Motivation	Standard PRNG	Stateful PRNG	PRNG with input	Conclusion
00		0	000000000	0

SoK: Security Models for Pseudo-Random Number Generators

Sylvain Ruhault

March 8th, Tokyo, Fast Software Encryption 2017

Standard PRN

Stateful PRNG

PRNG with input

Conclusion

Motivation

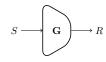
Papers about PRNG

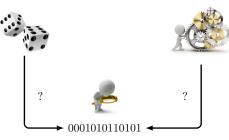
- FSE 96: Jenkins
- FSE 98: Schneier et al.
- Usenix 98: Gutman
- EC02: Desai et al.
- CT-RSA03: Bellare and Yee
- ACSAC03: Viega
- CHES03: Barak et al.
- CCS05: Barak and Halevi
- CCS10: Yu et al.
- CCS13: Dodis et al.
- C14: Dodis et al.

• • • •

SoK Paper

- Unify security models presentation
- Propose secure constructions based on AES


Motivation	Standard PRNG	Stateful PRNG	PRNG with input	Conclusion
0●		0	000000000	0


1 Standard PRNG

2 Stateful PRNG

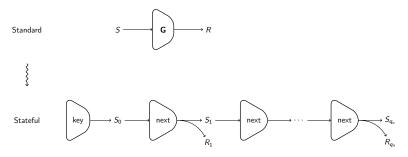
3 PRNG with input

Motivation	Standard PRNG	Stateful PRNG	PRNG with input	Conclusion
00		0	000000000	0
			-	
		Standard PRN	G	

Security of $\boldsymbol{\mathsf{G}}$

- Secret S
- |R| > |S|
- *R* is indistinguishable from random.

AES based construction • $S \stackrel{\$}{\leftarrow} \{0, 1\}^{128}$ • $R = AES_{S}(1) ||AES_{S}(2)|| \cdots$


Standard PRNG

Stateful PRNG

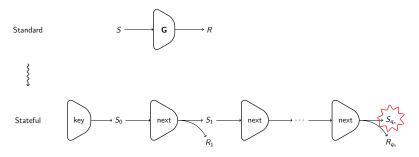
PRNG with input

Conclusion

Stateful PRNG

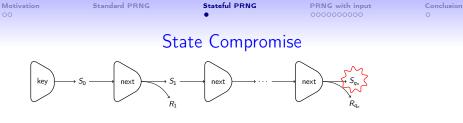
• R_0, R_1, \cdots shall be indistinguishable from random

• S: internal state of the generator

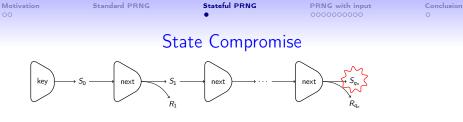


Stateful PRNG

PRNG with input


Conclusion

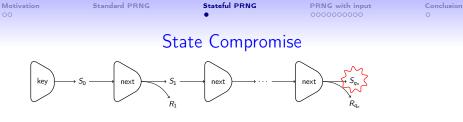
Stateful PRNG


• R_0, R_1, \cdots shall be indistinguishable from random

• S: internal state of the generator

Forward Security

- Past outputs are not compromised
- Can be build upon a secure standard PRNG (BY03)


Forward Security

- Past outputs are not compromised
- Can be build upon a secure standard PRNG (BY03)

AES based construction

keynextRequire: \varnothing Require:Ensure: SEnsure: S1: $S \stackrel{\$}{\leftarrow} \{0,1\}^{128}$ 1: S' =2: return S2: R =3: return S3: return S

equire: S
nsure: S', R
1:
$$S' = AES_S(1)$$

2: $R = AES_S(2)$
3: return (S', R)

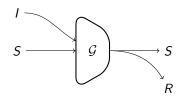
Forward Security

- Past outputs are not compromised
- Can be build upon a secure standard PRNG (BY03)

Backward Security ?

• "Next" outputs are not compromised ?

→ New input shall be collected


→ Recovery mechanism

Stateful PRNG

PRNG with input

Conclusion O

PRNG with input

Standard PRNG

Stateful PRNG

PRNG with input

Conclusion

PRNG with input

How to Manage Inputs ?

- Accumulation: entropy of each input shall be accumulated in the internal state
- Extraction: entropy of the collected inputs shall be extracted to generate outputs

 \leadsto these operations are implicit in Fortuna, OpenSSL PRNG, /dev/random, NIST CTR_DRBG, ...

Standard PRNG

Stateful PRNG

PRNG with input

Conclusion

PRNG with input

How to Manage Inputs ?

- Accumulation: entropy of each input shall be accumulated in the internal state
- Extraction: entropy of the collected inputs shall be extracted to generate outputs

 \rightsquigarrow these operations are implicit in Fortuna, OpenSSL PRNG, /dev/random, NIST CTR_DRBG, ...

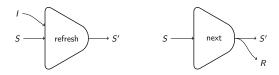
Definitions

- Seeded extractors, accumulators
- Requires independence between public seed and inputs

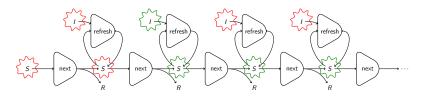
 \rightsquigarrow Potential vulnerability in NIST CTR_DRBG

Barak-Halevi Model (BH05)

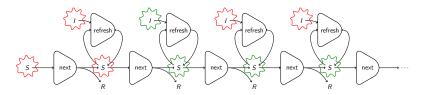
PRNG with input Definition


Two operations

- input collection
- output generation


Where

Motivation


• Operations are not synchronised

Recovery in Barak-Halevi model

Recovery in Barak-Halevi model

AES based construction

refresh setup next **Require:** r **Require:** X, I, SRequire: S Ensure: S' **Ensure:** S', REnsure: X 1: $X \leftarrow \{0, 1\}^{512}$ 1: $U = [X \cdot I]_{128}$ 1: $S' = AES_{S}(1)$ 2: **return** *X* 2: $S' = S \oplus U$ 2: $R = AES_S(2)$ 3: return *S'* 3: return (S', R) Stateful PRNG

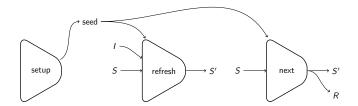
PRNG with input

Security Analysis

AES based construction

setup	refresh	next
Require: r	Require: X, I, S	Require: S
Ensure: X	Ensure: S'	Ensure: S', R
1: $X \stackrel{\$}{\leftarrow} \{0,1\}^{512}$	1: $U = [X \cdot I]_{128}$	1: $S' = AES_S(1)$
2: return X	2: $S' = S \oplus U$	2: $R = AES_{S}(2)$
	3: return <i>S</i> ′	3: return (S', R)

|S| = 128


- Involves a Seeded Extractor
- At least one input shall have maximal entropy $\mathbf{H}_{\infty}(I)=512$
- Requires a public random seed X of length 512 bits
- Inputs shall be independent from X

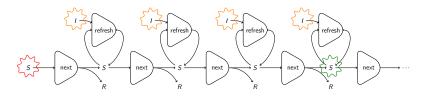
Dodis et al. Model (DPR+13)

PRNG with input Definition

Triple of algorithms (setup, refresh, next):

- setup, seed generation algorithm
- refresh, entropy collecting algorithm, $(S, I) \rightarrow S'$
- next, output algorithm, $S \rightarrow (R, S')$

Standard PRNG


Motivation

Stateful PRNG

PRNG with input

Conclusion

Recovery in Dodis et al. Model

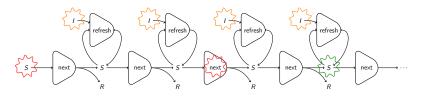
• entropy can be accumulated slowly in S

• recovery: after accumulated entropy is OK

Recovery in Dodis et al. Model

AES based construction

Security Analysis

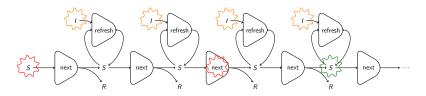

AES based construction

- setup refresh next **Require:** \varnothing **Require:** X, I, S **Require:** S, X' **Ensure:** X, X' **Ensure:** S' **Ensure:** S', R1: $X \stackrel{\$}{\leftarrow} \{0,1\}^{1024}$ 1: $S' = S \cdot X + I$ 1: $U = [X' \cdot S]_{256}$ 2: $X' \stackrel{\$}{\leftarrow} \{0,1\}^{1024}$ 2: return S' 2: $S' = AES_U(1)|| \cdots ||AES_U(8)$ 3: return X, X' 3: $R = AES_U(9)$ 4: return (S', R)
- |S| = 1024
- Involves a Seeded Extractor and a Seeded Accumulator
- Requires a public random (X, X') of length 2048 bits
- Inputs shall be independent from X
- Extensions has been proposed for Leakage Security [CR14, ABPRV15]

Standard PRNG

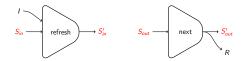
Motivation

Premature Next Attack, Dodis et al. (DSSW14)



• a next call can be done before recovery

/ation	Standard PRNG	Stateful PRNG	PRNG with input
		0	0000000000


Motiv

Premature Next Attack, Dodis et al. (DSSW14)

• a next call can be done before recovery

Solution: $S = [S_1 \cdots S_{in} \cdots S_{out} \cdots S_p]$, a scheduler selects S_{in} and S_{out}

Conclusion

Generalized Fortuna Construction (DSSW14)

$G_i, i = 1, \cdots, 32$, based on AES

setup refresh; Require: Ø Ensure: X, X'1: $X \stackrel{\$}{\leftarrow} \{0,1\}^{1024}$ 1: $S' = S \cdot X + I$ 1: $U = [X' \cdot S]_{256}$ 3: return X, X'

next; **Require:** X, I, S **Require:** S, X'Ensure: S' Ensure: S', R 2: $X' \stackrel{\$}{\leftarrow} \{0,1\}^{1024}$ 2: return S' 2: $S' = AES_U(1) || \cdots ||AES_U(8)$ 3: $R = AES_{II}(9) ||AES_{II}(10)||$ 4: return (S', R)

AES based scheduler

- Uses AES as a PRF
- $(in, out) \leftarrow SC(skey)$

AES based construction

refresh setup next Require: Ø Require: X, key, I, S Require: S Ensure: S' Ensure: S', R **Ensure:** X, X', skev1: $X, X' \leftarrow \text{setup}_{\mathcal{C}}$ 1: parse S as $(S_{\rho}, (S_i)_{i=0}^{31})$ 1: parse S as $(S_{\rho}, (S_i)_{i=0}^{31})$ 2: skev $\stackrel{\$}{\leftarrow} \{0,1\}^{128}$ 2: (in, out) \leftarrow SC(skev) 2: $S_{\rho} = AES_{S_{\rho}}(1) ||AES_{S_{\rho}}(2)||$ 3: return X, X', skey 3: $S_{in} \leftarrow \text{refresh}_{in}(X, S_{in}, I)$ 3: $R = AES_{S_1}(3) ||AES_{S_2}(4)|$ 4: $(S_{out}, R) \leftarrow \text{next}_{out}(X', S_{out})$ 4: return (S', R)5: $S_a \leftarrow S_a \oplus R$ 6: return $S' = (S_a, (S_i)_{i=0}^{31})$

Stateful PRNG

PRNG with input

Conclusion

Security Analysis

AES based construction

refresh	next
Require: X, key, I, S	Require: S
Ensure: S'	Ensure: S', R
1: parse S as $(S_ ho,(S_i)_{i=0}^{31})$	1: parse S as $(S_ ho,(S_i)_{i=0}^{31})$
2: $(in, out) \leftarrow SC(skey)$	2: $S_{\rho} = AES_{S_{\rho}}(1) AES_{S_{\rho}}(2)$
3: $S_{in} \leftarrow \text{refresh}_{in}(X, S_{in}, I)$	3: $R = AES_{S_{\rho}}(3) AES_{S_{\rho}}(4) $
4: $(S_{out}, R) \leftarrow \text{next}_{out}(X', S_{out})$	4: return (S', R)
5: $S_{\rho} \leftarrow S_{\rho} \oplus R$	
6: return $S' = (S_{ ho}, (S_i)_{i=0}^{31})$	
	Require: X, key, I, S Ensure: S' 1: parse S as $(S_{\rho}, (S_i)_{i=0}^{31})$ 2: $(in, out) \leftarrow SC(skey)$ 3: $S_{in} \leftarrow refresh_{in}(X, S_{in}, I)$ 4: $(S_{out}, R) \leftarrow next_{out}(X', S_{out})$ 5: $S_{\rho} \leftarrow S_{\rho} \oplus R$

- $S = (S_{\rho}, (S_i)_{i=0}^{31}), |S| = 33024$
- Involves a Seeded Extractor a Seeded Accumulator and a Scheduler
- Requires a public random (X, X') of length 2048 bits
- Inputs shall be independent from X
- Leakage Security shall be studied: SPOF: S_{ρ} , $|S_{\rho}| = 256$

Model and constructions analysis

Ref.	Definition	Property	Attacker Capabilities	0	Constr	uction		Opera	ations
				AES	Ext	Acc	SC	refresh	next
BY03	$1: S \leftarrow key$	FWD	next-ror, get-state	×					AES (2)
	$2: (S', R) \leftarrow next(S)$								
GMOPST14	$1: S \leftarrow key$	LPR(f)	next-ror, leaknext	×					AES (3)
	$2: (S', R) \leftarrow next(S)$								
DHY02	$1: (K, S) \leftarrow key$	CIA	getinput, get-state, setinput						$+$ (3), \times (2),
	$2: (S', R) \leftarrow next(S, K, I)$	CSA	getinput, get-state, set-state	×		×			AES (2)
		KKA	getinput, get-key						
BST03	$1 : seed \leftarrow setup$	RES(F)	next-ror		×				× (1), [] (1)
	$2: R \leftarrow next(seed, I)$								
BH05	$1: S' \leftarrow refresh(S, I)$	ROB(F)	good-refresh, bad-refresh,	×	×			\times (1), [] (1),	AES (2)
	$2: (S', R) \leftarrow next(S)$		get-state, next-ror					\oplus (1)	
DPRVW13	1 : seed \leftarrow setup	$ROB(\gamma^*)$	\mathcal{D} -refresh, set-state, get-state	×	×	×		\times (1), + (1)	× (1), [] (1),
	$2: S' \leftarrow refresh(seed, S, I)$		next-ror						AES (9)
	$3: (S', R) \leftarrow next(seed, S)$								
DSSW14	$1 : seed \leftarrow setup$	$NROB(\gamma^*, \beta)$	\mathcal{D} -refresh, set-state, get-state	×	×	×	×	$+ (1), \times (2),$	AES (4)
1	$2: S' \leftarrow refresh(seed, S, I)$		next-ror					⊕ (1), [] (2),	
	$3: (S', R) \leftarrow next(seed, S)$							AES (11)	

Standard PRN

Stateful PRNG

PRNG with input

Conclusion

Conclusion

Contribution

- Revisited the notions of Extractors and Accumulators
- Unified the presentation of PRNG models
- Proposed AES based constructions
- Identified a potential vulnerability in NIST CTR_DRBG

Perpectives

- Independence requirement ?
- Leakage security of [DSSW14] construction ?
- Lightweight PRNG ?