

Tweakable Blockciphers for Efficient Authenticated Encryptions with Beyond the Birthday-Bound Security

Yusuke Naito

Mitsubishi Electric Corporation, Japan

FSE 2018

March 6, 2018

- Goal: design blockcipher-based AEAD schemes (authenticated encryption with associated data)
 - highly efficient: a blockcipher is called once for each data block.
 - highly secure: beyond-birthday-bound (BBB) security.

XKX

- a tweakable blockcipher (TBC) from a (classical) blockcipher.
- offers highly efficient and BBB-secure AEAD schemes.

Comparison

AEAD Schemes	Highly Efficient	BBB Security
OCB1, OCB2, OCB3 (Rogaway et al.) OTR (Minematsu)	Yes	No
XKX-based AEAD schemes	Yes	Yes

Authenticated Encryption with Associated Data (AEAD)

AEAD (Nonce-based)

aes for the Better

ensures jointly privacy and authenticity,

consists of encryption and decryption algorithms.

Nonce-respecting scenario.

- Enc: the same nonce is not repeated.
- Dec: the same nonce can be repeated.

Primitives of AEAD schemes: blockcipher, tweakable blockcipher, permutation, etc.

Blockcipher

- Family of permutations indexed by a key.
- A blockcipher key is randomly drawn.
- Security: strong pseudo-random permutation (SPRP).
- Research topic of blockcipher-based AEAD:
 - Designing a highly efficient AEAD scheme.

Highly efficient:

for each data block, a blockcipher is called once.

Existing schemes: OCB1, OCB2, OCB3, OTR, etc.

h: almost XOR universal hash function

Design methodology: Tweakable blockcipher-based design.

Generalization of blockciphers.

- Take an input tweak *tw*.
 - ✓ Role: Changing tw = Rekeying
 - ✓ Cost: Changing tw ≪ Rekeying
- Security: Tweakable Strong Pseudo-Random Permutation (TSPRP).

TBC-based Design Methodology

- Design a highly efficient TBC from a blockcipher: 1. a blockcipher is called once for each query.
 - plaintext block LRW2

The TSPRP-advantage $\leq \sigma^2/2^n$ (birthday bound), where σ is # blockcipher calls by all queries.

ciphertext block

Design a highly efficient AEAD scheme from a TBC: 2. a TBC is called once for each data block.

Efficient Blockcipher-based AEAD Scheme

Security of Efficient AEAD Schemes

- Existing highly efficient AEAD schemes use LRW2-type TBCs.
- LRW2-based AEAD schemes are secure up to the birthday bound, where the security bound is $\sigma^2/2^n$.
- The security bound defines a term of rekeying: A key is changed when the bound reaches a threshold, e.g., 1/2²⁰, 1/2³².
- For example, when n=64 and the threshold= $1/2^{20}$, a key is changed when # data blocks $\sigma = 2^{22}$ (34 Mbyte).
- The birthday bound might be unreliable, e.g.,
 - when the block size n is small, (n=64)
 - when large amounts of data are processed, or
 - when large number of connections need to be kept secure.
- Designing highly efficient AEAD schemes with BBB-security is an important research topic.

MITSUBISHI ELECTRIC ges for the Better Our Result: XKX (Xor-Key-Xor)

Blockcipher-based TBC.

Combination of LRW2 and Minematsu's TBC: Blockcipher-based PRF

- Accept two tweaks: first tweak *N*, second tweak *ctr*.
- The first tweak N is input to the PRF and the output is used as a blockcipher key (Mienmatsu's TBC).
- The second tweak ctr is input to h (LRW2).
- Offer highly efficient AEAD schemes with BBB-security, by combining with efficient TBC-based AEAD schemes.

XKX-based AEAD Scheme

OCB3 with XKX

- N and 0 are used as first tweaks.
- At the precomp., N and 0 are input to the PRF, then the N-dependent key K_N and the 0-key K_0 are defined.
 - After the precomp., a blockcipher is called once for each data block.

Security of XKX

■ When # queries with the same first tweak is ≤ R and # distinct first tweaks N is Q,

$$Q \cdot \left(\frac{R^2}{2^n} + (\text{SPRP advantage for } E)\right)$$
 is introduced.

- Since in XKX the PRF is used, (PRF advantage) is introduced.
- TSPRP-advantage of XKX

$$\leq \frac{Q \cdot R^2}{2^n} + Q \cdot (\text{SPRP advantage for } E) + (\text{PRF advantage}).$$

can be negligible when *E* and PRF are secure.

Security of **O**CB3 with XKX

From the XKX's bound $QR^2/2^n$,

- Privacy-advantage $\leq \frac{q_E \cdot \ell^2}{2^n} \left(\frac{\sigma_A^2}{2^n} \right)$
- Authenticity-advantage $\leq \frac{q_E^2}{2^n} + \frac{\sigma_A^2}{2^n} + \frac{\sigma_D^2}{2^n}$

Usually, AD is not frequently changed. Then, the term is negl.

> When # forgeries is limited (a key is changed when # forgeries reaches some threshold), the term is negl.

where q_E is # Enc-queries,

 ℓ is # *E*-calls by an Enc query ,

- σ_A is # all *E*-calls handling AD blocks by enc-queries,
- σ_D is # all *E*-calls by dec-queries.

	Priv	Auth
OCB1, 2, 3, OTR	$\sigma_E^2/2^{n}$	$\sigma^2/2^n$
XKX-based AEAD schemes	$q_E \ell^2 / 2^n + \sigma_A^2 / 2^n$	$q_E \ell^2 / 2^n + \sigma_A^2 / 2^n + \sigma_D^2 / 2^n$

- Existing highly efficient AEAD schemes such as OCB1, 2, 3, OTR are not BBB secure.
- This paper
 - XKX, a blockcipher-based TBC.
 - highly efficient and BBB secure AEAD schemes if σ_A , $\sigma_D << 2^{n/2}$.
- Improvement (Latincrypt 2017)
 - By proving the security of XKX-based AEAD schemes from scratch, the terms $\sigma_A^2/2^n$, $\sigma_D^2/2^n$ can be eliminated.

Thank you for your attention!