let Rej denote an oracle with the same domain as Ver[E]K′ which always
returns 0 (“reject”). Since the adversary cannot have the right oracle return 1 in the ideal
world (i.e., when interacting with (E,Rand,Rej)), we have

Adv(sd/n)MAC
MAC[E] (A) = Pr

[
AE,MAC[E]K′ ,Ver[E]K′ forges

]
− Pr

[
AE,Rand,Rej forges

]
.

Consider now an adversary D which queries a triplet of oracles (O1,O2,O3) and outputs a
bit β, which we write DO1,O2,O3 = β. (We will refer to such an adversary as a distinguisher.)
Say that such an adversary is non-trivial if it never makes a query ((N),M, T ) to its right
(verification) oracle if a previous query ((N),M) to its middle (MAC) oracle returned T .
Then

Adv(sd/n)MAC
MAC[E] (A) ≤ max

D

{
Pr
[
DE,MAC[E]K′ ,Ver[E]K′ = 1

]
− Pr

[
DE,Rand,Rej = 1

]}
, (1)

where the maximum is taken over non-trivial distinguishers making qe queries to O1, qm
queries to O2 (with maximal nonce multiplicity µ in the case of a nonce-based MAC), and
qv queries to O3. (This follows easily by considering the particular D which runs A and
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outputs 1 iff A successfully forges.) This formulation of the problem now allows us to use
the H-coefficients technique [Pat08b, CS14], as we explain in more details below.

We assume that D is computationally unbounded (and hence wlog deterministic) and
that it never repeats a query. Let

τe =
(
(K1, X1, Y1), . . . , (Kqe , Xqe , Yqe)

)
be the list of ideal cipher queries of D and corresponding answers (i.e., for 1 ≤ i ≤ qe,
D either made a query E(Ki, Xi) and received answer Yi, or a query E−1(Ki, Yi) and
received answer Xi). Let

τm =
(
((N1),M1, T1), . . . , ((Nqm),Mqm , Tqm)

)
be the list of MAC queries of D and corresponding answers. Let also

τv =
(
((N ′1),M ′1, T ′1, b1), . . . , ((N ′qv

),M ′qv
, T ′qv

, bqv
)
)

be the list of verification queries of D and corresponding answers (with bi ∈ {0, 1}). The
triple (τe, τm, τv) constitutes the queries transcript of the attack. In order to have a simple
description of bad transcripts, we slightly modify the security experiment by revealing to
the distinguisher (after the interaction but before it outputs its decision bit) the secret key
K ′ if we are in the real world, or a uniformly random “dummy” key K ′ if we are in the
ideal world (this is obviously wlog since the distinguisher can ignore this additional piece
of information). All in all, the transcript of the attack is the tuple τ = (τe, τm, τv,K ′).

A transcript τ is said attainable (with respect to distinguisher D) if the probability to
obtain this transcript in the ideal world is non-zero. Let Θ denote the set of attainable
transcripts. We also let Xre, resp. Xid, denote the probability distribution of the transcript
τ induced by the real world, resp. the ideal world. Then the main lemma of the H-
coefficients technique allows one to upper bound D’s distinguishing advantage as follows
(see for example [CS14] or [CLL+14] for the proof).

Lemma 2 ([Pat08b]). Fix a distinguisher D. Let Θ = Θgood tΘbad be a partition of the
set of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Θgood, one
has3

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Xid ∈ Θbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Note that for an attainable transcript τ = (τe, τm, τv,K ′), any verification query
((N ′i),M ′i , T ′i , bi) ∈ τv is such that bi = 0. Hence, some transcripts are attainable in the
real world but not in the ideal world, which is unusual as, in most H-coefficients-based
proofs, the set of transcripts attainable in the real world is a subset of those attainable
in the ideal world. However, the standard proof of Lemma 2 can be trivially extended
to handle this peculiarity (see Appendix A). In order to simplify the notation, in all the
following, since we only deal with attainable transcripts, we omit decision bits bi from the
verification queries transcript and simply write

τv =
(
((N ′1),M ′1, T ′1), . . . , ((N ′qv

),M ′qv
, T ′qv

)
)
.

Since security in the ideal cipher model for block cipher-based constructions hold against
computationally unbounded adversaries, we omit parameter t from theorem statements.
For TBC-based constructions proven secure in the standard model, the formalism is
identical, except that there is no ideal cipher queries transcript τe and hence parameter qe
is irrelevant.

3Recall that for an attainable transcript, one has Pr[Xid = τ ] > 0.
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Note that in our proofs we see the forgery game for a MAC construction as a particular
case of a distinguishing game against the construction. Then, we lower bound the
advantage of any distinguisher against the construction. Hence, when the number qv of
verification queries is fixed to 0, our security bounds correspond to the PRF security of
our constructions.

2.4 Permutation (In)equalities List
Fix any non-empty set S = {s1, . . . , sr}. At some point in our security proofs, we will need
to evaluate the probability that a certain family (Ps)s∈S ∈ Perm(n)S of uniformly random
and independent permutations4 satisfies some sets of equalities and inequalities. To this
end, we introduce the notion of permutation equalities list and permutation inequalities list.
A permutation equalities list is a set λeq of triples (s, x, y) ∈ S×{0, 1}n×{0, 1}n such that,
for any pair of distinct triple (s, x, y), (s′, x′, y′) ∈ λeq, if s = s′, then x 6= x′ and y 6= y′. A
permutation inequalities list is a set λineq of triples (s′, x′, y′) ∈ S × {0, 1}n × {0, 1}n, and
it is said compatible with the permutations equalities list λeq if λeq ∩ λineq = ∅.

Fix any permutation equalities list λeq and any permutation inequalities list λineq
which is compatible with λeq. A family of permutations (Ps)s∈S is said compatible with
λeq if, for any (s, x, y) ∈ λeq, one has Ps(x) = y. It is said compatible with λineq if, for
every (s, x, y) ∈ λineq, one has Ps(x) 6= y. Finally, we say that (Ps)s∈S is compatible
with λ = (λeq, λineq) if it is both compatible with λeq and λineq. We let Comp(λeq),
Comp(λineq) and Comp(λ) denote the set of families of permutations that are compatible
with respectively λeq, λineq and λ. Then one has the following lemma.

Lemma 3. Let S = {s1, . . . , sr}, λeq be a permutation equalities list, and λineq be a
permutation inequalities list compatible with λeq. Let q = |λeq| and q′ = |λineq|. Assume
that q < 2n and q′ < 2n. For i = 1, . . . , r, let qi be the number of (s, x, y) ∈ λeq such that
s = si. Then, one has

Pr
[
(Ps)←$ Perm(n)S : (Ps) ∈ Comp(λ)

]
≥ 1∏r

i=1(2n)qi

(
1− q′

2n −max{q1, . . . , qr}

)
.

Proof. We are going to consider the permutation equalities list and the permutation
inequalities list in turn.

First, we lower bound the probability that a random family (Ps)s∈S of permutations
satisfies

∀(s, x, y) ∈ λeq, Ps(x) = y.

Since λeq is a permutation equalities list, each permutation Psi
must satisfy exactly qi

equalities. Thus one has

Pr [(Ps)s∈S ∈ Comp(λeq)] = 1
r∏
i=1

(2n)qi

. (2)

We will now lower bound the probability that a random family (Ps)s∈S of permutations
is compatible with λineq, conditioned on (Ps)s∈S being compatible with λeq. It will actually
be easier to upper bound the probability that (Ps)s∈S is not compatible with λineq, i.e.,
that there exists (s′, x′, y′) ∈ λineq such that

Ps′(x′) = y′. (3)

Fix any permutation inequality (s′, x′, y′) ∈ λineq. We consider two possible cases:
4For block cipher-based constructions, (Ps)s∈S will be a block cipher, and for TBC-based constructions,

(Ps)s∈S will be a tweakable permutation.
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1. if there exists (s, x, y) ∈ λeq such that s = s′ and x = x′ or y = y′, then, since by def-
inition of λineq being compatible with λeq one has (s, x, y) 6= (s′, x′, y′), Equation (3)
cannot hold;

2. otherwise, Equation (3) holds with probability 1/(2n −m), where m is the number
of times s′ appears in λeq, which cannot be larger than max{q1, . . . , qr}.

Hence, we see that for any (s′, x′, y′) ∈ λineq, Equation (3) is satisfied with probability at
most 1/(2n −max{q1, . . . , qr}). By a union bound over the q′ permutation inequalities,
we obtain that

Pr [(Ps)s∈S ∈ Comp(λineq) | (Ps)s∈S ∈ Comp(λeq)] ≥ 1− q′

2n −max{q1, . . . , qr}
. (4)

Using Equation (2) and Equation (4), we have

Pr [(Ps)s∈S ∈ Comp(λ)] ≥ 1∏r
i=1(2n)qi

(
1− q′

2n −max{q1, . . . , qr}

)
.

3 Tweakable Block Cipher-Based Constructions
In this section, we describe and analyze two TBC-based MAC constructions: a nonce-based
one called NaT and a stateless deterministic one called HaT. The security proofs are done
in the standard model (i.e., they do not require to idealize the underlying TBC).

3.1 The Nonce-Based Construction NaT
We start with a nonce-based construction named NaT (Nonce-as-Tweak). Given a TBC Ẽ
with key space K, tweak space W, and message space {0, 1}n and a keyed hash function
H with key space Kh, domainM, and range {0, 1}n, we define a MAC with key space
K ×Kh, nonce space W, and message spaceM as

NaT[Ẽ,H]K,Kh
(N,M) = ẼNK (HKh

(M)).

Our security result is the following one.

Theorem 1. LetM, K, W and Kh be non-empty sets. Let Ẽ : K×W×{0, 1}n → {0, 1}n
be a tweakable block cipher and H : Kh ×M → {0, 1}n be an ε-AU hash function. Let
µ, qm, qv, and t be integers such that qm, qv ≤ 2n and µ ≤ min{qm, 2n − 1}. Then
for any (µ, qm, qv, t)-adversary A against the nMAC-security of NaT[Ẽ,H], there exists a
(qm + qv, t

′)-adversary A′ against the TPRP-security of Ẽ, where t′ = O(t+ (qm + qv)tH)
and tH is an upper bound on the time to compute H on any message, such that

AdvMAC
NaT[Ẽ,H](A) ≤ AdvTPRP

Ẽ
(A′) + 2(µ− 1)qmε+ qv

2n − µ + µqvε.

Recall that for an ε-AU hash function with n-bit outputs one has ε & 2−n [Sti96] (see
Remark 1). Hence, in the nonce-respecting case (i.e., µ = 1), the NaT construction is
secure up to roughly ε−1 verification queries, irrespectively of the number of MAC queries
(neglecting the effect of the TPRP-advantage term). When A can freely choose nonces
(i.e., µ = qm), then the NaT construction is secure up to the birthday bound. The security
bound degrades linearly with the maximal multiplicity µ of nonces.

As a corollary, we obtain the following for the security of the NaT construction as a
randomized MAC, which shows that it is secure up to roughly ε−1/n MAC and verification
queries under the additional assumption that |W| ≥ 2n.
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Corollary 1. LetM, K, W and Kh be non-empty sets. Let Ẽ : K×W×{0, 1}n → {0, 1}n
be a tweakable block cipher and H : Kh ×M → {0, 1}n be an ε-AU hash function. Let
qm, qv, and t be integers such that qm, qv ≤ 2n. Then for any (qm, qv, t)-adversary A
against the rMAC-security of NaT[Ẽ,H], there exists a (qm + qv, t

′)-adversary A′ against
the TPRP-security of Ẽ, where t′ = O(t+ (qm + qv)tH) and tH is an upper bound on the
time to compute H on any message, such that

AdvrMAC
NaT[Ẽ,H](A) ≤ AdvTPRP

Ẽ
(A′) + 2(n− 1)qmε+ qv

2n − n + nqvε+ qn+1
m

(2|W|)n .

Proof. This follows by combining Lemma 1 with µ0 = n and Theorem 1.

The remaining of this section is devoted to the proof of Theorem 1. Let us fix a
(µ, qm, qv, t)-adversary A against the nMAC-security of NaT[Ẽ,H].

The first step of the proof is standard and consists in replacing ẼK by a uniformly
random tweakable permutation P̃ , both in the MAC and in the verification oracles (in
other words, we replace the tweakable block cipher Ẽ by the perfect tweakable block cipher
cipher Ẽ∗ whose key space is the set of all tweakable permutations of {0, 1}n with tweak
space W). Let NaT[Ẽ∗, H] denote the resulting construction. It is easy to show that there
exists an adversary A′ against the TPRP-security of Ẽ, making at most qm + qv oracle
queries and running in time at most O(t+ (qm + qv)tH), such that

AdvnMAC
NaT[Ẽ,H](A) ≤ AdvTPRP

Ẽ
(A′) + AdvnMAC

NaT[Ẽ∗,H](A). (5)

The next step is to find an upper bound for

AdvnMAC
NaT[Ẽ∗,H](A) =

Pr
[
P̃ ←$ Perm(W, n),Kh ←$ Kh : ANaT[P̃ ,H]Kh

,Ver[P̃ ,H]Kh forges
]
,

where, overloading the notation, NaT[P̃ ,H]Kh
denotes construction NaT[Ẽ∗, H] instan-

tiated with tweakable permutation P̃ and hashing key Kh and Ver[P̃ ,H]Kh
denotes the

corresponding verification oracle. This is now a purely information-theoretic problem, and
we can follow the H-coefficients technique as explained in Section 2.3.

Let us fix a non-trivial (µ, qm, qv)-distinguisher D interacting either with the real world
(NaT[P̃ ,H]Kh

,Ver[P̃ ,H]Kh
) or with the ideal world (Rand,Rej). We let

Adv(D) = Pr
[
DNaT[P̃ ,H]Kh

,Ver[P̃ ,H]Kh = 1
]
− Pr

[
DRand,Rej = 1

]
.

Let τ = (τm, τv,Kh) denote the transcript of the attack, with

τm =
(
(N1,M1, T1), . . . , (Nqm

,Mqm
, Tqm

)
)

τv =
(
(N ′1,M ′1, T ′1), . . . , (N ′qv

,M ′qv
, T ′qv

)
)
.

Recall that Θ denotes the set of attainable transcripts and Xre, resp. Xid, the probability
distribution of the transcript τ induced by the real world, resp. the ideal world.

The remaining of the proof of Theorem 1 is structured as follows. First, we define bad
transcripts and upper bound their probability in the ideal world (Lemma 4). Then, we
analyze good transcripts and prove that they are almost as likely in the real and the ideal
world (Lemma 5). Combining Lemma 2 from Section 2.3 with Lemma 4 and Lemma 5
gives us an upper bound on D’s advantage, which by Equation (1) from Section 2.3 gives
us an upper bound on

AdvnMAC
NaT[Ẽ∗,H](A).

Theorem 1 follows easily by combining this upper bound with Equation (5).
We start by defining bad transcripts.
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Definition 4. We say that an attainable transcript τ = (τm, τv,Kh) is bad if one of these
conditions is fulfilled:

(C-1) there exists two distinct MAC queries (Ni,Mi, Ti) and (Nj ,Mj , Tj) such that Ni =
Nj and either HKh

(Mi) = HKh
(Mj) or Ti = Tj ;

(C-2) there exists a MAC query (Ni,Mi, Ti) ∈ τm and a verification query (N ′j ,M ′j , T ′j)
∈ τv such that 

Ni = N ′j
HKh

(Mi) = HKh
(M ′j)

Ti = T ′j .

We let Θbad, resp. Θgood denote the set of bad, respectively good transcripts.

Note that the second condition can only happen in the ideal world since in the real
world, if Ni = N ′j , HKh

(Mi) = HKh
(M ′j), and Ti = T ′j , the verification oracle should

return 1 on query (N ′j ,M ′j , T ′j) (which is impossible for an attainable transcript).
We now upper bound the probability to get a bad transcript in the ideal world.

Lemma 4. For any integers qm and qv, one has

Pr [Xid ∈ Θbad] ≤ 2(µ− 1)qmε+ µqvε.

Proof. We let Θi denote the set of attainable transcripts satisfying condition (C-i). Recall
that, in the ideal world, Kh is drawn independently from the queries transcript. We are
going to consider both conditions in turn.

Condition (C-1). Fix a MAC query (Ni,Mi, Ti). There are exactly qm possible choices
for this query. Then we fix another MAC query (Nj ,Mj , Tj) such thatNi = Nj (there are at
most µ−1 possible choices). The probability, over the random draw of Ti and Tj that Ti =
Tj is 2−n, and the probability, over the random draw of Kh, that HKh

(Mi) = HKh
(Mj), is

lower than ε. Summing over every possible choice of (Ni,Mi, Ti) and (Nj ,Mj , Tj), we get

Pr [Xid ∈ Θ1] ≤ (µ− 1)qm
2n + (µ− 1)qmε ≤ 2(µ− 1)qmε,

where we used that ε ≥ 2−n (see Remark 1).

Condition (C-2). We consider any verification query (N ′j ,M ′j , T ′j) ∈ τv and upper
bound the probability that this condition is satisfied for this particular query. By definition
of the multiplicity, there are at most µ MAC queries (Ni,Mi, Ti) such that Ni = N ′j . Fix
any of these queries. We distinguish two cases:

• If the verification query comes after the MAC query, then since the distinguisher is
non-trivial, either Ti 6= T ′j , or Mi 6= M ′j . In the former case, the condition cannot be
satisfied, while in the latter case, the probability over the random draw of Kh that
HKh

(Mi) = HKh
(M ′j) is at most ε.

• If the MAC query comes after the verification query, then Ti is random and indepen-
dent from T ′j and the probability that Ti = T ′j is 2−n.

Since ε ≥ 2−n (see Remark 1), we see that in all cases the condition is met with probability
at most ε. Thus, by summing over every verification query, and every MAC query using
the same nonce as the verification query, one has

Pr [Xid ∈ Θ2] ≤ µqvε.

The result follows by a union bound over these conditions.
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We now analyze good transcripts and prove the following lemma.

Lemma 5. For any good transcript τ , one has

Pr [Xre = τ ]
Pr [Xid = τ ] ≥ 1− qv

2n − µ.

Proof. Let τ = (τm, τv,Kh) be a good transcript. Let L = {N1, . . . , Nqm} be the set of all
nonces used in MAC queries. Using any arbitrary order, we rewrite the set L as

L = {L1, . . . , Lr},

where r is the total number of distinct values in L. For i = 1, . . . , r, we let qi denote the
multiplicity of nonce Ni in τm. Note that qi ≤ µ for i = 1, . . . , r.

Since in the ideal world the MAC oracle is perfectly random and the verification always
rejects, one simply has

Pr[Xid = τ ] = 1
|Kh| · (2n)qm

. (6)

We must now lower bound the probability of getting τ in the real world. We say that a
tweakable permutation P̃ is compatible with τm if

∀i ∈ {1, . . . , qm}, NaT[P̃ ,H]Kh
(Ni,Mi) = Ti,

and compatible with τv if

∀i ∈ {1, . . . , qv}, NaT[P̃ ,H]Kh
(N ′i ,M ′i) 6= T ′i .

We simply say that P̃ is compatible with τ if it is compatible with τm and τv. We
let Comp(τm), Comp(τv), and Comp(τ) denote the set of tweakable permutations that
are compatible with respectively τm, τv, and τ . Then one can easily check (see for
example [CS14] for a detailed explanation) that

Pr[Xre = τ ] = 1
|Kh|

· Pr
[
P̃ ←$ Perm(W, n) : P̃ ∈ Comp(τ)

]
. (7)

We now define

λeq = {(N1, HKh
(M1), T1), . . . , (Nqm

, HKh
(Mqm

), Tqm
)}

λineq = {(N ′1, HKh
(M ′1), T ′1), . . . , (N ′qv

, HKh
(M ′qv

), T ′qv
)}.

Then, since τ is a good transcript, λeq is a permutation equalities list5 (otherwise condition
(C-1) defining bad transcripts would be met), and λineq is a permutation inequalities
list which is compatible with λeq (otherwise condition (C-2) would be met). Moreover,
|λeq| = qm and |λineq| = qv. Note that the event P̃ ∈ Comp(τ) is actually equivalent to
the event P̃ ∈ Comp(λ) where λ = (λeq, λineq). Using Lemma 3, one has

Pr
[
P̃ ∈ Comp(τ)

]
≥ 1∏r

i=1(2n)qi

(
1− qv

2n − µ

)
.

Combining this equation with Equation (6) and Equation (7), and using the fact that
qm =

∑r
i=1 qi, we get

Pr [Xre = τ ]
Pr [Xid = τ ] ≥

(
1− qv

2n − µ

)
·
r∏
i=1

(2n)qi

(2n)qi︸ ︷︷ ︸
≥1

≥ 1− qv
2n − µ.

5Refer to Section 2.4 for the definition of permutation (in)equalities lists.
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3.2 The Stateless Deterministic Construction HaT
Our second TBC-based construction is a stateless deterministic MAC called HaT (Hash-
as-Tweak). Given a TBC Ẽ : K ×W × {0, 1}n → {0, 1}n and two keyed hash functions
H : Kh × M → {0, 1}n and H ′ : K′h × M → W, we define a MAC with key space
K ×Kh ×K′h and message spaceM as

HaT[Ẽ,H,H ′]K,Kh,K′h
(M) = Ẽ

H′
K′

h

(M)

K (HKh
(M)).

Then the following result holds.
Theorem 2. LetM, W, K, Kh, and K′h be non-empty sets. Let Ẽ : K ×W × {0, 1}n →
{0, 1}n be a tweakable block cipher and let H : Kh ×M→ {0, 1}n and H ′ : K′h ×M→W
be two ε-AU hash functions. Let qm, qv, and t be integers such that qm < 2n. Then for
any (qm, qv, t)-adversary A against the sdMAC-security of HaT[Ẽ,H,H ′], there exists a
(qm + qv, t

′)-adversary A′ against the TPRP-security of Ẽ, where t′ = O(t+ (qm + qv)tH)
and tH is an upper bound on the time to compute H or H ′ on any message, such that

AdvsdMAC
HaT[Ẽ,H](A) ≤ AdvTPRP

Ẽ
(A′) + q2

mε
2 + qmqvε

2 + qv
2n − qm

.

Hence, the HaT construction is secure up to roughly qm ' ε−1 MAC queries and
qv ' min{2n, ε−2/qm} verification queries.

The remaining of this section is devoted to the proof of Theorem 2. Let us fix a
(qm, qv, t)-adversary A against the MAC-security of HaT[Ẽ,H,H ′].

The first step of the proof is standard and consists in replacing ẼK by a tweakable
permutation P̃ both in the MAC and in the verification oracles (in other words, we
replace the tweakable block cipher Ẽ by the perfect tweakable block cipher cipher Ẽ∗ whose
key space is the set of all tweakable permutations of {0, 1}n with tweak space N ). Let
HaT[Ẽ∗, H,H ′] denote the resulting construction. It is easy to show that there exists an
adversary A′ against the TPRP-security of Ẽ, making at most qm + qv oracle queries and
running in time at most O(t+ (qm + qv)tH), such that

AdvsdMAC
HaT[Ẽ,H,H′](A) ≤ AdvTPRP

Ẽ
(A′) + AdvsdMAC

HaT[Ẽ∗,H,H′](A). (8)

The next step is to find an upper bound for

AdvsdMAC
HaT[Ẽ∗,H,H′](A) = Pr

[
P̃ ←$ Perm(N , n), (Kh,K

′
h)←$ Kh ×K′h :

AHaT[P̃ ,H,H′]Kh,K′
h
,Ver[P̃ ,H,H′]Kh,K′

h forges
]
,

where, slightly overloading the notation, HaT[P̃ ,H,H ′]Kh,K′h
denotes the construction

HaT[Ẽ∗, H,H ′] instantiated with tweakable permutation P̃ and hashing keys (Kh,K
′
h)

and Ver[P̃ ,H,H ′]Kh,K′h
denotes the corresponding verification oracle. This is now a purely

information-theoretic problem, and we can follow the H-coefficients technique as explained
in Section 2.3.

Let us fix a non-trivial (qm, qv)-distinguisher D interacting either with the real world
(HaT[P̃ ,H,H ′]Kh,K′h

,Ver[P̃ ,H,H ′]Kh,K′h
) or with the ideal world (Rand,Rej). We let

Adv(D) = Pr
[
DHaT[P̃ ,H,H′]Kh,K′

h
,Ver[P̃ ,H,H′]Kh,K′

h = 1
]
− Pr

[
DRand,Rej = 1

]
.

Let τ = (τm, τv,Kh,K
′
h) denote the transcript of the attack, with

τm =
(
(M1, T1), . . . , (Mqm

, Tqm
)
)

τv =
(
(M ′1, T ′1), . . . , (M ′qv

, T ′qv
)
)
.
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Recall that Θ denotes the set of attainable transcripts and Xre, resp. Xid, the probability
distribution of the transcript τ induced by the real world, resp. the ideal world.

The remaining of the proof of Theorem 2 is structured as follows. First, we define bad
transcripts and upper bound their probability in the ideal world (Lemma 6). Then, we
analyze good transcripts and prove that they are almost as likely in the real and the ideal
world (Lemma 7). Combining Lemma 2 from Section 2.3 with Lemma 6 and Lemma 7
gives us an upper bound on D’s advantage, which by Equation (1) from Section 2.3 gives
us an upper bound on

AdvsdMAC
HaT[Ẽ∗,H,H′](A).

Theorem 2 follows easily by combining this upper bound with Equation (8).
We start by defining bad transcripts.

Definition 5. We say that an attainable transcript τ = (τm, τv,Kh,K
′
h) is bad if one of

these conditions is fulfilled:

(C-1) there exists two distinct MAC queries (Mi, Ti) and (Mj , Tj) such that H ′K′
h
(Mi) =

H ′K′
h
(Mj) and either HKh

(Mi) = HKh
(Mj) or Ti = Tj ;

(C-2) there exist a MAC query (Mi, Ti) ∈ τm and a verification query (M ′j , T ′j) ∈ τv such
that 

H ′K′
h
(Mi) = H ′K′

h
(M ′j)

HKh
(Mi) = HKh

(M ′j)
Ti = T ′j .

We let Θbad, resp. Θgood denote the set of bad, respectively good transcripts.

We now upper bound the probability to get a bad transcript in the ideal world.

Lemma 6. For any integers qm and qv, one has

Pr [Xid ∈ Θbad] ≤ q2
mε

2 + qmqvε
2.

Proof. Let Θi denote the set of attainable transcripts satisfying condition (C-i). Recall
that, in the ideal world, (Kh,K

′
h) is drawn independently from the queries transcript. We

are going to consider both conditions in turn.

Condition (C-1). Fix two distinct MAC queries (Mi, Ti) and (Mj , Tj). Then the
probability that H ′K′

h
(Mi) = H ′K′

h
(Mj) (over the draw of K ′h) is at most ε, the probability

that HKh
(Mi) = HKh

(Mj) (over the draw of Kh) is at most ε, and the probability that
Ti = Tj is at most 2−n. Summing over all pairs of distinct MAC queries,

Pr [Xid ∈ Θ1] ≤ q2
mε

2 · 2n + q2
mε

2

2 ≤ q2
mε

2,

where we used that ε ≥ 2−n (see Remark 1).

Condition (C-2). In order to upper bound the probability of obtaining bad transcripts
satisfying condition (C-2) in the ideal world, fix a MAC query (Mi, Ti) ∈ τm and a
verification query (M ′j , T ′j) ∈ τv. Since K ′h is drawn independently from the queries
transcript and H ′ is ε-AU, the probability that H ′K′

h
(Mi) = H ′K′

h
(M ′j) is upper bounded

by ε. We now distinguish two cases:

• If the verification query comes after the MAC query, then since the distinguisher is
non-trivial, either Ti 6= T ′j , or Mi 6= M ′j . In the former case, the condition cannot be
satisfied, while in the latter case, the probability over the random draw of Kh that
HKh

(Mi) = HKh
(M ′j) is at most ε.
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• If the MAC query comes after the verification query, then Ti is random and indepen-
dent from T ′j and the probability that Ti = T ′j is 2−n.

Since ε ≥ 2−n (see Remark 1), we see that in all cases the condition is met with probability
at most ε2. Thus, by summing over every verification query, and every MAC query using
the same nonce as the verification query, one has

Pr [Xid ∈ Θ2] ≤ qmqvε2.

The result follows by a union bound over the two conditions.

We now analyze good transcripts and prove the following lemma.

Lemma 7. For any good transcript τ , one has

Pr [Xre = τ ]
Pr [Xid = τ ] ≥ 1− qv

2n − qm
.

Proof. Let τ = (τm, τv,Kh,K
′
h) be a good transcript. Let L = {HK′

h
(M1), . . . ,HK′

h
(Mqm

)}
be the set of all the tweaks used in the MAC queries. Using an arbitrary order, we rewrite
the set L as

L = {L1, . . . , Lr},

where r is the total number of distinct values of L. For i = 1, . . . , r, we let qi denote the
number of MAC queries (M,T ) in τm such that HK′

h
(M) = Li.

Since in the ideal world the MAC oracle is perfectly random and the verification always
rejects, one simply has

Pr[Xid = τ ] = 1
|Kh| · |K′h| · (2n)qm

. (9)

We must now lower bound the probability of getting τ in the real world. We say that
a tweakable permutation P̃ is compatible with τm if

∀i ∈ {1, . . . , qm}, P̃ (HK′
h
(Mi), HKh

(Mi)) = Ti,

and compatible with τv if

∀i ∈ {1, . . . , qv}, P̃ (HK′
h
(M ′i), HKh

(M ′i)) 6= T ′i .

We simply say that P̃ is compatible with τ if it is compatible with τm and τv. We
let Comp(τm), Comp(τv), and Comp(τ) denote the set of tweakable permutations that
are compatible with respectively τm, τv, and τ . Then one can easily check (see for
example [CS14] for a detailed explanation) that

Pr[Xre = τ ] = 1
|Kh| · |K′h|

· Pr
[
P̃ ←$ Perm(W, n) : P̃ ∈ Comp(τ)

]
. (10)

We now define

λeq = {(H ′K′
h
(M1), HKh

(M1), T1), . . . , (H ′K′
h
(Mqm

), HKh
(Mqm

), Tqm
)}

λineq = {(H ′K′
h
(M ′1), HKh

(M ′1), T ′1), . . . , (H ′K′
h
(M ′qv

), HKh
(M ′qv

), T ′qv
)}.

Then, since τ is a good transcript, λeq is a permutation equalities list (otherwise condition
(C-1) defining bad transcripts would be met), and λineq is a permutation inequalities
list which is compatible with λeq (otherwise condition (C-2) would be met). Moreover,
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|λeq| = qm and |λineq| = qv. Note that the event P̃ ∈ Comp(τ) is actually equivalent to
the event P̃ ∈ Comp(λ) where λ = (λeq, λineq). Using Lemma 3, one has

Pr
[
P̃ ∈ Comp(τ)

]
≥ 1∏r

i=1(2n)qi

(
1− qv

2n − qm

)
.

Combining this equation with Equation (9) and Equation (10), and using the fact that
qm =

∑r
i=1 qi, we get

Pr [Xre = τ ]
Pr [Xid = τ ] ≥

(
1− qv

2n − qm

)
·
r∏
i=1

(2n)qi

(2n)qi︸ ︷︷ ︸
≥1

≥ 1− qv
2n − qm

.

4 Block Cipher-Based Constructions
The two constructions NaT and HaT of Section 3 follow the traditional UHF-then-PRF
paradigm: first, the message is hashed with a UHF, and then a keyed transformation based
on a TBC is applied. In this section, we give variants of these constructions where the
final transformation uses a keyless transformation based on a block cipher. As a result, the
MAC key of these construction only consists of the key(s) of the underlying universal hash
function(s). The keyless final mapping must obviously be pre-image resistant (otherwise the
adversary can recover the output of the UHF from the tag, which might reveal the hashing
key, e.g., for polynomial-based universal hashing). For the nonce-based construction NaK,
since the nonce is known from the adversary, this implies that we need to use the block
cipher in Davies-Meyer mode. Technically, we also need to require that the universal hash
functions be almost uniform. The security proofs for these two variants are done in the
ideal cipher model.

As a warm-up, the reader might want to check that the construction

FKh
(M) = G(HKh

(M)),

where H : Kh ×M→ {0, 1}m is ε-AU and ε′-almost uniform and G : {0, 1}m → {0, 1}n
is some fixed function, is a PRF provably secure in the Random Oracle model for G, as
proved in Appendix B.

4.1 The Nonce-Based Construction NaK
We start with the block-cipher-based variant of NaT named NaK (Nonce-as-Key). Given a
block cipher E with key space K and message space {0, 1}n and a keyed hash function H
with key space Kh, domainM, and range {0, 1}n, we define a MAC with key space Kh,
nonce space K, and message spaceM as

NaK[E,H]Kh
(N,M) = EN (HKh

(M))⊕HKh
(M).

Our security result is the following one.

Theorem 3. Let M, K, and Kh be non-empty sets. Let E : K × {0, 1}n → {0, 1}n be a
block cipher and H : Kh ×M→ {0, 1}n be an ε-AU and ε′-almost uniform hash function.
Let µ, qe, qm, and qv be integers such that qe, qm, qv ≤ 2n, and µ ≤ min{qm, 2n − 1− qe}.
Then, in the ideal cipher model for E, for any (µ, qe, qm, qv)-adversary A against the
nMAC-security of NaK[E,H], one has

AdvnMAC
NaK[E,H](A) ≤ 2(µ− 1)qmε+ qv

2n − µ− qe
+ µqvε+ nqvε

′

+
(

qe
2n − qe + 1

)n+1
+ 2µqeε′.
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Proof. Deferred to Appendix C.

Hence, in the nonce-respecting case (µ = 1), the NaK construction is secure up
to qv ' min{ε−1, (ε′)−1/n} verification queries and qe ' (ε′)−1 ideal cipher queries,
irrespectively of the number of MAC queries. When A can freely choose nonces (i.e.,
µ = qm), then the NaK construction is secure up to the birthday bound. The security
bound degrades linearly with the maximal multiplicity µ of nonces.

As a corollary, we obtain the following for the security of NaK as a randomized MAC.
Corollary 2. LetM, K, and Kh be non-empty sets. Let E : K × {0, 1}n → {0, 1}n be a
block cipher and H : Kh ×M→ {0, 1}n be an ε-AU and ε′-almost uniform hash function.
Let qe, qm,and qv be integers such that qe, qm, qv ≤ 2n and qe < 2n − n. Then, in the
ideal cipher model for E, for any (qe, qm, qv)-adversary A against the rMAC-security of
NaK[E,H], one has

AdvrMAC
NaK[E,H](A) ≤ 2(n− 1)qmε+ qv

2n − n− qe
+ nqvε+ nqvε

′

+
(

qe
2n − qe + 1

)n+1
+ 2nqeε′ +

qn+1
m

(2|K|)n .

Proof. This follows by combining Lemma 1 with µ0 = n and Theorem 3.

4.2 The Stateless Deterministic Construction HaK
The block cipher-based variant of HaT is a stateless deterministic MAC called HaK (Hash-
as-Key). Given a block cipher E : K × {0, 1}n → {0, 1}n and two keyed hash functions
H : Kh ×M→ {0, 1}n and H ′ : K′h ×M→ K, we define a MAC with key space Kh ×K′h
and message spaceM as

HaK[E,H,H ′]Kh,K′h
(M) = EH′

K′
h

(M)(HKh
(M)).

Our security result is the following one.
Theorem 4. LetM, K, Kh, and K′h be non-empty sets. Let E : K×{0, 1}n → {0, 1}n be
a block cipher and let H : Kh ×M→ {0, 1}n and H ′ : K′h ×M→ K be two ε-AU and ε′-
almost uniform hash functions. Let qe, qm, and qv be integers such that qm+qe < 2n. Then,
in the ideal cipher model for E, for any (qe, qm, qv)-adversary A against the sdMAC-security
of HaK[E,H,H ′], one has

AdvsdMAC
HaK[E,H](A) ≤ q2

mε
2 + qmqvε

2 + qmqe(ε′)2 +
(qm

2n
)n+1

+ nqeε
′

+ qvqe(ε′)2 + qv
2n − qm − qe

.

Proof. Deferred to Appendix D.

5 Security of Truncated MACs
In this section, we analyze how tag truncation affects the security of MACs. Let F :
K × (N×)M→ {0, 1}n be a keyed function with key space K, message spaceM, range
T = {0, 1}n and potentially nonce space N (the reasoning below applies both to SD-MACs
and nonce-based MACs). For any 1 ≤ s ≤ n−1, let truncs : {0, 1}n → {0, 1}s be a function
that takes s bits of the input in any way (e.g., the leftmost s bits of an n-bit input). Let

Fs
def= truncs ◦ F

denote a truncated variant of F that returns only s bits of the original tag.
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Lemma 8. If there exists a function δ of qm, qv, t, and potentially µ, such that, for any
((µ), qm, qv, t)-adversary A against F ,

Advsd/nMAC
F (A) ≤ δ((µ), qm, qv, t),

then, for any ((µ), qm, qv, t)-adversary A′ against Fs, one has

Advsd/nMAC
Fs

(A′) ≤ δ((µ), qm, 2n−sqv, t).

Proof. Given a ((µ), qm, qv, t)-adversary A′ against Fs, one can use it as a subroutine to
construct a ((µ), qm, 2n−sqv, t)-adversary A against F as follows:

• A faithfully relays each MAC query made by A′ to its MAC oracle; if A receives T
from the oracle as the answer to this query, then A sends T ′ = truncs(T ) to A′;

• If A′ makes a verification query ((N ′),M ′, T ′), then A makes 2n−s verification queries
((N ′),M ′, T ) for all n-bit T such that truncs(T ) = T ′.

Clearly, A is successful at least as often as A, hence one has

Advsd/nMAC
Fs

(A′) ≤ Advsd/nMAC
F (A).

As an example, applying this analysis to HaT, we obtain the following theorem.

Theorem 5. For any 1 ≤ s ≤ n− 1, let

HaTs[Ẽ,H,H ′] = truncs ◦ HaT[Ẽ,H,H ′]

denote an s-bit truncated variant of HaT[Ẽ,H,H ′], where Ẽ : K ×W × {0, 1}n → {0, 1}n
is a tweakable block cipher and H : Kh ×M → {0, 1}n and H ′ : K′h ×M → W are
ε-AU hash functions. Let qm, qv, and t be integers such that qm < 2n. Then for
any (qm, qv, t)-adversary A against the sdMAC-security of HaTs[Ẽ,H,H ′], there exists a
(qm + qv, t

′)-adversary A′ against the TPRP-security of Ẽ, where t′ = O(t+ (qm + qv)tH)
and tH is an upper bound on the time to compute H or H ′ on any message, such that

AdvsdMAC
HaTs[Ẽ,H,H′](A) ≤ AdvTPRP

Ẽ
(A′) + 2q2

mε
2 + 2n−sqmqvε2 + 2n−sqv

2n − qm
.

Assuming ε ' `2−n, where ` is the maximal length of messages in n-bit blocks, the
HaTs construction is secure up to qm` ' 2n blocks in MAC queries and qv ' 2s verification
queries, as long as qmqv`2 is small compared to 2n+s. Similar results can be obtained for
nonce-based, randomized and/or ideal cipher-based MACs.
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A Proof of Lemma 2
Let Θ′ be the set of all transcripts τ such that

max{Pr [Xid = τ ] ,Pr [Xre = τ ]} > 0.

Remark that the set Θ of attainable transcripts is included in (and in our case, different
from) Θ′.

Let Oid, resp. Ore denote the oracle from the ideal, resp. the real world. Recall that

Adv(D) =
∣∣Pr
[
DOid = 1

]
− Pr

[
DOre = 1

]∣∣
=
∣∣Pr
[
DOid = 0

]
− Pr

[
DOre = 0

]∣∣ .
Moreover, the distinguisher’s output is a deterministic function of the transcript. If we let
Θ′i denote the subset of Θ′ such that D outputs i, for i = 0, 1, it is easy to see that

Pr
[
DOid = i

]
=
∑
τ∈Θ′

i

Pr [Xid = τ ] and

Pr
[
DOre = i

]
=
∑
τ∈Θ′

i

Pr [Xre = τ ]

for i = 0, 1. Thus

Adv(D) =

∣∣∣∣∣∣
∑
τ∈Θ′1

(Pr [Xre = τ ]− Pr [Xid = τ ])

∣∣∣∣∣∣
≤
∑
τ∈Θ′1

|Pr [Xre = τ ]− Pr [Xid = τ ] |.

Similarly,
Adv(D) ≤

∑
τ∈Θ′0

|Pr [Xre = τ ]− Pr [Xid = τ ] |,

which implies that

Adv(D) ≤ 1
2
∑
τ∈Θ′

|Pr [Xre = τ ]− Pr [Xid = τ ] | = ‖Xre −Xid‖

since Θ′ = Θ′0 tΘ′1. Moreover, one has

‖Xre −Xid‖ =
∑
τ∈Θ′

Pr[Xid=τ ]>Pr[Xre=τ ]

(Pr [Xid = τ ]− Pr [Xre = τ ]) .

For every transcript τ appearing in this sum, one has Pr [Xid = τ ] > Pr [Xre = τ ], which
means, in particular, that τ is an attainable transcript. Thus one has

‖Xre −Xid‖ =
∑
τ∈Θ

Pr[Xid=τ ]>Pr[Xre=τ ]

(Pr [Xid = τ ]− Pr [Xre = τ ])

=
∑
τ∈Θ

Pr[Xid=τ ]>Pr[Xre=τ ]

Pr [Xid = τ ]
(

1− Pr [Xre = τ ]
Pr [Xid = τ ]

)

≤
∑

τ∈Θgood

Pr [Xid = τ ] ε1 +
∑

τ∈Θbad

Pr [Xid = τ ]

≤ ε1 + ε2.
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B The UHF-then-RO Construction
We prove the following theorem.

Theorem 6. Let H : Kh ×M→ {0, 1}m be a ε-AU and ε′-almost uniform hash function
and G : {0, 1}m → {0, 1}n. Let F : Kh ×M→ {0, 1}n be the keyed function defined as

FKh
(M) = G(HKh

(M)).

Then, in the random oracle for G, for any adversary A making at most q queries to F and
q′ queries to G, one has

AdvPRF
F (A) ≤ q2ε

2 + qq′ε′.

Proof. The adversary is trying to distinguish FKh
for a random key Kh from a uniformly

random function Rand :M→ {0, 1}n. Let τ = (τf , τg,Kh) be the transcript of the attack,
where

τf =
(
(M1, T1), . . . , (Mq, Tq)

)
τg =

(
(X1, Y1), . . . , (Xq′ , Yq′

)
are respectively the queries of the adversary to F and G. (As usual, we provide the real or
a dummy key to the distinguisher at the end of the attack, depending on which oracle it is
interacting with.)

We say that a transcript is bad if there exists two distinct queries (Mi, Ti), (Mj , Tj) ∈ τf
such that HKh

(Mi) = HKh
(Mj), or if there exists (M,T ) ∈ τf and (X,Y ) ∈ τg such that

HKh
(M) = X. By respectively the ε-AU and ε′-almost uniformity of H, and since in

the ideal world Kh is drawn independently from (τf , τg), the probability to obtain a bad
transcript in the ideal world is at most

q2ε

2 + qq′ε′.

Fix now any good transcript τ = (τf , τg,Kh). The probability to obtain τ in the ideal
world is

1
|Kh|

· Pr
F

[F (Mi) = Ti, i ∈ {1, . . . , q}] · Pr
G

[G(Xj) = Yj , j ∈ {1, . . . , q′}]

= 1
|Kh| · (2n)q+q′ ,

while in the real world it is
1
|Kh|

· Pr
G

[G(HKh
(Mi)) = Ti, i ∈ {1, . . . , q} and G(Xj) = Yj , j ∈ {1, . . . , q′}]

= 1
|Kh| · (2n)q+q′ ,

since by definition of a good transcript, all values HKh
(Mi), i = 1, . . . , q and Xj , j =

1, . . . , q′ are distinct. Hence the ratio is 1 and Lemma 2 allows to conclude.

C Proof of Theorem 3
Following Section 2.3, let us fix a non-trivial (µ, qe, qm, qv)-distinguisher D interacting
either with the real world (E,NaK[E,H]Kh

,Ver[E,H]Kh
) for a uniformly random block

cipher E and a random hashing key Kh, or with the ideal world (E,Rand,Rej). We let

Adv(D) = Pr
[
DE,NaK[E,H]Kh

,Ver[E,H]Kh = 1
]
− Pr

[
DE,Rand,Rej = 1

]
.
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Let τ = (τe, τmτv,Kh) denote the transcript of the attack, with

τe =
(
(K1, X1, Y1), . . . , (Kqe , Xqe , Yqe)

)
τm =

(
(N1,M1, T1), . . . , (Nqm ,Mqm , Tqm)

)
τv =

(
(N ′1,M ′1, T ′1), . . . , (N ′qv

,M ′qv
, T ′qv

)
)
.

Recall that Θ denotes the set of attainable transcripts and Xre, resp. Xid, the probability
distribution of the transcript τ induced by the real world, resp. the ideal world.

The remaining of the proof of Theorem 3 is structured as follows. First, we define bad
transcripts and upper bound their probability in the ideal world (Lemma 9). Then, we
analyze good transcripts and prove that they are almost as likely in the real and the ideal
world (Lemma 10). Theorem 3 follows easily by combining Equation (1) and Lemma 2
from Section 2.3 with Lemma 9 and Lemma 10.

Definition 6. We say that an attainable transcript τ = (τe, τm, τv,Kh) is bad if one of
these conditions is fulfilled:

(C-1) there exists two distinct MAC queries (Ni,Mi, Ti) and (Nj ,Mj , Tj) such that Ni =
Nj and either HKh

(Mi) = HKh
(Mj) or Ti ⊕HKh

(Mi) = Tj ⊕HKh
(Mj);

(C-2) there exists an IC query (Ki, Xi, Yi) ∈ τe and a MAC query (Nj ,Mj , Tj) ∈ τm such
that Ki = Nj and either Xi = HKh

(Mj) or Yi = Tj ⊕HKh
(Mj);

(C-3) there exists a MAC query (Ni,Mi, Ti) ∈ τm and a verification query (N ′j ,M ′j , T ′j) ∈
τv such that 

Ni = N ′j
HKh

(Mi) = HKh
(M ′j)

Ti = T ′j ;

(C-4) there exists an IC query (Ki, Xi, Yi) ∈ τe and a verification query (N ′j ,M ′j , T ′j) ∈ τv
such that 

Ki = N ′j
Xi = HKh

(M ′j)
Yi = T ′j ⊕HKh

(M ′j).

We let Θbad, resp. Θgood denote the set of bad, respectively good transcripts.

Note that the third and fourth conditions can only happen in the ideal world since in
the real world, if e.g., N = N ′, T = T ′, and HKh

(M) = HKh
(M ′), the verification oracle

should return 1 on query (N ′,M ′, T ′) (which is impossible for any attainable transcript).
We now upper bound the probability to get a bad transcript in the ideal world.

Lemma 9. For any integers qe, qm and qv such that qe ≤ 2n, one has

Pr [Xid ∈ Θbad] ≤ 2(µ− 1)qmε+ µqvε+ nqvε
′ +
(

qe
2n − qe + 1

)n+1
+ 2µqeε′.

Proof. We let Θi denote the set of attainable transcripts satisfying condition (C-i). Recall
that, in the ideal world, Kh is drawn independently from the queries transcript, and that
E is independent from Rand. We are going to consider the four conditions in turn.
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Condition (C-1). Fix a MAC query (Ni,Mi, Ti). There are exactly qm possible choices
for this query. Then we fix another MAC query (Nj ,Mj , Tj) such that Ni = Nj (there
are at most µ− 1 possible choices). The probability, over the random draw of Ti and Tj
that Ti ⊕HKh

(Mi) = Tj ⊕HKh
(Mj) is 2−n, and the probability, over the random draw

of Kh, that HKh
(Mi) = HKh

(Mj), is at most ε. Summing over every possible choice of
(Ni,Mi, Ti) and (Nj ,Mj , Tj), we get

Pr [Xid ∈ Θ1] ≤ (µ− 1)qm
2n + (µ− 1)qmε ≤ 2(µ− 1)qmε,

where we used that ε ≥ 2−n (see Remark 1).

Condition (C-2). Fix an ideal cipher query (Ki, Xi, Yi) ∈ τe. Then, since D cannot
repeat a nonce in its MAC queries more than µ times, there are at most µ MAC queries
(Nj ,Mj , Tj) ∈ τm such that Ki = Nj . Fix any of these queries. Then, the probability,
over the random draw of Kh, that either Xi = HKh

(Mj) or Yi = Tj ⊕HKh
(Mj) is lower

than 2ε′ thanks to the ε′-almost uniformity of H. Summing over every possible choice of
queries, we get

Pr [Xid ∈ Θ2] ≤ 2µqeε′.

Condition (C-3). This condition is exactly the same as condition (C-2) in Lemma 4,
hence by exactly the same proof one has

Pr [Xid ∈ Θ3] ≤ µqvε.

Condition (C-4). In order to upper bound the probability that condition (C-4) is
fulfilled, we need to upper bound the number of ideal cipher queries (Ki, Xi, Yi) ∈ τe
satisfying Ki = N ′j and HKh

(M ′j) = Xi = Yi⊕T ′j , for a verification query (N ′j ,M ′j , T ′j) ∈ τv.
In particular, this means that such a query must satisfy Xi⊕Yi = T ′j . The first step of our
proof is to upper bound the probability, over the random draw of E, that there exists n+ 1
distinct ideal cipher queries (Ki1 , Xi1 , Yi1), . . . , (Kin+1 , Xin+1 , Yin+1) such that Xil ⊕ Yil is
constant for l = 1, . . . , n+ 1. Let us define

α(E) = max
a∈{0,1}n

∣∣{i ∈ {1, . . . , qe} : Xi ⊕ Yi = a
}∣∣.

We are going to upper bound the probability, over the random choice of E, that α(E) ≥ n+1.
Fix any n+ 1-tuple of indexes (i1, . . . , in+1) such that 1 ≤ i1 < · · · < in+1 ≤ qe. Then one
has

Pr
[
Xi1 ⊕ Yi1 = · · · = Xin+1 ⊕ Yin+1

]
≤ 1

(2n − qe + 1)n .

This can easily be seen as follows: if query (Kij , Xij , Yij ) is an encryption (resp. decryption)
query, then Yij (resp. Xij ) is chosen uniformly at random in a set of size at least 2n−qe+1,
and the probability to have Xij ⊕ Yij = Xi1 ⊕ Yi1 is lower than 1/(2n − qe + 1), for every
j = 2, . . . , n+ 1. Summing over every such possible tuple of queries, one has

Pr [α(E) ≥ n+ 1] = Pr
[
∃ 1 ≤ i1 < · · · < in+1 ≤ qe : Xi1 ⊕ Yi1 = · · · = Xin+1 ⊕ Yin+1

]
≤ (qe)n+1

(n+ 1)!(2n − qe + 1)n ≤
(

qe
2n − qe + 1

)n+1
,

where we used that (n + 1)! ≥ 2n ≥ 2n − qe + 1. Now assume that α(E) ≤ n and
fix any verification query (N ′j ,M ′j , T ′j) ∈ τv. There are at most n ideal cipher queries
(Ki, Xi, Yi) ∈ τe satisfying Xi ⊕ Yi = T ′j . Fix any of these queries. The probability, over
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the random choice of Kh, that HKh
(M ′j) = Xi, is lower than ε′. Thus, by summing over

every possible choice of queries, one has

Pr [Xid ∈ Θ4] ≤ Pr [α(E) ≥ n+ 1] + Pr [α(E) ≤ n] (nqvε′)

≤
(

qe
2n − qe + 1

)n+1
+ nqvε

′.

Note that while this reasoning assumes that qe ≥ n+ 1, the bound still holds when qe ≤ n.
The result follows by a union bound over these conditions.

We now analyze good transcripts and prove the following lemma.

Lemma 10. For any good transcript τ , one has

Pr [Xre = τ ]
Pr [Xid = τ ] ≥ 1− qv

2n − µ− qe
.

Proof. Let τ = (τe, τm, τv,Kh) be a good transcript. Let L = {K1, . . . ,Kqe , N1, . . . , Nqm}
be the set of every key or nonce used in the ideal cipher or MAC queries. Using an arbitrary
order, we rewrite the set L as

L = {L1, . . . , Lr},
where r is the total number of distinct values in L. For i = 1, . . . , r, we let qi denote the
number of ideal cipher queries in τe using Li as a key and q′i the number of MAC queries
using Li as a nonce.

Since in the ideal world the ideal cipher is perfectly random and independent from
the other oracles, the MAC oracle is perfectly random, and the verification oracle always
rejects, one simply has

Pr[Xid = τ ] = 1

|Kh| · (2n)qm ·
r∏
i=1

(2n)qi

= 1
|Kh|

r∏
i=1

1
(2n)q′i(2n)qi

, (11)

since qe =
∑r
i=1 qi and qm =

∑r
i=1 q

′
i. We must now lower bound the probability of getting

τ in the real world. We say that a block cipher E is compatible with τe if

∀i ∈ {1, . . . , qe}, EKi
(Xi) = Yi,

compatible with τm if

∀i ∈ {1, . . . , qm}, NaK[E,H]Kh
(Ni,Mi) = Ti,

and compatible with τv if

∀i ∈ {1, . . . , qv}, NaK[E,H]Kh
(N ′i ,M ′i) 6= T ′i .

We simply say that E is compatible with τ if it is compatible with τe, τm and τv. We let
Comp(τe, τm), Comp(τv), and Comp(τ) denote the set of block ciphers that are compatible
with respectively τe and τm, τv, and τ . Then one can easily check (see for example [CS14]
for a detailed explanation) that

Pr[Xre = τ ] = 1
|Kh|

· Pr [E ←$ Perm(K, n) : E ∈ Comp(τ)] . (12)

We now define

λeq = {(K1, X1, Y1), . . . , (Kqe
, Xqe

, Yqe
)}

∪ {(N1, HKh
(M1), T1 ⊕HKh

(M1)), . . . , (Nqm
, HKh

(Mqm
), Tqm

⊕HKh
(Mqm

))},
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and

λineq = {(N ′1, HKh
(M ′1), T ′1 ⊕HKh

(M ′1)), . . . , (N ′qv
, HKh

(M ′qv
), T ′qv

⊕HKh
(M ′qv

))}.

Then, since τ is a good transcript, λeq is a permutation equalities list (as otherwise
condition (C-1) or (C-2) would be fulfilled), and λineq is a permutation inequalities list
which is compatible with λeq (as otherwise condition (C-3) or (C-4) would be fulfilled).
Moreover |λeq| = qm + qe, |λineq| = qv, and for i = 1, . . . , r, Li appears in λeq exactly
qi + q′i ≤ qe + µ times. Note that the event E ∈ Comp(τ) is actually equivalent to the
event E ∈ Comp(λ) where λ = (λeq, λineq). Using Lemma 3, one has

Pr [E ∈ Comp(τ)] ≥ 1∏r
i=1(2n)qi+q′i

(
1− qv

2n − µ− qe

)
.

Combining this equation with Equation (11) and Equation (12), we get

Pr [Xre = τ ]
Pr [Xid = τ ] ≥

(
1− qv

2n − µ− qe

)
·
r∏
i=1

(2n)q′i(2n)qi

(2n)qi+q′i︸ ︷︷ ︸
≥1

≥ 1− qv
2n − µ− qe

.

D Proof of Theorem 4
Following Section 2.3, let us fix a non-trivial (qe, qm, qv)-distinguisher D interacting either
with the real world (E,HaK[E,H,H ′]Kh,K′h

,Ver[E,H,H ′]Kh,K′h
) for a uniformly random

block cipher E and independent random hashing keys Kh and K ′h, or with the ideal world
(E,Rand,Rej), making at most qe queries to its left (ideal cipher) oracle, at most qm queries
to its middle (MAC) oracle and at most qv queries to its right (verification) oracle, and
outputting a single bit. We let

Adv(D) = Pr
[
DE,HaK[E,H,H′]Kh,K′

h
,Ver[E,H,H′]Kh,K′

h = 1
]
− Pr

[
DE,Rand,Rej = 1

]
.

Let τ = (τe, τm, τv,Kh,K
′
h) be the transcript of the attack, where

τe =
(
(K1, X1, Y1), . . . , (Kqe , Xqe , Yqe)

)
τm =

(
(M1, T1), . . . , (Mqm , Tqm)

)
τv =

(
(M ′1, T ′1), . . . , (M ′qv

, T ′qv
)
)
.

As usual, we let Θ denote the set of attainable transcripts, and Xre, resp. Xid, the
probability distribution of the transcript τ induced by the real world, resp. the ideal world.
As in Appendix C, Theorem 4 follows easily by combining Equation (1) and Lemma 2
from Section 2.3 with Lemma 11 and Lemma 12 proven below.

We start by defining bad transcripts.

Definition 7. We say that an attainable transcript τ = (τe, τm, τv,Kh,K
′
h) is bad if one

of these conditions is fulfilled:

(C-1) there exists two distinct MAC queries (Mi, Ti) and (Mj , Tj) such that H ′K′
h
(Mi) =

H ′K′
h
(Mj) and either HKh

(Mi) = HKh
(Mj) or Ti = Tj ;

(C-2) there exists an IC query (Ki, Xi, Yi) ∈ τe and a MAC query (Mj , Tj) ∈ τm such
that Ki = H ′K′

h
(Mj) and either Xi = HKh

(Mj) or Yi = Tj ;
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(C-3) there exist a MAC query (Mi, Ti) ∈ τm and a verification query (M ′j , T ′j) ∈ τv such
that 

H ′K′
h
(Mi) = H ′K′

h
(M ′j)

HKh
(Mi) = HKh

(M ′j)
Ti = T ′j .

(C-4) there exist an IC query (Ki, Xi, Yi) ∈ τe and a verification query (M ′j , T ′j) ∈ τv such
that 

Ki = H ′K′
h
(M ′j)

Xi = HKh
(M ′j)

Yi = T ′j ;

We let Θbad, resp. Θgood denote the set of bad, respectively good transcripts.

We now upper bound the probability to get a bad transcript in the ideal world.

Lemma 11. For any integers qe, qm and qv, one has

Pr [Xid ∈ Θbad] ≤ q2
mε

2 + qmqe(ε′)2 +
(qm

2n
)n+1

+ nqeε
′ + qmqvε

2 + qvqe(ε′)2.

Proof. Let Θi denote the set of attainable transcripts satisfying condition (C-i). Recall
that, in the ideal world, (Kh,K

′
h) is drawn independently from the queries transcript. We

are going to consider each condition in turn.

Condition (C-1). This condition is exactly the same as condition (C-1) in Lemma 6,
hence by exactly the same proof one has

Pr [Xid ∈ Θ1] ≤ q2
mε

2.

Condition (C-2). The probability that there exists an IC query (Ki, Xi, Yi) ∈ τe and a
MAC query (Mj , Tj) ∈ τm such that Ki = H ′K′

h
(Mj) and Xi = HKh

(Mj) (over the draw
of Kh and K ′h) is at most qmqe(ε′)2. We now upper bound the probability that there exists
an IC query (Ki, Xi, Yi) ∈ τe and a MAC query (Mj , Tj) ∈ τm such that Ki = H ′K′

h
(Mj)

and Yi = Tj . Let us denote α(τm) the maximal multiplicity of any tag in the MAC queries
transcript, i.e.,

α(τm) = max
T∈{0,1}n

∣∣{j ∈ {1, . . . , qm} : Tj = T
}∣∣.

Then, over the random draw of the Tj ’s, one has

Pr [α(τm) ≥ n+ 1] = Pr
[
∃ 1 ≤ i1 < · · · < in+1 ≤ qm : Ti1 = · · · = Tin+1

]
≤ (qm)n+1

(n+ 1)!(2n)n ≤
(qm

2n
)n+1

,

where we used that (n+ 1)! ≥ 2n. Now assume that α(τm) ≤ n. Then there are at most
nqe pairs of ideal cipher/MAC queries ((Ki, Xi, Yi), (Mj , Tj)) such that Yi = Tj and for
each such pair, Ki = H ′K′

h
(Mj) with probability at most ε′ over the random choice of K ′h.

Hence,

Pr [Xid ∈ Θ2] ≤ qmqe(ε′)2 + Pr [α(τm) ≥ n+ 1] + Pr [α(τm) ≤ n] (nqeε′)

≤ qmqe(ε′)2 +
(qm

2n
)n+1

+ nqeε
′.
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Condition (C-3). This condition is exactly the same as condition (C-2) in Lemma 6,
hence by exactly the same proof one has

Pr [Xid ∈ Θ3] ≤ qmqvε2.

Condition (C-4). Fix an ideal cipher query (Ki, Xi, Yi) ∈ τe and a verification query
(M ′j , T ′j) ∈ τv. Since in the ideal world Kh and K ′h are drawn independently from the
queries transcript and H and H ′ are ε′-almost uniform, the probability that Ki = H ′K′

h
(M ′j)

and Xi = HKh
(M ′j) is upper bounded by (ε′)2 (just ignoring the condition Yi = T ′j), and

hence
Pr [Xid ∈ Θ4] ≤ qvqe(ε′)2.

The result follows by a union bound over these conditions.

We now analyze good transcripts and prove the following lemma.

Lemma 12. For any good transcript τ , one has

Pr [Xre = τ ]
Pr [Xid = τ ] ≥ 1− qv

2n − qm − qe
.

Proof. Let τ = (τe, τm, τv,Kh,K
′
h) be a good transcript. Let

L = {K1, . . . ,Kqe
, H ′K′

h
(M1), . . . ,H ′K′

h
(Mqm

)}

be the set of all the keys used in the ideal cipher or MAC queries. Using an arbitrary
order, we rewrite the set L as

L = {L1, . . . , Lr},

where r is the total number of distinct values in L. For i = 1, . . . , r, we let qi denote the
number of ideal cipher queries (K,X, Y ) in τe such that K = Li and q′i the number of
MAC queries (M,T ) in τm such that HK′

h
(M) = Li.

Since in the ideal world the ideal cipher is perfectly random and independent from the
other oracles, the MAC oracle is perfectly random, and the verification always rejects, one
simply has

Pr[Xid = τ ] = 1

|Kh| · |K′h| · (2n)qm ·
r∏
i=1

(2n)qi

= 1
|Kh| · |K′h|

r∏
i=1

1
(2n)q′i(2n)qi

, (13)

since qm =
∑r
i=1 q

′
i. We must now lower bound the probability of getting τ in the real

world. We say that a block cipher E is compatible with τm if

∀i ∈ {1, . . . , qm}, HaK[E,H]Kh,K′h
(Mi) = Ti,

compatible with τe if
∀i ∈ {1, . . . , qe}, EKi

(Xi) = Yi,

and compatible with τv if

∀i ∈ {1, . . . , qv}, HaK[E,H]Kh,K′h
(M ′i) 6= T ′i .

We simply say that E is compatible with τ if it is compatible with τe, τm and τv. We let
Comp(τe, τm), Comp(τv), and Comp(τ) denote the set of block ciphers that are compatible
with respectively τe and τm, τv, and τ . Then one can easily check that

Pr[Xre = τ ] = 1
|Kh| · |K′h|

· Pr [E ←$ Perm(K, n) : E ∈ Comp(τ)] . (14)
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We now define

λeq = {(K1, X1, Y1), . . . , (Kqe , Xqe , Yqe)} ∪
qm⋃
i=1
{(H ′K′

h
(Mi), HKh

(Mi), Ti)},

and

λineq =
qv⋃
i=1
{(H ′K′

h
(M ′i), HKh

(M ′i), T ′i )}.

Then, since τ is a good transcript, λeq is a permutation equalities list (as otherwise
condition (C-1) or (C-2) would be fulfilled) and λineq is a permutation inequalities list
which is compatible with λeq (as otherwise condition (C-3) or (C-4) would be fulfilled).
Moreover |λeq| = qm + qe, |λineq| = qv, and for i = 1 . . . , r, key Li appears in λeq exactly
qi + q′i ≤ qe + qm times. Note that the event E ∈ Comp(τ) is actually equivalent to the
event E ∈ Comp(λ) where λ = (λeq, λineq). Using Lemma 3, one has

Pr [E ∈ Comp(τ)] ≥ 1∏r
i=1(2n)qi+q′i

(
1− qv

2n − qm − qe

)
.

Combining this with Equation (13) and Equation (14), we get

Pr [Xre = τ ]
Pr [Xid = τ ] ≥

(
1− qv

2n − qm − qe

)
·
r∏
i=1

(2n)q′i(2n)qi

(2n)qi+q′i︸ ︷︷ ︸
≥1

≥ 1− qv
2n − qm − qe

.
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