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Abstract. Randomness plays an important role in multiple applications in cryptog-
raphy. It is required in fundamental tasks such as key generation, masking and
hiding values, nonces and initialization vectors generation. Pseudo-random number
generators have been studied by numerous authors, either to propose clear security
notions and associated constructions or to point out potential vulnerabilities. In
this systematization of knowledge paper, we present the three notions of generators
that have been successively formalized: standard generators, stateful generators and
generators with input. For each notion, we present expected security properties,
where adversaries have increasing capabilities (including access to partial information
on the internal variables) and we propose secure and efficient constructions, all based
on the block cipher AES. In our description of generators with input, we revisit the
notions of accumulator and extractor and we point out that security crucially relies
on the independence between the randomness source and the seeds of the accumulator
and the extractor. To illustrate this requirement, we identify a potential vulnerability
of the NIST standard CTR_DRBG.
Keywords: Pseudo-random number generation · Security Models · Entropy

1 Introduction
1.1 Security Notions
The first simple notion is for a standard pseudo-random number generator (standard
PRNG). A secure standard pseudo-random number generator is formalized as an extending
function, that on input a random bit string (called a seed), outputs a longer bit string which
is indistinguishable from random. The output of the algorithm cannot be perfectly random,
as there are fewer seeds than possible outputs, so one can define a security objective for
this algorithm as follows: no computationally-bounded adversary, which does not know
the seed, can distinguish an output from the uniform. The model is described in Section 2.

The generation of a random seed can be amortized allowing the computation of several
outputs with the same seed. As the algorithm is deterministic, this implies that the
algorithm also modifies the seed for each output. This class of algorithm can also be
defined precisely with a formal security game and is referred to as a stateful pseudo-
random number generator. Its security is formalized by the indistinguishability from
random of all the outputs generated from a secret seed. In this situation, as the seed
is reused, the generator needs to store it between the generation of two outputs. This
design has been implemented in a large number of systems, including hardware security
modules. Several attacks have been mounted against some generators, that rely on the
predictability of the seed or on the potential leakage of the memory of the generator. The
memory of the generator (usually named its internal state) is its most critical part, as an
adversary that has access to it can predict the future outputs of the generator. Bellare
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and Yee [BY03] proposed a dedicated security model to assess Forward Security: it should
be infeasible to recover any information on previous states or previous output blocks from
the compromise of the current state. In addition, several works studied the extension of
the [BY03] model in the presence of leakage. In this paper, we present two constructions
that extend the original construction of [BY03], satisfying different notions of leakage
and reaching different security levels. All these models and associated constructions are
described in Section 3.

A second solution to amortize the use of a random seed is to allow the algorithm to
continuously collect new inputs in addition to the seed and produce outputs that depend on
the previous inputs. This class of algorithm is referred to as a pseudo-random number
generator with input. In this situation, the idea is to use the largest amount of possible
events from the environment of the generator, gather them together in the internal state S
of the generator and produce outputs that are indistinguishable from random. An expected
property of the generator is that it accumulates the successive inputs properly, so that
each new input is taken into account. The compromise of the internal state is still critical
in this situation, however, as new inputs are collected continuously, the generator may
recover from a compromise if enough inputs are collected. Moreover, as inputs may be
influenced by an adversary, a second expected property is that the generator preserves its
state against such inputs.

The formalization of the expected security properties of a pseudo-random number
generator with input has been a challenging task. We present in Section 4 the successive
models for pseudo-random number generators with inputs that have been proposed. A
major contribution of these security model is the formalization of both these recovering
and preserving properties.

Eventually, in Section 5, we present recent extensions of the robustness model that have
been proposed to capture different classes of adversaries. First we present an extension
related to premature next attacks, applicable in situations in which the state of the pseudo-
random number generator with input has not accumulated a sufficient amount of entropy
and is asked to produce some outputs. Then we present an extension related to memory
attacks, which refers to situations where an adversary can recover or modify a significant
fraction of the secret stored in memory, even if those secrets have never been involved in
any computation, contrary to the class of attacks that rely on computation. Finally we
present an extension related to leakage security, which contrary to memory attacks leads
to leakage of sensitive information because measurements can be made during generator
operations.

1.2 PRNG Models
Gutmann [Gut98], and Kelsey et al. [KSWH98] gave useful guidelines for the design
of secure pseudo-random number generators with input. In these guidelines, they all
considered a generator as a pair of algorithms, one to collect inputs and a second one
to generate outputs. Desai, Hevia and Yin [DHY02], modelled secure pseudo-random
number generators with input as a pair of algorithms: the Seed Generation algorithm
and the Output Generation algorithm. This model assumes the existence of an entropy
pool, different from the internal state, in which randomness is accumulated, that is used
to refresh the internal state of the generator. Viega [Vie03] analyzed the use of AES in
counter mode to build a secure generator and the issue of entropy accumulation. Barak,
Shaltiel and Tromer [BST03] proposed a security model where an adversary can have some
control on the randomness source. This model explicitly explains the importance of a
randomness extractor as a core component of a generator and proposes an analysis of the
public parameter seed which is inherent to this component. An elegant and remarkable
work by Barak and Halevi [BH05] modelled pseudo-random number generators with input
as a pair of algorithms (refresh, next) and defined a new security property called robustness
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based on the design guidelines of [KSWH98]: this property assesses the behavior of a
generator after the compromise of its internal state, but fails to capture the small and
gradual entropy accumulation present in most real-life implementations. In [DPR+13],
Dodis et al. extended the work of [BH05] and formalized the accumulation process of a
pseudo-random number generator with input. They introduced the notion of a controlled
Distribution Sampler, that allows an adversary to control the distribution of the inputs that
are collected by a generator and a new property of entropy accumulation. Three extensions
of the previous model have been then proposed. In [DSSW14], Dodis et al. extended the
model to capture the premature next attack, in which the generator has accumulated an
insufficient amount of entropy and is asked to produce some outputs. In [CR14], Cornejo
and Ruhault extended the model to capture memory attacks and in [ABP+15], Abdalla et
al. extended the model to capture leakage.

1.3 Potential Weaknesses
The lack of assurance about the generated random numbers can cause serious damages
in cryptographic protocols, and vulnerabilities can be exploited by adversaries to mount
concrete attacks. One striking example is the failure in the Debian Linux distribution [CVE],
where a commented code in the OpenSSL generator led to insufficient entropy gathering
and allowed an adversary to conduct brute force guessing attacks against cryptographic
keys.

Concerning system generators, an analysis of Linux generators dev/random and
dev/urandom was done in 2006 by Gutterman, Pinkas and Reinman in [GPR06], where
they presented an attack for which a fix has been published. Lenstra et al. [LHA+12]
showed that a non-negligible percentage of RSA keys share prime factors. Heninger et
al. [HDWH12] presented an analysis of the behavior of Linux generators that explains
the generation of low entropy keys when these keys are generated at boot time and the
findings of Lenstra et al. The Windows pseudo-random number generator with input
CryptGenRandom was analyzed in 2006 by Dorrendorf, Gutterman and Pinkas in [DGP07];
the authors showed an attack on the forward security of the generator implemented in
Windows 2000, for which a fix has been published. In [DPR+13], Dodis et al. gave a
precise assessment of the security of the two Linux pseudo-random number generators
with input: /dev/random and /dev/urandom. In particular, they showed several attacks
proving that these generators are not robust because they do not accumulate entropy
properly. These attacks are due to the vulnerabilities of the entropy estimator and the
internal mixing function of the generators.

Concerning application generators, Argyros and Kiayias [AK12] showed practical at-
tacks on web applications exploiting randomness vulnerabilities in PHP applications.
Michaelis, Meyer and Schwenk [MMS13] described and analyzed several Java implemen-
tations; they have also identified some weaknesses. More recently, a flaw in the Android
pseudo-random number generator, identified by Kim, Han and Lee in [KHL13], has been
actively exploited against Android-based Bitcoin wallets [SEC]. In [CR14], Cornejo and
Ruhault gave an in-depth analysis of generator implementations from widely used providers
in real-life applications: OpenSSL, OpenJDK, Android, Bouncycastle and IBM. Their
analysis revealed new vulnerabilities of these generators due to the implementation of
their internal state in several fields that are not updated securely. In [ST15], Shrimpton
and Terashima gave a complete analysis of the Intel Secure Key hardware generator
ISK-RNG, which has been included in Intel processors since late 2011. Their analysis
provides concrete security bounds for the forward security and the backward security of the
two implemented instructions RDRAND and RDSEED. Finally, in [GT16], Gazi and Tessaro
proposed an extension of the original sponge-based generator of [BDPV10] in the model
of [DPR+13].

Concerning standards, the previous version of the NIST specification [BK15] contained
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a pseudo-random number generator named Dual_EC_DRBG that has been known to admit
a serious potential back door in the event that an attacker generates the standard algorithm
parameters, a potential vulnerability that has been announced by Shumow and Ferguson
at the Crypto rump session in 2007. In [CFN+14], Checkoway et al. mounted practical
attacks against TLS/SSL connections established by software libraries implementing this
generator using the back door, assuming that an attacker knows a trapdoor for the
parameters. In December 2015, Juniper Networks announced that unknown attackers had
added unauthorized code to ScreenOS, the operating system for their NetScreen VPN
routers, related to an implementation of Dual_EC_DRBG (see [CMG+16] for details).
Recent works study the use of potentially backdoored generators ([DGG+15, DPSW16]).

This illustrates the need for precise evaluation of pseudo-random number generators
based on clear security requirements. Several notions and associated security models exist,
which we detail in this paper.

1.4 Formalization

Let X be a random variable over a sample set S. Then X defines a probability distribution
PX : S → [0, 1], where PX(x) := Pr[X = x] called the distribution of the random variable
X. The random variable is also called a source on S. We denote by X both the random
variable X and the distribution of the random variable X. Let n > 0 be an integer, the
uniform distribution over the sample set {0, 1}n is denoted Un. We denote X $← {0, 1}n
when X is uniformly distributed over {0, 1}n.

Let X and Y be two random variables. Then X and Y are independent if for all x
and y, Pr[(X = x) and (Y = y)] = Pr[X = x] · Pr[Y = y]. Let n > 0 be an integer and let
X and Y be two random variables over the sample set {0, 1}n. The statistical distance
between X and Y is equal to: SD(X,Y ) = 1

2
∑
x |Pr[X = x]− Pr[Y = x]|. The random

variables X and Y are said ε-close if SD(X,Y ) ≤ ε.
Let X be a source on S. The min-entropy of X is H∞(X) = minx∈S{− log Pr[X =

x]}. A source X is a k-source if H∞(X) ≥ k. A k-source of length n has an entropy rate
equal to k/n. Let Z be a source on S. The worst-case min-entropy of X conditioned
on Z is H∞(X|Z) = − log ([maxx,z Pr[X = x|Z = z]]).

Let p and n be integers, such that p > n. A hash function is a function h : {0, 1}p →
{0, 1}n. A hash functions family H = {hX : {0, 1}p → {0, 1}n, X ∈ {0, 1}s} is ε-universal
if for any inputs x1 6= x2 ∈ {0, 1}p we have: Pr

X
$←{0,1}s

[hX(x1) = hX(x2)] ≤ ε. Let
H = {hX : I → [X · I]n}, where all operations are in F2p and [y]n denotes the first n bits
of y. Then H is 1/2n-universal [BST03]. Let Ī := (Id−1, . . . , I0) be the concatenation of d
samples in {0, 1}p and let H ′ = {h′X : Ī →

∑d−1
j=0 Ij ·Xj}, where all operations are in F2p .

Then H ′ is (d/2n)-universal [DPR+13].
In this paper, we describe security models in the code-based game playing framework

of [BR06]. In this framework, a security game involves a challenger and an adversary,
denoted A. The challenge of the adversary is to distinguish between two experiments,
which are both indexed by a Boolean bit b. Interactions between the challenger and the
adversary are modeled with procedures. A security game GAME has an initialize procedure,
procedures to respond to adversary oracle queries, and a finalize procedure. A security
game GAME is executed with an adversary A as follows. First, the challenger executes
procedure initialize, and its outputs are given as inputs to A. Then A executes, its oracle
queries being answered by the corresponding procedures of GAME. When A terminates, its
output becomes the input to the finalize procedure. The output of the finalize procedure is
called the output of the security game GAME, and we denote the output of the adversary
as GAMEA. Finally we denote the event that this output takes value y as GAMEA ⇒ y
and we define the advantage of A in GAME as AdvGAME

A = 2× Pr[GAMEA ⇒ 1]− 1.
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1.5 Accumulators and Extractors
Randomness is concretely generated from sources which are potentially biased, where the
only known information is that they may contain some amount of randomness, or they
are k-sources. We therefore need two family of maps: (a) on the one hand, maps that
given a set of sources, accumulates the randomness that these sources collectively contain;
these maps are named accumulators and (b) on the second hand, maps that extracts
the randomness that is actually contained in these sources, and produce an output which
is close to uniform. These maps are named extractors.

Extractors and accumulators are special cases of a more general notion, named con-
densers. Informally, a (k, k′)-condenser is a function that given a k-source as input,
outputs a k′-source: when the output is close to uniform, it is an extractor and when
k′ = k, it is an accumulator. The design of the generators ISAAC in [Jen96] and Fortuna
in [FSK10] uses the notion of accumulator, however without a clear formalization. In
addition, an accumulator is implicitly contained in a large family of generators, including
Linux dev/random, Windows CryptGenRandom, and the OpenSSL generator. Definition 1
is adapted from [DRV12] and [Che09]. In this paper, we focus on situations for which
independence between the public parameter seed and the randomness source is guaranteed
and where extraction and accumulation are possible for all k-sources and for all adversaries
(usually called strong extractors and strong accumulators). In Section 6, we discuss
this choice, as it has practical impacts: in particular, we show that the generator described
in [BK15], named CTR_DRBG, and proposed as a standard by the NIST, can be broken
because of potential correlation between one public parameter of the specification and the
randomness source.

Definition 1 ([DRV12, Che09]). A function Cond : {0, 1}p × {0, 1}s → {0, 1}n is a
(k, k′, ε)-condenser if for all probabilistic adversaries A which sample a distribution X of
entropy H∞(X) ≥ k, the distributions (seed,Cond(X, seed)) is ε-close to some (seed, R),
where H∞(R|seed) ≥ k′, seed $← {0, 1}s and X is independent of seed. If k′ = k, it is
called a (k, ε)-accumulator and if k′ = n, it is called a (k, ε)-extractor.

Definition 1 can be expressed in terms of a family of universal hash functions family
(Sect. 1.4). The hash function family H is a (k, ε)-extractor if for any random variable I
over {0, 1}p with H∞(I) ≥ k, the distributions (X,hX(I)) and (X,Un) are ε-close for all
X, or a (k, ε)-accumulator if for any random variable I over {0, 1}p with H∞(I) ≥ k, the
distribution hX(I) is ε-close to some R, where H∞(R|X) ≥ k.

The Leftover Hash Lemma1 constructs extractors and accumulators from universal
hash functions families. This lemma was first formally stated in [HILL99]. Note that the
usual version of Lemma 1 presents the extraction; here we give a more general version that
extends to accumulation, adapted from [DRV12] and [Che09].

Lemma 1 ([HILL99, DRV12, Che09]). Assume that the hash function family H = {h :
{0, 1}p → {0, 1}n} is ρ-universal where ρ = (1 + α)2−n for some α ≥ 0. Then, for any
k, k′ ≥ 0, it is also a (k, k′, ε)-condenser, where ε = 1

2

√
2k′−k + 2k′−n(1 + α)− 1. In

particular, for k′ = k and k < n, it is a (k, ε)-accumulator, where ε = 1
2

√
2k−n(1 + α)

and for k′ = n and k > n, it is a (k, ε)-extractor, where ε = 1
2
√

2n−k + α.

Let H = {hX : I → [X · I]n}, where all operations are in F2p and [y]n denotes the first
n bits of y. Then H is 1/2n-universal and a (k, ε)-extractor, where ε = 1

2

√
2n−k [BST03].

Let Ī := (Id−1, . . . , I0) be the concatenation of d samples in {0, 1}p and let H ′ = {h′X :
Ī →

∑d−1
j=0 Ij ·Xj}, where all operations are in F2p . Then H ′ is (d/2n)-universal and a

(k, ε)-accumulator, where ε = 1
2 ·
√
d2k−n [DGMP92, dB93, DPR+13].

1For completeness, we give the complete proof in Appendix B.
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2 Standard Pseudo-Random Number Generators
Blum and Micali [BM82] and Yao [Yao82] defined security for a standard pseudo-random
number generator. Based on this seminal work, Bellare and Yee [BY03] formalized security.

Definition 2 ([BM82, Yao82, BY03]). Let s and ` be integers such that ` > s. A (s, `)-
standard pseudo-random number generator is a function G : {0, 1}s → {0, 1}`, that takes
as input a bit string S of length s and outputs a bit string R of length `.

Consider the security game PR described in Fig. 1. In this security game, the challenger
generates a random secret input K and challenges the adversary A on its capacity to
distinguish the output of the pseudo-random number generator from random.

proc. initialize proc. next-ror proc. finalize(b∗)
S

$← {0, 1}n; R0 ← G(S) IF b = b∗ RETURN 1
b

$← {0, 1}; R1
$← {0, 1}` ELSE RETURN 0

RETURN Rb

Figure 1: Procedures in Security Game PR

Definition 3 ([BM82, Yao82, BY03]). Let n and ` be integers such that ` > n. A (n, `)-
standard pseudo-random number generator is (t, ε)-secure if for any adversary A running
in time at most t, the advantage of A in game PR is at most ε.

Recall that a block cipher is a function E : {0, 1}n × {0, 1}` → {0, 1}` such that
for each S ∈ {0, 1}n and M ∈ {0, 1}`, the function ES : {0, 1}` → {0, 1}` defined by
ES(M) = E(S,M) is a permutation on {0, 1}`. In this paper, we will propose constructions
based on the block cipher AES [AES01] and prove the security of these constructions
by reduction to the security of the following pseudo-random number generator. Let
S

$← {0, 1}n, where n ∈ {128, 256} and q ≥ 1. Consider the (n, qn)-pseudo-random number
generator G defined by G(S) = AESS(1)|| · · · ||AESS(q). Then, following the ‘PRF/PRP
Switching Lemma’2 of Bellare et al. [BDJR97], we have that G is a (t, q(q−1)

2n+1 )-secure pseudo-
random generator, under the assumption that the block cipher AES is indistinguishable
from a pseudo-random permutation.

Note that in this paper, we present constructions in different security models that all
rely on the use on the block cipher AES. The proposed constructions could be adapted to
another block cipher, however as security bounds are obtained by reduction to the security
of AES as a secure standard pseudo-random number generator, these security bounds shall
be adapted. We chose the block cipher AES because it is widely implemented and provides
hardware and software efficiency.

3 Stateful Generators
Bellare and Yee [BY03] proposed a notion of stateful pseudo-random number generators
where the maximal number of outputs the pseudo-random number generator is allowed to
produce (named qn hereafter) is a parameter of the generator. This notion is illustrated in
Fig. 2 and formalized in Definition 4.

Definition 4 ([BY03]). A stateful pseudo-random number generator is a pair of algorithms
(key, next) and an integer qn, where key is a probabilistic algorithm which takes no input
and outputs an initial state S ∈ {0, 1}n, next is a deterministic algorithm which, given
the current state S, outputs a pair (S′, R) ← next(S) where S′ is the new state and

2For completeness, this lemma is presented in Appendix A.
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key S0 next S1

R1

next . . . next Sqn

Rqn

Figure 2: Stateful Pseudo-Random Number Generator [BY03]

R ∈ {0, 1}` is the output and qn is the maximal number of outputs the pseudo-random
number generator is allowed to produce.

Consider the security game SPR described in Fig. 3. In this security game, the challenger
generates a random initial secret S and challenges the adversary A on its capacity to
distinguish the real output of the pseudo-random number generator from random. The
difference with game PR is that here successive calls to next-ror will produce different
outputs, that should all be indistinguishable from random.

proc. initialize proc. next-ror proc. finalize(b∗)
S

$← key; (S,R0)← next(S) IF b = b∗ RETURN 1
b

$← {0, 1} R1
$← {0, 1}` ELSE RETURN 0

OUTPUT Rb

Figure 3: Procedures in Security Game SPR

Definition 5 ([Pie09, JP14]). A stateful pseudo-random number generator G = (key,
next, qn) is called (t, qn, ε)-secure, if for any adversary A running in time at most t, making
qn calls to next-ror, the advantage of A in game SPR is at most ε.

In [BY03] Bellare and Yee proposed an extension of the previous model, where a
stateful pseudo-random number generator should be designed so that it is infeasible to
recover any information on previous states or previous outputs from the compromise of
the current state. To formalize this property, they proposed a dedicated security model
where an adversary A chooses dynamically when to compromise the current state S. After
this compromise, all future outputs are compromised, as they all deterministically depend
on the compromised state, however, the expected security property (named Forward
Security) is that the past outputs are computationally indistinguishable from random.

proc. initialize proc. get-state proc. next-ror proc. finalize(b∗)
S

$← key; OUTPUT S (S,R0)← next(S) IF b = b∗ RETURN 1
b

$← {0, 1} R1
$← {0, 1}` ELSE RETURN 0

OUTPUT Rb

Figure 4: Procedures in Security Game FWD

Consider the security game FWD described in Fig. 4. In this security game, the
challenger generates a random initial secret input S and challenges the adversary A on
its capacity to distinguish the real output of the pseudo-random number generator from
random. In addition to the usual procedures, the adversary A has access to a procedure
get-state in which A has access to the current value of the internal state S.

Definition 6 ([BY03]). A stateful pseudo-random number generator G = (key, next, qn)
is called (t, qn, ε)-forward-secure, if for any adversary A running in time at most t, making
at most qn calls to next-ror, followed by one call to get-state, which is the last call A is
allowed to make, the advantage of A in game FWD is at most ε.



1 513

key next
Require: ∅ Require: S
Ensure: S Ensure: S′, R
1: S $← {0, 1}128 1: S′ = AESS(1)
2: return S 2: R = AESS(2)

3: return (S′, R)

Figure 5: FWD: A Secure Construction

Consider the stateful pseudo-random number generator G, defined with algorithms
(key, next) described in Fig. 5. It uses the (t, 2−128)-secure standard generator G defined by
G(S) = AESS(1)||AESS(2). Following [BY03], we have that G is a (t, 264, 2−128)-forward
secure stateful pseudo-random number generator.

An important assumption for the security of stateful pseudo-random number generators
is the secrecy of the state. However, in practice there are situations where the state can be
compromised. For example, side-channel attacks exploit the fact that every cryptographic
algorithm is ultimately implemented on a physical device and an implementation enable
observations which can be made and measured, such as the amount of power consumption
or the time taken. To capture this, leakage security of a stateful pseudo-random number
generator (key, next) has been defined. The main idea is to model the leakage of information
with a leakage function, that is named f . It is important to note that without restrictions
on the leakage function, no security can be guaranteed (one simple attack would be to leak
the complete state or the next output of the generator). Yet a fundamental issue in the
context of leakage-resilient cryptography is to define reasonable restrictions on the leakage
functions. The following assumptions are considered:

• (1) Only computation leaks: only the data being manipulated in a computation
can leak during this computation [MR04].

• (2) Bounded leakage per iteration: the length of the output of the leakage
functions, expressed in bits and taken globally, is bounded with a parameter λ [Pie09,
YSPY10, FPS12, YS13].

• (3) Non-Adaptive Leakage: leakage functions are not adaptively chosen by the
adversary before each invocation, but are fixed [YSPY10, FPS12, YS13].

• (4) Simulatable leakage: if an adversary cannot tell the difference between the
real leakage function and a simulated leakage function (from a simulator that does
not know the secret state of the generator) then the real leakage function does
not reveal any information about the state [SPY13]. Note that as pointed out
in [SPY13], this assumption implies that the leakage function is unbounded, as every
new measurement gives more information.

To illustrate this, we present below two constructions, that are extensions of the
previous forward-secure construction from Fig. 5. The first construction from [YSPY10]
satisfies assumptions 1, 2 and 3 and has a low security level, while the second construction
from [LMO+14] satisfies in addition assumption 4 and has a high security level.

Consider the security game LPR(f) described in Fig. 6. The objective of the adversary
A is to distinguish the output of the generator at one round from a uniformly distributed
random value, given the successive outputs and leakages for the previous rounds. Formally,
the security game extends SPR (Fig. 3), with the additional procedure leaknext.

Definition 7. Let f be a leakage function of output length λ. A stateful pseudo-random
number generator G = (key, next) is (t, qn, ε, f)-leakage resilient for the leakage function f
if for any attacker A running in time at most t, making qn calls to next-ror/ leaknext, the
advantage of A in game LPR(f) is at most ε.
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proc. initialize
S

$← key;
b

$← {0, 1}

proc. leaknext{
L← f(S)
(S,R)← next(S)

}
OUTPUT (L,R)

proc. next-ror
(S,R0)← next(S)
R1

$← {0, 1}`
RETURN Rb

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Figure 6: Procedures in Security Game LPR(f)

key next
Require: ∅ Require: Si
Ensure: S0,P0,P1 Ensure: Si+1, Ri+1

1: S0
$← {0, 1}128 1: Si+1 = AESSi(P`ρ(i))

2: P0,P1
$← {0, 1}256 2: Ri+1 = AESSi(Prρ(i))

3: return S0,P0,P1 3: return (Si+1, Ri+1)

Figure 7: LPR(f): Construction from [YSPY10]

Consider the stateful pseudo-random number generator G described in Fig. 7. Algorithm
key outputs a secret S0 ∈ {0, 1}128, which is kept secret, and two public values P0 ∈ {0, 1}256

and P1 ∈ {0, 1}256. The two public values are used in an alternative way to update the
internal state and to produce output, we denote ρ(i) = i mod 2 to indicate which public
value is used. We also decompose P0 ∈ {0, 1}256 (resp. P1 ∈ {0, 1}256) in two 128-bits blocks,
denoted P`0, Pr0 (resp. P`1, Pr1). The generator uses the (t, 2−128)-secure standard generator
G defined by G(Si) = AESSi(P`ρ(i)||AESSi(P`ρ(i), seen as a (t, 2, 2−128)-weak pseudo-random
function3. Note that each AES operation is done either on the leftmost part or on the
rightmost part of each public value (hence the notation P`0 or Pr0). In [YSPY10], Yu et al.
proved that under assumptions (1) (2) and (3) above, the security of G is measured by
ε = qnε

1/12
G and λ ≤ log(ε−1/6

G ), which depend on the security of G as a (t, 2, 2−128)-weak
pseudo-random function (εG) and on the maximal number of calls to next (qn). Hence G
is a (t, 4, 2−8, f)-leakage resilient stateful pseudo-random number generator, where λ = 21.

key next
Require: ∅ Require: Si
Ensure: S0,P0,P1,P2 Ensure: Si+1, Ri+1

1: S0
$← {0, 1}128 1: Si+1 = AESSi(P`ρ(i))

2: P0,P1,P2
$← {0, 1}384 2: αi = AESSi(Pmρ(i))

3: return S0,P0,P1,P2 3: Ri+1 = AESαi(Prρ(i))
4: return (Si+1, Ri+1)

Figure 8: LPR(f): Construction from [LMO+14]

In [SPY13] Standaert, Pereira and Yu considered the security of the generator described
in Fig. 7 in the context of simulatable leakage (assumption (4) above). They obtained tighter
bounds for this construction, namely, they proved that the security degrades linearly with
the number of rounds. However, in [LMO+14], Longo Galea et al. exhibited a distinguisher
against the simulator of Standaert et al. and propose to enforce the above construction with
an extra call to AES and an extra public value. Their construction is described in Fig. 8.
Algorithm key outputs a secret S0 ∈ {0, 1}128, and three public values P0 ∈ {0, 1}384,
P1 ∈ {0, 1}384 and P2 ∈ {0, 1}384. The three public values are used in an alternative way
to update the internal state and to produce output, we denote ρ(i) = i mod 3 to indicate
which public value is used. As before, we decompose P0 ∈ {0, 1}384 (resp. P1 ∈ {0, 1}384,
P2 ∈ {0, 1}384) into three 128-bits blocks, denoted P`0, Pm0 , Pr0 (resp. P`1, Pm1 , Pr1 and P`2,
Pm2 , Pr2). As before, each AES operation is done on the leftmost part or on the middle

3For completeness, the definition of a weak pseudo-random function is given in Appendix A.
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part or on the rightmost part of each public value (hence the notation P`0, Pm0 or Pr0).
In [LMO+14], Longo Galea et al. proved that this construction is a (t, 264, 2−63, f)-leakage
resilient stateful pseudo-random number generator, where f is simulatable and unbounded.

4 Generators with Input
4.1 Model of Desai, Hevia and Yin
Desai, Hevia and Yin [DHY02] proposed a security model for pseudo-random number
generators with input where the internal state is split into two parts: a first part named
K (the key) and second part named S (the state). In their model, a pseudo-random
number generator with input is a stateful and iterative algorithm, which at each invocation
produces some output bits as a function of the current value of Kn S and an auxiliary
input I and which updates the state S. They proposed several security properties, which
capture the potential compromise of the state S, the key K or the auxiliary input I. The
generator operations are illustrated in Fig. 9, in accordance with Definition 8.

key S1 next

K

I1

S2

I2

R1

next

Iqn

. . . next Sqn+1

Rqn

Figure 9: Pseudo-Random Number Generator with Input [DHY02]

Definition 8 ([DHY02]). A pseudo-random number generator with input is a pair of
algorithms (key, next), where key is a probabilistic algorithm that takes no input and
outputs a key K ∈ {0, 1}n and an initial state S ∈ {0, 1}n, next is a deterministic
algorithm that, given the current state S, the key K and an auxiliary input I ∈ {0, 1}p,
outputs a pair (S′, R)← next(S,K, I), where S′ ∈ {0, 1}n is the new state and R ∈ {0, 1}`
is the output.

They denoted their attacks as CIA, for Chosen-Input Attack, CSA, for Chosen-State
Attack and KKA, for Known-Key Attack. Under CIA, the key is hidden, the states are
known, but not chosen, and the auxiliary input may be chosen by the adversary. The
attack CSA is similar, except that the auxiliary inputs are not allowed to be chosen while
the states may now be chosen. The attack KKA is different: it allows the key to be known.
However, under the attack KKA, the states are hidden and the auxiliary inputs are not
allowed to be chosen. All security games are described in Fig. 10.

proc. initialize proc. getinput proc. get-state proc. next-ror
(K,S) $← key; OUTPUT Ii OUTPUT S (S,R0)← next(S,K, Ii)
(I1, · · · , Iqr )

$← ({0, 1}p)qn ; R1
$← {0, 1}`

i← 1; proc. setinput(I∗) proc. set-state(S∗) i← i+ 1
b

$← {0, 1}; Ii ← I∗ S ← S∗ OUTPUT Rb

proc. finalize(b∗) proc. get-key
IF b = b∗ RETURN 1 OUTPUT K
ELSE RETURN 0

Figure 10: Procedures in Security Games CIA,CSA and KKA
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Definition 9 ([DHY02]). A pseudo-random number generator with input (key, next) is
called (t, qn, ε)-secure against Chosen Input Attack (resp. Chosen State Attack or Known
Key Attack), if for any adversary A running in time at most t, which generates at most qn
outputs, the advantage of A in game CIA, (resp. CSA, KKA) is at most ε, where A can
call getinput and next-ror, in CIA, A cannot call get-key or set-state and can call get-state
and setinput, in CSA, A cannot call get-key or setinput and can call get-state and set-state
and in KKA, A cannot call get-state, set-state or setinput and can call get-key.

setup key next
Require: ∅ Require: ∅ Require: X,K, S, I
Ensure: X Ensure: K,S Ensure: S′, R

1: X $← {0, 1}128 1: K $← {0, 1}128 1: U = K ·X2 + S ·X + I

2: return X 2: S $← {0, 1}128 2: S′ = AESU (1)
3: return K,S 3 :R = AESU (2)

4: return (S′, R)

Figure 11: CIA, CSA, KKA: A Secure Construction

In [DHY02], Desai et al. proposed constructions secure against CSA, CIA and KKA,
which are based on existing standard specifications (ANSI X9.17 [ANS85] and FIPS [DSS00]).
However, to prove security, they rely on the capability of the adversary to ‘cause collisions
in the inputs to the functions computing the outputs or the next states’. However, the
independence between successive inputs can not be completely guaranteed and we are
not confident with the bounds presented in these constructions. Therefore we present a
new construction, based on an accumulator (Def. 1), secure against CSA, CIA and KKA.
Consider the pseudo-random number generator G = (setup, key, next) defined in Fig. 11
where the input, key, state lengths are equal (128 bits). The generator requires that in
addition to the key and next algorithms, a third algorithm named setup is defined, to
generate a random public parameter X ∈ {0, 1}128, which is the seed of an accumulator
(Def. 1). Note that this algorithm is not required in Definition 8, but since the generator
uses an accumulator, it is necessary to complete the description. The generator uses the
function (K,S, I) → K · X2 + S · X + I as a (128, 2−128)-accumulator of seed X and
the (t, 2−128)-secure standard generator G defined by G(U) = AESU (1)||AESU (2). The
security of G is measured by ε = qn(εG +εH), where εG measures the security of G and εH
measures the security of the accumulator. Hence with qn = 264, G is (t, 264, 2−63) secure
against CIA, CSA and KKA.

4.2 Model of Barak, Shaltiel and Tromer
Barak, Shaltiel and Tromer [BST03] modeled the following scenario: a manufacturer
designs a device whose output is supposed to be a randomness source. Ideally, one would
like the adversary not to be able to influence the distribution of the randomness source at
all. However, in a realistic setting an adversary can have some control over the environment
in which the device operates (temperature, voltage, frequency, timing, etc.), and it is
possible that changes in this environment affect the source. In their model, they assumed
that the adversary can define a set of k-sources that will provide the inputs. This model
also considers that the generator definition shall describe the underlying randomness
extractor, as formalized in Definition 1 and therefore an algorithm setup is used, to provide
the public parameter seed associated with the extractor.

Definition 10 ([BST03]). A pseudo-random number generator with input is a pair of
algorithms G = (setup, next), where setup is a probabilistic algorithm that outputs a public
parameter seed ∈ {0, 1}s and next is a deterministic algorithm that, given seed and an
input I ∈ {0, 1}p, outputs R← next(seed, I) ∈ {0, 1}`.



1 517

Consider the security game described in Fig. 12. The game is parametrized by a family
of distributions F , that is adversarially provided. During procedure initialize, the challenger
parses F as {Dj , j ∈ J} and calls setup to generate seed, which is given to A. During
procedure next-ror, A chooses a distribution Dj ∈ F , the challenger samples an input I of
distribution Dj , generates the real output (R0 = next(seed, I)), picks a random string (R1)
and returns the challenge Rb to A. Definition 11 formalizes security.

proc. initialize proc. next-ror(j) proc. finalize(b∗)
seed $← setup; I

$← Dj IF b = b∗ RETURN 1
parse F as {Dj , j ∈ J} R0 ← next(seed, I) ELSE RETURN 0
b

$← {0, 1}; R1
$← {0, 1}n

OUTPUT seed RETURN Rb

Figure 12: Procedures in Security Game RES(F)

Definition 11 ([BST03]). A pseudo-random number generator with input G : (setup, next)
is (t, qn, ε)-resilient for the family F if for any adversary A running in time t, which
generates at most qn outputs, the advantage of A in game RES(F) it at most ε.

setup next
Require: r Require: X, I
Ensure: X Ensure: R

1: X $← {0, 1} 512
r 1: R = [X · I]128

2: return X 2: return R

Figure 13: RES(F): A Secure Construction

Consider the pseudo-random number generator with input G defined in Fig. 13, where
r is the entropy rate of the entropy source. It uses the 2−128-universal hash function family
F : {hX : I → [X · I]128} as a (k, εH)-extractor, where εH = 1

2

√
2128−k. In [BST03] Barak

et al. demonstrated that the security of G is measured by ε = qnεH . Hence with qn = 264

and a source containing at least 512 bits of entropy we obtain that G is (t, 2−64)-resilient
for the family F . As explained in [BST03], the length of the public parameter X shall be
estimated depending on the environment and the entropy rate: for a low entropy rate (e.g.
equal to 1

4 ), we need to set p = s = 2048, while for a high entropy rate (e.g. equal to 3
4 ),

we can set p = s = 683. Hence the drawback of this model is that one has to identify an
entropy source and estimate its entropy rate.

4.3 Robustness
Barak and Halevi [BH05] proposed a security model for pseudo-random number generators
with input that clearly states that the entropy extraction process and the output generation
process are completely different in nature, where entropy extraction is information-theoretic
and generation is cryptographic. As a consequence, these two operations should be
separated and analyzed independently. The generator operations are illustrated in Fig. 14,
in accordance with Definition 12.

Definition 12 ([BH05]). A pseudo-random number generator with input is a pair of
algorithms (refresh, next) where refresh is a deterministic algorithm that, given the current
state S ∈ {0, 1}n and an input I ∈ {0, 1}p, outputs a new state S′ ← refresh(S, I)
where S′ ∈ {0, 1}n is the new state and next is a deterministic algorithm that, given the
current state S, outputs a pair (S′, R)← next(S) where S′ ∈ {0, 1}n is the new state and
R ∈ {0, 1}` is the output of the generator.
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S

I

refresh S′ S next S′

R

Figure 14: Pseudo-Random Number Generator with Input [BH05]

In their security model (described in Fig. 15), they captured the potential compromise
of the internal state S and of the inputs used to refresh the internal state. They considered
an adversary A that has access to the system where the generator is run, and can (a) get
the output of the generator, (b) modify the data that is used to refresh the internal state
of the generator and (c) have access to and modify the internal state of the generator. The
adversary A has always two choices to refresh the generator, either with an input with
high entropy, or with an input that A totally controls. In the first case, A uses procedure
good-refresh: A chooses the distribution from the family F , and generates an input of the
chosen distribution and finally the challenger applies algorithm refresh with the previously
generated input. In the second case, A uses procedure bad-refresh: A chooses an input that
is directly used with algorithm refresh. The security model uses a new important Boolean
parameter, named corrupt, which is set to true when the generator is compromised and set
to false otherwise. This parameter is part of the security game and is not a component
of the generator. Note that the next-ror procedure differs from the equivalent procedure
in the previous security models. Here, as the challenger maintains the flag corrupt, a
challenge between the real output and a random one is sent to A only if corrupt = false. If
corrupt = true, the adversary can mount an attack on the real output, so A will certainly
distinguish it from a random one. Definition 13 formalizes security.

proc. initialize proc. good-refresh(j) proc. set-state(S∗) proc. next-ror
seed $← setup; I

$← Dj ; corrupt← true (S,R0)← next(S)
S ← 0n; S ← refresh(S, I); S ← S∗ IF corrupt = true,
corrupt← true; corrupt← false; OUTPUT R0 RETURN R0

b
$← {0, 1}; ELSE

parse F as {Dj , j ∈ J} proc. bad-refresh(I) R1
$← {0, 1}`

OUTPUT seed IF corrupt = true OUTPUT Rb
S ← refresh(S, I);

proc. finalize(b∗) ELSE ⊥
IF b = b∗ RETURN 1
ELSE RETURN 0

Figure 15: Procedures in Security Game ROB(F)

Definition 13 ([BH05]). A pseudo-random number generator with input G : (refresh,
next) is (t, qn, qr, ε)-robust for the family F if for any adversary running in time t, making
at most qr calls to D-refresh and qn calls to next-ror, the advantage of A in game ROB(F)
is at most ε.

setup refresh next
Require: r Require: X, I, S Require: S
Ensure: X Ensure: S′ Ensure: S′, R

1: X $← {0, 1} 512
r 1: U = [X · I]128 1: S′ = AESS(1)

2: return X 2: S′ = S ⊕ U 2: R = AESS(2)
3: return S′ 3: return (S′, R)

Figure 16: ROB(F): A Secure Construction
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Consider the pseudo-random number generator with input G = (setup, refresh, next)
defined in Fig. 16. The generator requires that in addition to the refresh and next
algorithms, a third algorithm setup is defined, to generate a random public parameter
X that is the seed of an extractor. Note that this parameter is not mandatory in
Definition 12, but as we will explain in Section 4.4, this parameter is necessary to provide
a complete description of the generator. We denote r the entropy rate of the entropy
source. It uses the 2−128-universal hash function family {hX : I → [X · I]128} as a
(k, εH)-extractor, where εH = 1

2

√
2128−k and the (t, 2−128)-secure standard generator G

defined by G(S) = AESS(1)||AESS(2). In [BH05] Barak and Halevi demonstrated that the
security of G is measured by ε = qrεH + qnεG, where εG = 2−128 is the security of G and
εH = 1/2

√
2128−k is the extractor security. With powerful adversaries (qr = qn = 264) and

a source containing at least 512 bits of entropy, G is (t, 264, 264, 2−63)-robust . Hence we
face the same issue as for RES(F) regarding the entropy rate of the entropy source.

4.4 Robustness, Preserving and Recovering Security
Dodis et al. [DPR+13] proposed a security model in which the definition of a pseudo-random
number generator with input requires that, in addition to refresh and next algorithms, an
algorithm named setup is set. This algorithm generates a public parameter seed, which
will be used to provide a seed for an extractor and a seed for an accumulator (Definition 1).
This is illustrated in Fig. 17 and formalized in Definition 14.

setup

seed

S

I

refresh S′ S next S′

R

Figure 17: PRNG with Input [DPR+13]

Definition 14 ([DPR+13]). A pseudo-random number generator with input is a triple
of algorithms G = (setup, refresh, next) where setup is a probabilistic algorithm that out-
puts a public parameter seed ∈ {0, 1}s, refresh is a deterministic algorithm that, given
seed ∈ {0, 1}s, a state S ∈ {0, 1}n and an input I ∈ {0, 1}p, outputs a new state
S′ ← refresh(seed, S, I) ∈ {0, 1}n and next is a deterministic algorithm that, given
seed ∈ {0, 1}s and a state S ∈ {0, 1}n, outputs a pair (S′, R) ← next(seed, S) where
S′ ∈ {0, 1}n is the new state and R ∈ {0, 1}` is the output.

To define security, Dodis et al. split the adversary into two entities: an adversary A
whose task is (intuitively) to distinguish the outputs of the generator from random, and a
distribution sampler D whose task is to produce inputs I1, I2, . . . , which have high entropy
collectively, but help A in breaking the security of the generator. The distribution sampler
aims at modeling potentially adversarial environment where the generator operates. To
ensure independence of the randomness sources with seed, they require that the distribution
sampler is set independently of seed and once D is set, the adversary A has access to seed.
This separation between A and D clarifies the requirement of independence between the
adversary and seed: as independence is only required between seed and the randomness
source to build a strong randomness extractor, they enforce independence between seed
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and the ‘part’ of the adversary that has control over the randomness source and they let
the ‘other part’ have access to seed. The above discussion justifies Definition 15.

Definition 15 (Distribution Sampler). Let G = (setup, refresh, next) be a pseudo-random
number generator with input. A distribution sampler D for G is a stateful and probabilistic
algorithm which, given the current state σ, outputs a tuple (σ′, I, γ, z) where: σ′ is the new
state for D, I ∈ {0, 1}p is the next input for the refresh algorithm, γ is some fresh entropy
estimation of I, z is the leakage about I given to the adversary A. Let denote by qr the
upper bound on number of executions of D in the security games. Then D is legitimate
if H∞(Ik | I1, . . . , Ik−1, Ik+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γk for all k ∈ {1, . . . , qr}
where (σk, Ik, γk, zk) = D(σk−1) for k ∈ {1, . . . , qr} and σ0 = 0.

proc. initialize(D) proc. D-refresh proc. get-state proc. next-ror
seed $← setup; (σ, I, γ, z) $← D(σ) c← 0 (S,R0)← next(seed, S)
σ ← 0; S ← refresh(seed, S, I) OUTPUT S R1

$← {0, 1}`
S ← 0n; c← c+ γ IF c < γ∗ THEN c← 0
c← 0; IF c < γ∗ ELSE OUTPUT Rb

b
$← {0, 1}; c← min(c+ γ, n) proc. set-state(S∗)

OUTPUT seed OUTPUT (γ, z) c← 0
S ← S∗

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Figure 18: Procedures in Security Game ROB(γ∗)

Dodis et al. [DPR+13] formalized three security properties: recovering security, pre-
serving security and robustness. Informally, this new robustness property captures that
entropy can be accumulated at a low pace in the internal state of the generator to reach a
complete recovery (contrary to the previous robustness model where a full recovery is done
with a high entropy input). To model this property, they decomposed it into two simpler
properties: recovering security ensures that entropy is properly accumulated and preserving
security ensures that the accumulated entropy does not decrease. The fundamental result
of [DPR+13] is that taken together, recovering and preserving security imply robustness4.

The robustness security game uses procedures described in Fig. 18. The game is
parametrized by γ∗, that measures the minimal entropy that the pseudo-random number
generator shall have accumulated when security is expected. It uses D-refresh procedure
where the distribution sampler D is run, and its output I is used to refresh the current
state S, the amount of fresh entropy γ is added to the entropy counter c and the values of
γ and the leakage z are also returned to A; next-ror procedure, where it provides A with
either the real-or-random challenge (provided that c ≥ γ∗) or the true generator output, a
‘premature’ call before c crosses the γ∗ resets the counter c to 0, since then A might learn
something about the (low-entropy) state S in this case; get-state/set-state procedures, that
provide A with the ability to either learn the current state S, or set it to any value S∗
and in either case c is reset to 0. Definition 16 formalizes security.

Definition 16 ([DPR+13]). A pseudo-random number generator with input G = (setup,
refresh, next) is called (t, qr, qn, qs, γ∗, ε)-robust, if for any adversary A running in time
at most t, making at most qr calls to D-refresh, qn calls to next-ror/get-next and qs
calls to get-state/set-state, and any legitimate distribution sampler D inside the D-refresh
procedure, the advantage of A in game ROB(γ∗)is at most ε.

4For completeness, this result is fully described in Appendix C.
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setup refresh next
Require: ∅ Require: X, I, S Require: S,X ′
Ensure: X,X ′ Ensure: S′ Ensure: S′, R
1: X $← {0, 1}1024 1: S′ = S ·X + I 1: U = [X ′ · S]256

2: X ′ $← {0, 1}1024 2: return S′ 2: S′ = AESU (1)|| · · · ||AESU (8)
3: return X,X ′ 3: R = AESU (9)

4: return (S′, R)

Figure 19: ROB: A Secure Construction

Let q > 0, m > 0, n > 0 and γ∗ > 0. Consider:

• The (t, εG)-secure pseudo-random generator G defined by G(U) = AESU (1) || · · · ||AESU (q),
where U ∈ {0, 1}m and εG = q(q−1)

2m+1 .

• The (m, εH′)-accumulator, where εH′ = 1
2 ·
√
qr2m−n defined by the (qr/2n)-universal

hash function family {h′X : Ī →
∑qr−1
j=0 Ij ·Xj}.

• The (γ∗, εH)-extractor, where εH = 1
2

√
2n−γ∗ , defined by the 2−n-universal hash

function family {hX : I → [X · I]n}.

• The pseudo-random number generator G = (setup, refresh, next) defined in Fig. 19.

The security of G is obtained by [DPR+13], where Dodis et al. demonstrated that it
is ((t′, qr, qn, qs), γ∗, ε)-robust, where ε = qn(2εG + q2

r(εH + εH′) + 2−n+1). Taking into
account powerful adversaries (qn = qr = qs = 264) we obtain m = 256, n = 1024, γ∗ = 900
and q = 9. Hence G is ((t, 264, 264, 264), 900, 2−128)-robust: G offers 128 bits security
provided 900 bits have been accumulated in its internal state, of length 1024 bits. Note
that we considered an adversary with high capabilities (264), therefore the obtained bounds
are higher than the one from [DPR+13].

5 Extensions of the Robustness Model
5.1 Security Against Premature Next
In [DSSW14], Dodis et al. extended the robustness model to address the premature
next attack. This general attack, first explicitly mentioned in [KSWH98] is applicable
in situations in which the state of the pseudo-random number generator with input has
not accumulated a sufficient amount of entropy and is asked to produce some outputs R
via legitimate next calls. Inspired by the design of the Fortuna pseudo-random number
generator [FSK10], they partition the incoming entropy into multiple entropy pools and
then use these pools at vastly different rates when producing outputs, in order to guarantee
that at least one pool will eventually accumulate enough entropy to guarantee security
before it is emptied via a premature next call. They complement the construction presented
in Fig. 19 with a secure scheduler, whose task is to fill the different pools of entropy to
ensure that at least one pool contains enough entropy to defeat this attack.

The model extension is described in Fig. 20. In this model extension, a premature next
call is not considered an unrecoverable state corruption, and premature calls do not reset
the entropy counter. The price for this is a new parameter named β ≥ 1. In particular, in
the modified game, the game does not immediately declare the state to be uncorrupted
when the entropy counter c goes above the threshold γ∗. Instead, the game keeps a new
counter T that records the number of calls previously done to D-refresh since the last
set-state or get-state call (or since the start of the game). When c goes beyond γ∗, it sets
T ∗ ← T and the state becomes uncorrupted only after T ≥ β · T ∗ (of course, provided A
made no additional calls to set-state or get-state). In [DSSW14], Dodis et al. introduced a
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proc. initialize(D) proc. D-refresh proc. get-state proc. next-ror
seed $← setup; (σ, I, γ, z) $← D(σ) c← 0, corrupt← true; (S,R0)← next(seed, S)
σ ← 0; S ← refresh(seed, S, I) T ← 0, T ∗ ← 0 R1

$← {0, 1}`
S ← 0n; c← c+ γ OUTPUT S IF c < γ∗,
c← 0; T ← T + 1 RETURN R0

b
$← {0, 1}; IF c ≥ γ∗ ELSE

corrupt← true IF T ∗ = 0 OUTPUT Rb
OUTPUT seed T ∗ ← T proc. set-state(S∗)

IF T ≥ β · T ∗ c← 0, corrupt← true
proc. finalize(b∗) corrupt← false T ← 0, T ∗ ← 0
IF b = b∗ RETURN 1 OUTPUT (γ, z) S ← S∗

ELSE RETURN 0

Figure 20: Procedures in Security Game NROB(γ∗, β)

new parameter named wmax, that is an upper bound on the collected entropy for each
input. In our description, we omit this parameter, because as mentioned in [DSSW14], it
is mainly useful for the security proof.

Definition 17 (Security of PRNG with input against Premature Next [DSSW14]). A
pseudo-random number generator with input G = (setup, refresh, next) is called (T =
(t, qr, qn, qs), γ∗, ε, β)-premature next robust, if for any attacker A running in time at
most t, making at most qr calls to D-refresh, qn calls to next-ror/get-next and qs calls
to get-state/set-state, and any legitimate distribution sampler D inside the D-refresh
procedure, the advantage of A in game NROB(γ∗, β) is at most ε

SC
Require: skey, τ
Ensure: τ ′, in, out

1: IF τ 6= 0 mod 512, THEN out←⊥
2: ELSE out← max{out : τ = 0 mod 2τ+9}
3: in← int([AESskey(τ)]5)
4: τ ′ ← τ + 1 mod 232

5: OUTPUT (τ ′, in, out)

Figure 21: NROB: A Secure Scheduler

In [DSSW14], Dodis et al. proposed a construction inspired by the design of the
Fortuna pseudo-random number generator [FSK10]. The idea is to use a pool of 32 robust
pseudo-random number generators, two of whom are chosen pseudo-randomly, one to
collect entropy and the other one to generate outputs. The choice of the two generators is
done through the function SC (for secure scheduler), which uses the block cipher AES as
a pseudo-random function and public parameters skey and τ . For the exact formalization
of a scheduler, we refer to [DSSW14]; in this paper, we focus on the instantiation with
common primitives. The secure scheduler SC is described in Fig. 21. We denote int([X]5)
the function that converts the five leftmost bits of X to an integer in {0, · · · , 31}.

Let i be an integer. Consider the pseudo-random number generator family Gi = (setupi,
refreshi, nexti) described in Fig. 22 (top). Each generator is exactly the same as the one
described in Fig. 19, except that the output of Gi has length 256 bits (instead of 128 bits for
the construction of Fig. 19), all generators have the same setup function, denoted setupG).
Consider finally the pseudo-random number generator G = (setup, refresh, next) described
in Fig. 22 (bottom). It uses 32 different generators Gi, i = 1, · · · , 32, the scheduler SC,
has output length equal to 256 bits. Its internal state is equal to the concatenation of
the 32 internal states of the generators Gi (Si), each of length 1024 bits, a block Sρ of
length 256 bits, an integer τ of length 32 bits, two integers in, out ∈ {0 · · · 31}. Parameters
X,X ′ and skey are public. In [DSSW14], Dodis et al. proved that the pseudo-random



1 523

setupG refreshi nexti
Require: ∅ Require: X, I, Si Require: Si, X ′
Ensure: X,X ′ Ensure: S′ Ensure: S′i, R

1: X $← {0, 1}1024 1: S′i = Si ·X + I 1: U = [X ′ · Si]256

2: X ′ $← {0, 1}1024 2: return S′i 2: S′i = AESU (0)|| · · · ||AESU (7)
3: return X,X ′ 3: R = AESU (8)||AESU (9)

4: return (S′i, R)

setup refresh next
Require: ∅ Require: X, I, S Require: S
Ensure: X,X ′, skey Ensure: S′ Ensure: S′, R

1: X,X ′ ← setupG 1: parse seed as (key, seed) 1: parse S as (τ, Sρ, (Si)31
i=0)

2: skey $← {0, 1}128 2: parse S as (τ, Sρ, (Si)31
i=0) 2: Sρ = AESSτ (1)||AESSρ(2)

3: return X,X ′, skey 3: (τ, in, out)← SC(key, τ) 3: R = AESSρ(3)||AESSρ(4)
4: Sin ← refreshin(X,Sin, I) 4: return (S′, R)
5: (Sout, R)← nextout(X ′, Sout)
6: Sρ ← Sρ ⊕R
7: return S′ = (τ, Sρ, (Si)31

i=0)

Figure 22: NROB: A Secure Construction (Gi, G)

number generator with input G defined above is ((t, 232, 232, 232), 900, 2−128, 4)-premature
next robust.

5.2 Security against Memory Attacks
In [CR14], Cornejo and Ruhault proposed a modification of the robustness security model
to identify exactly the part of S that an adversary needs to compromise to attack a pseudo-
random number generator with input. To capture this idea, they considered the internal
state as a concatenation of several binary strings (named hereafter its decomposition). They
modelled the adversarial capability of an adversary A with two new functions namedM-get
andM-set that allow A to set or get a part of the internal state of the pseudo-random
generator with input defined with a maskM. They assumed that the adversary A knows
the decomposition of S and is able to chooseM adaptively. The only differences between
their security game and the original game ROB is that they replaced the procedures
get-state and set-state, with new procedures M-get-state and M-set-state, allowing the
adversary to get/set a part the internal state identified by the mask.

proc. initialize(D)
seed $← setup;
σ ← 0;
S

$← {0, 1}n;
c← n;
corrupt← true;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc.M-set-state(S,M, J)
S ←M-set(S,M, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

proc.M-get-state(S, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

OUTPUT M-get(S, J)

proc. next-ror
(S,R0)← next(S)
IF c < γ∗,
c← 0
OUTPUT R0

ELSE

R1
$← {0, 1}`

OUTPUT Rb

Figure 23: Procedures in Security Game MROB(γ∗, λ)

Definition 18 (Decomposition). A decomposition of a binary string S ∈ {0, 1}n is a
sequence of disjoint binary strings (S1, · · · , Sk), such that S = [S1|| · · · ||Sk]. Two binary
strings S and M have the same decomposition if M = [M1|| · · · ||Mk] and |Si| = |Mi| for
i ∈ {1, · · · , k}.
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Definition 19 (M-get /M-set). FunctionM-get takes as input a couple (S, J), where
S = [S1|| · · · ||Sk] and J ⊂ {1, · · · , k}, then M-get(S, J) = (Sj)j∈J . Function M-set
takes as input a triple (S,M, J), where S,M ∈ {0, 1}n have the same decomposition
S = [S1|| · · · ||Sk],M = [M1|| · · · ||Mk] and J ⊂ {1, · · · , k}, then M-set(S,M, J) = S,
where Sj = Mj , for j ∈ J .

These functions are adversarially provided, and their goal is to let A choose the mask
M over the internal state. Note that if the mask is too large (so that G becomes insecure),
the security game will require that new input is collected. These procedures model the
memory attacks against the generator.

The security model is adapted from the security game ROB(γ∗) from Sect. 4.4. The
integer γ∗ defines the minimum entropy that is required in S for the generator to be secure.
Integer c estimates the amount of collected entropy. The integer λ ≤ n defines the size
of the maskM. Boolean flag corrupt is set to true if c < γ∗ and false otherwise. Boolean
b is used to challenge the adversary A. The security game uses procedures described in
Fig. 23. The procedure initialize sets the parameter seed with a call to algorithm setup, the
internal state S of the generator, as well as parameters c and b. Note that they initially
set c to n and S to a random value, to avoid giving any knowledge of S to the adversary
A. After all oracle queries, A outputs a bit b∗, given as input to the procedure finalize,
which compares the response of A to the challenge bit b. Procedure D-refresh is the same
as in the security game ROB(γ∗), procedureM-set-state is used by A to set a part of S.
First A calls functionM-set to update a part of the internal state. Then the counter value
c is decreased by λ, the size of the mask M (c ← c − λ) and as in the initial set-state
procedure, if c < γ∗, c is reset to 0. ProcedureM-get-state is used by A to get a part of
S. First A calls the functionM-get. Then the counter value c is decreased by λ, the size
of the maskM (c← c− λ) and as in the initial get-state procedure, if c < γ∗, c is reset to
0. Procedure next-ror is the same as in the security game ROB(γ∗).

Definition 20 (Security of a Pseudo-Random Number Generator with Input against
Memory Attacks [CR14]). A pseudo-random number generator with input G = (setup,
refresh, next) is called (T = (t, qr, qn, qs), γ∗, ε)-robust against memory attacks, if for any
adversary A running in time at most t, the advantage of A in game MROB(γ∗, λ) is at
most ε.

It is possible to construct a robust pseudo-random number generator with input
(Definition 16) that never resists a single bit corruption. Consider G = (setup, refresh, next)
a robust pseudo-random number generator with input and denote S its internal state.
Consider G′ = (setup′, refresh′, next′) a second pseudo-random number generator with input.
The internal state of G′ is defined with S′ = S||b where b is a single bit. The generator G′
is defined with the following algorithms:

• refresh′(S′, I) = refresh(S, I)||1 (i.e. S ← refresh(S, I) and b← 1)

• next′(S′) = next(S) if b = 1, next′(S′) = 0 if b = 0

Then generator G′ is robust since, as soon as one refresh procedure is executed the bit b
is set to 1 and the generator G′ works exactly as G does when the internal state is not
compromised. However, it is obviously not secure under a corruption of the single bit b.
Note that a similar attack can be applied against the premature next robust construction
presented in Fig. 22 as a compromise of the part of the internal state named Sτ makes the
output of the generator predictable.

In [CR14], Cornejo and Ruhault proposed an extension of the construction described
in Fig. 19. Their proved that if the length of the internal state is increased with λ, then
the generator is robust against memory attacks. However, note that this simple extension
works because the internal state is composed of one full block that cannot be divided into
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smaller blocks. An interesting work would be to extend the construction described in
Fig. 22 because this construction explicitly requires a specific decomposition of the internal
state between blocks.

5.3 Leakage Security
In [ABP+15], Abdalla et al. proposed a modification of the robustness security model to
capture the potential leakage of sensitive information. In the robustness security model
ROB, the distribution sampler D generates the external inputs used to refresh the generator
and already gives the adversary A some information about how the environment of the
generator leaks when it generates these inputs. This information is modelled by z. In order
to model information leakage during the executions of the algorithms refresh and next, they
give the adversary the choice of the leakage functions, that they globally name f , associated
to each algorithm, or even each small block. Since they restrict our model to non-adaptive
leakage, they ask the adversary to choose them beforehand. So the leakage functions are
provided as input to the initialize procedure by the adversary (see Fig. 24). Then, each
leakage function will be implicitly used by two new procedures named leak-refresh and
leaknext that, in addition to the usual outputs, also provide some leakage L about the
manipulated data.

The procedures leak-refresh and leaknext are detailed below:

• The procedure leak-refresh runs the refresh algorithm but additionally provides some
information leakage L on the input (S, I) and seed. As for the next-ror-queries, the
leakage can reveal information about a insecure internal state before the effectiveness
of the refresh, and then c is reduced by λ bits. And if c drops below the threshold
γ∗, it is reset to 0. Note that if the D-refresh algorithm is complex, several leakage
functions can be defined at every step, but the global leakage is limited to λ bits,
hence the notation {. . .}, since they can be interleaved.

• The procedure leaknext runs the next algorithm but additionally provides some
information leakage L on the input S and seed, according to the leakage function f
provided to the initialize procedure. If the generator is in a secure state, then the
new entropy estimate c is set to α, otherwise, it is reset to 0 (as for the next-ror). If
the next algorithm is complex, several leakage functions can be defined at each step,
but the global leakage is limited to λ bits (hence the notation {. . .}).

We thus have two new parameters: λ, that bounds the output length of the leakage
function and α, that models the minimal expected entropy of S after a leaknext (next with
leakage) call, in a secure case, when the entropy of the internal state was assumed greater
than γ∗.

As in the security game ROB, attackers have two parts: a distribution sampler and a
classical attacker with the former only used to generate seed-independent inputs (potentially
partially biased) from device activities. The threshold γ∗ has to be slightly higher in this
model, because for a similar next algorithm, we need to accumulate a bit more of entropy
to maintain security even in presence of leakage. Typically, it has to be increased by
λ. After detailing the new security game, we can define the notion of leakage-resilient
robustness of a pseudo-random number generator with input.

Definition 21 (Leakage-Resilient Robustness of Pseudo-Random Number Generator with
Input [ABP+15]). A pseudo-random number generator with input G = (setup, refresh,
next) is called (t, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust, if for any adversary A running
in time t, that first generates a legitimate distribution sampler D (for the D-refresh/
leak-refresh procedure), that subsequently makes at most qr calls to D-refresh/leak-refresh,
qn calls to next-ror/leaknext, and qs calls to get-state/set-state with a leakage bounded by
λ, the advantage of A in game LROB(γ∗, λ) is at most ε.
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proc. initialize(D, f)
seed $← setup
σ ← 0;
S ← 0;
c← 0;
b

$← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF compromised

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. leak-refresh
(σ, I, γ, z) $← D(σ){
L← f(S, I, seed)
S ← refresh(S, I; seed)

}
c← max{0, c− λ}
IF cγ∗

c← 0
OUTPUT (L, γ, z)

proc. get-state
c← 0;
OUTPUT S

proc. set-state(S∗)
c← 0;
S ← S∗

proc. leaknext{
L← f(S, seed)
(S,R)← next(S; seed)

}
IF cγ∗

c← 0
ELSE

c← α
OUTPUT (L,R)

proc. next-ror
(S,R0)← next(S)
IF cγ∗,
c← 0
RETURN R0

ELSE

R1
$← {0, 1}`

RETURN Rb

Figure 24: Procedures in the Security Game LROB(γ∗, λ)

Unfortunately, even a secure standard pseudo-random generator is not enough to resist
information leakage. As shown in [MOP07] and later in [BGS15], several calls to AES with
known inputs and one single secret key may lead to very efficient side-channel attacks
that can help to recover the secret key. Because of the numerous executions of AES with
the same key, one can perform a differential power analysis (DPA) attack. Then, for the
construction of Fig. 19, during a leaknext, even with a safe state, the DPA can reveal the
secret key of the internal AES, that is also used to generate the new internal state from
public plaintexts. This internal state, after the leaknext, can thus be recovered, whereas it
is considered as safe in the security game. A next-ror challenge can then be easily broken.

Therefore Abdalla et al. [ABP+15] pointed out that one needs a stronger notion of
security than the usual security of a standard pseudo-random number generator for G,
namely a leakage-resilient and secure standard pseudo-random number generator (Definition
22): it takes as input a perfectly random m-bit string U , and generates an (n + `)-bit
output T = (S,R) that looks random. Even in case of leakage, S should have enough
entropy.

Definition 22 (Leakage-Resilient and Secure Standard Pseudo-Random Number Gene-
rator [ABP+15]). A standard pseudo-random number generator G : {0, 1}m → {0, 1}N is
(α, λ)-leakage-resilient and (t, ε)-secure if it is first a (t, ε)-secure standard pseudo-random
number generator, but in addition, for any adversary A, running within time t, that
first outputs a leakage f with λ-bit outputs, there exists a source that outputs pairs
(L, T ) ∈ {0, 1}λ × {0, 1}N , so that the entropy of T , conditioned on L being greater than
α, and the advantage with which A can distinguish (f(U),G(U)) from (L, T ) is bounded
by ε.

With this new property, they proposed three extensions of the construction of Fig. 19
that are leakage-resilient robust. An interesting work would be to extend the construction
described in Fig. 22 because this construction explicitly requires several computations of
AES that may be vulnerable to side-channel attacks.

6 Discussion: (In)dependence of seed
6.1 Impossibility Results
The robustness model from [DPR+13] has a limitation: the seed dependence of the
distribution used to generate inputs. The proposed constructions crucially rely on the
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independence between the distribution sampler and seed, and impossibility results show
that full seed dependence is impossible.

There is a direct attack when independence between the randomness source and the
seed is not guaranteed for the secure robust construction described in Fig. 19. In the secure
construction, seed is composed of two parts (X,X ′), where X,X ′ ∈ F2n , the input I ∈ F2n

and the state S ∈ F2n . Consider the distribution sampler D where Ij is sampled uniformly
from {0, Xj−qr}. Let us consider an adversary A against the security of the generator that
chooses the distribution D, and that makes the following oracle queries in the security game
ROB: one call to set-state(0), qr calls to D-refresh , one call to next-ror. After qr calls to
D-refresh, the state of the generator is equal to: S = Xqr−1I1 +Xqr−2I2 + · · ·+ Iqr . Then,
as each term Xqr−jIj can only be equal to 0 or 1 the state S can only be equal to 0 or 1,
although the inputs I1, · · · , Iqr collectively contain qr bits of entropy. Hence the adversary
A breaks the robustness of the generator. One may argue that this kind of attack is only
possible because this construction does not use cryptographic primitives, however, as we
show in the following impossibility result, it does not suffice to build a refresh algorithm
upon cryptographic primitives (as opposed to the polynomial hash function) to be secure
against such attack. Indeed, an explicit impossibility result can also be pointed out for the
generator described in [BK15], named CTR_DRBG, and proposed as a standard by the
NIST. As before, if we allow the distribution sampler to depend on seed, the adversary
can mount an attack against the robustness of the generator. Here the critical point is
that the parameter seed is not defined in the specification [BK15], hence an assumption
shall be made on its definition. A careful analysis of the specification shows that a public
parameter K = 0x00010203040506070809101112131415 is defined in the specification,
which is used exactly for randomness extraction. If we allow the distribution sampler D to
sample an input that depends on K, the adversary A can mount an attack against the
robustness of the generator. For completeness, as this attack is new, it is fully described
in Appendix D.

6.2 Potential Solutions

Two promising solutions concern (a) the restriction of the capabilities of the adversary
and (b) the allowance of a certain level of dependence of seed.

The first solution is to restrict the capabilities of the adversary A to force its running
time to be less than the running time of the extractor Extract. This idea was formalized by
Trevisan and Vadhan in [TV00]. In this work, they show how seed-dependent randomness
extraction is possible from a samplable distribution, provided that the complexity of the
extractor is larger than the complexity of the adversary A that generates the source X.
In line with this, Dodis, Ristenpart and Vadhan [DRV12] showed that sufficiently strong
collision-resistant hash functions are seed-dependent condensers.

The second solution is to allow a certain level of dependence between the randomness
source and seed. In [DSSW14], Dodis et al. introduced a realistic model that effectively
allows a certain level of seed dependence. They complemented the robustness model
allowing the attacker A and the distribution sampler D to define a new distribution
sampler D′ correlated with seed. The idea is that the inputs that are accumulated in the
internal state of the generator shall be generated by the sampler D, while the inputs that
are controlled by the adversary can be correlated and therefore use the second sampler D′.
They proved that the original construction of [DPR+13] can be extended in this model
with the same parameters.
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7 Conclusion
In this systematization of knowledge, we presented the main security models that have
been formalized to define and assess the security of pseudo-random number generators.
We presented three notions of generators, standard generators: stateful generators and
generators with input; for each notion, we presented expected security properties. We
proposed for each security model a secure and efficient construction based on AES and
a polynomial hash function. We explained the link with the notions of accumulator and
extractor that are used to collect entropy sources and to generate outputs. Security notions
presented rely on the independence between the randomness source and the seeds of the
accumulator and the extractor. To illustrate this requirement, we presented an attack
against one NIST specification under the assumption that this independence is not ensured.
We finally presented potential solutions where some level of dependence is accepted. We
presented extensions of the robustness model, a promising work would be to extend the
premature next robust construction in the context of memory attacks and leakage.

Our paper is summarized in Table 1. For each model, we provide (a) the definition
(b) the attacker capabilities (c) the dependence on a standard pseudo-random number
generator, a randomness extractor, a randomness accumulator or a secure scheduler and
(d) the operations that are necessary in each secure construction.
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Table 1: Security Properties of Pseudo-Random Number Generators

Ref. Definition Property Attacker Capabilities Construction Operations (*)
G Ext Acc SC refresh next

[BY03] 1 : S ← key FWD next-ror, get-state 6 AES (2)
2 : (S′, R)← next(S)

[LMO+14] 1 : S ← key LPR(f) next-ror, leaknext 6 AES (3)
2 : (S′, R)← next(S)

[DHY02] 1 : (K,S)← key CIA getinput, get-state, setinput + (3), × (2),
2 : (S′, R)← next(S,K, I) CSA getinput, get-state, set-state 6 6 AES (2)

KKA getinput, get-key
[BST03] 1 : seed← setup RES(F) next-ror 6 × (1), [ ] (1)

2 : R← next(seed, I)
[BH05] 1 : S′ ← refresh(S, I) ROB(F) good-refresh, bad-refresh, 6 6 × (1), [ ] (1), AES (2)

2 : (S′, R)← next(S) get-state, next-ror ⊕ (1)
[DPR+13] 1 : seed← setup ROB(γ∗) D-refresh, set-state, get-state 6 6 6 × (1), + (1) × (1), [ ] (1),

2 : S′ ← refresh(seed, S, I) next-ror AES (9)
3 : (S′, R)← next(seed, S)

[DSSW14] 1 : seed← setup NROB(γ∗, β) D-refresh, set-state, get-state 6 6 6 6 + (1), × (2), AES (4)
2 : S′ ← refresh(seed, S, I) next-ror ⊕ (1), [ ] (2),
3 : (S′, R)← next(seed, S) AES (11)

6: The construction involves a secure standard generator G, a strong extractor Ext, a strong accumulator Acc or a secure scheduler SC.
*: Secure constructions for each property involves multiplications (×), additions (+), XOR (⊕), truncations ([ ]), AES computations (AES).
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A Pseudo-Random Functions and Permutations
We recall the definitions of a pseudo-random function from [BKR94]. A pseudo-random
function is a family of functions such that no adversary can computationally distinguish
the input/output behavior of a random instance from this family from the input/output
behavior of a random function.

Hence in this security model the adversary can give inputs to the function and gets
the corresponding output in a black-box way. Intuitively, as explained in [BKR94], the
pseudo-randomness of a function family is its ‘distance’ from the ensemble of the family
of all functions. This notion was originally proposed by Goldreich, Goldwasser and
Micali [GGM86]. They explain the notion with the following intuitive example. Consider
the set Fk of all functions from {0, 1}k to {0, 1}k. This set has cardinality 2k.2k , hence to
describe a (random) function from this set, we would need k.2k bits, which is impractical.
Suppose now that we select a set of cardinality 2k, denoted F̂k and such that F̂k ⊂ Fk.
This allows to build a family of functions, where each function is indexed with a unique
index in {0, 1}k. The family F̂k is pseudo-random if no adversary can computationally
distinguish the functions from F̂k from the functions in Fk. Let first formalize the notion
of Keyed Family of Functions in Definition 23.

Definition 23 (Keyed Family of Functions). A keyed family of functions is a map
F : {0, 1}s × {0, 1}` → {0, 1}L, where (a) {0, 1}s is the key space of F and s is the key
length (b) {0, 1}` is the domain of F and ` is the input length and (c) {0, 1}L is the range
of F and L is the output length

Hence in a Keyed Family of Functions, each function is specified by a short, random
key. As explained, the security objective we give is that the function behaves like a
random one, in the sense that a computationally bounded adversary that is given the
key cannot distinguish the input-output behavior of the function from a random function.
This property is formalized with the security game PRF described in Fig. 25.

proc. initialize
K

$← {0, 1}s;
funtab← ∅
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror(x)
R0 ← F(x,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}L
y ← funtab[x]
R1 ← y
RETURN Rb

Figure 25: Procedures in Security Game PRF

In this security game, the challenger first generates a random key K $← {0, 1}s and
a bit b $← {0, 1}, then the adversary A uses procedure funct-ror with chosen inputs. For
each input, the challenger generates a real output with function F or a random output and
challenges A on its capability to distinguish the output of F from random. Note that the
challenger constructs a lookup table funtab for the random outputs to ensure that the
evaluation of equal inputs gives equal outputs: funtab is first initialized with ∅; then at
each oracle call, if the value does not exists in the lookup table funtab, it is randomly
created, otherwise it is directly given as a random output.

Definition 24 (Pseudo-Random Function). A keyed family of functions F : {0, 1}s×{0, 1}`
→ {0, 1}L is a (t, q, ε)-pseudo-random function if for any adversary A running in time at
most t, that makes q calls to procedure funct-ror, the advantage of A in game PRF is at
most ε.
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Hence a pseudo-random function is a function which cannot be distinguished from a
random function by any efficient distinguisher. Sometimes, however, the full power of
a pseudo-random function is not needed and it is sufficient that the function cannot be
distinguished when queried on random values. Such objects are referred to as weak pseudo-
random functions. The associated security game WPRF is the same as PRF, except that
the inputs of the pseudo-random function F in the funct-ror procedure are not adversarially
chosen but are picked at random by the challenger. The procedures are presented in
Fig. 26.

proc. initialize
K

$← {0, 1}s;
funtab← ∅
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror
x

$← {0, 1}s
R0 ← F(x,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}L
y ← funtab[x]
R1 ← y
RETURN (x,Rb)

Figure 26: Procedures in Security Game WPRF

Definition 25 (Weak Pseudo-Random Function). A keyed family of functions F : {0, 1}s×
{0, 1}` → {0, 1}L is a (t, q, ε)-weak pseudo-random function if for any adversary A running
in time at most t, that makes q calls to procedure funct-ror, the advantage of A in game
WPRF is at most ε.

proc. initialize()
K

$← {0, 1}n;
funtab← ∅;
T← ∅;
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror(x)
R0 ← F(xi,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}n \ T
T = T ∪ funtab[xi]

y ← funtab[x]
R1 ← y
RETURN Rb

Figure 27: Procedures in Security Game PRP

In a Keyed Family of Functions, each function is specified by a short, random key. One
can similarly define a Keyed Family of Permutations, where each function is a permutation.

We can define an objective similar to that for pseudo-random functions, in the sense
that a computationally bounded adversary that is given the key cannot distinguish the
input-output behavior of the permutation from a random one. This property is formalized
with the security game PRP described in Fig. 27.

Definition 26 (Pseudo-Random Permutation). A keyed family of permutations F :
{0, 1}p × {0, 1}n → {0, 1}p is a (t, q, ε)-pseudo-random permutation if for any adversary A
running in time at most t, that makes q calls to procedure funct-ror, the advantage of A in
game PRP is at most ε.

The following lemma, referred to the ‘PRF/PRP Switching Lemma’ shows the relation
an advantage in game PRF and an advantage in game PRP. See [GB01] for a complete
proof of this Lemma.

Lemma 2. Let n ≥ 1 be an integer. Let A be an adversary that makes at most q queries.
Then:

|AdvPRF
A − AdvPRP

A | ≤ q(q − 1)
2n+1 .
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B Proof of the Leftover Hash Lemma
The proof we present is adapted from [DRV12] and [Che09]. Fix any I 6= I ′ ∈ {0, 1}p, with
H∞(I) ≥ k and H∞(I ′) ≥ k. Fix X ∈ {0, 1}s independently of I and I ′ and R ∈ {0, 1}n,
with H∞(R|X) ≥ k′. First consider the statistical distance between (X,hX(I)) and
(X,R). We introduce a second notion of distance between two random variables X and
Y : ∆2(X,Y ) =

√∑
x |Pr[X = x] Pr[Y = x]|, and we define the collision probability of

a random variable X as the probability that two independent samples of X are equal:
CP(X) =

∑
x Pr[X = x]2.

We can bound the statistical distance between (X,hX(I)) and (X,R) by their ∆2
distance: SD((X,hX(I)), (X,Um)) ≤ 1

2

√
2s · 2k′ · ∆2((X,hX(I)), (X,R)), and we have

∆2((X,hX(I))2 = ∆2((X,hX(I)), (X,R))2 + 2−k′−s.
Now as ∆2((X,hX(I))2 ≤ CP(X) · (PrI [I = I ′] + PrX [I 6= I ′ | hX(I) = hX(I ′) ], and

as I and I ′ are sampled independently of X, as H∞(I) ≥ k and H∞(I ′) ≥ k and as H is
2−n · (1 + α)-universal, we have that:

∆2((X,hX(I))2 ≤ 2−s · (2−k + 2−n · (1 + α)),

and finally the statistical distance between (X,hX(I)) and (X,R) is bounded by:

1
2
√

2s · 2k′
√

2−s−k + 2−s−n(1 + α)− 2−s−k′ .

Following, the hash functions family H is a strong (k, k′, ε)-condenser, where:

ε = 1
2

√
2k′−k + 2k′−n(1 + α)− 1 .

Then setting k′ = m, the hash functions family H = {hX : {0, 1}p → {0, 1}n}X∈{0,1}s ,
is a (k, ε)-strong extractor for ε = 1

2
√

2n−k + α and setting k′ = k, the hash functions
family H = {hX : {0, 1}p → {0, 1}n}X∈{0,1}s , is a (k, ε)-strong accumulator for ε =
1
2

√
2k−n(1 + α) .
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C Recovering and Preserving Security
The notion of recovering security considers an adversary that compromises the state to
some arbitrary value S0, either by asking for the state (get-state), setting it (set-state) or
with the output (next-ror) when the internal state is unsafe. Afterwards, sufficient calls
to D-refresh are made to increase the entropy estimate c above the threshold γ∗. The
recovering process should make the bit b involved in the next-ror procedure indistinguishable:
when the internal state is considered to be secure, the output randomness R should look
indistinguishable from random.

Formally, we consider the security game RECOV for a pseudo-random number generator
with input (setup, refresh, next), whose procedures are described in Fig. 28.

proc. initialize(D)
seed $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1TO qrDO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S ← S∗

c← 0

proc. D-refresh
k ← k + 1;
S = refresh(S, Ik);
IF c < γ∗,
c = min(c+ γk, n)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b)),
(Ik+1, . . . , Iqr )

Figure 28: Procedures in Security Game RECOV(qr, γ∗)

The security game RECOV is described as follow, with an adversary A, a sampler D,
and bounds qr, γ∗:

1. The challenger generates a seed seed $← setup and a bit b $← {0, 1} uniformly at
random. It sets σ0 = 0 and for k = 1, . . . , qr, it computes (σk, Ik, γk, zk)← D(σk−1),
initializes k = 0 and sets c = 0. It then gives back the seed and the values γ1, . . . , γqr
and z1, . . . , zqr to the adversary.

2. The adversary gets access to an oracle getinput which on each invocation increments
k := k + 1 and outputs Ik.

3. At some point the adversary A calls the procedure set-state: it sets a chosen internal
state S∗ ∈ {0, 1}n. It then chooses an integer d such that k + d ≤ qr and γk+1 +
· · · + γk+d ≥ γ∗, then calls D-refresh d times: this procedure updates the state
S := refresh(S, Ik+j) and updates c← c+ γk sequentially.

4. Eventually, the challenger sets (S(0), R(0))← next(S) and generates (S(1), R(1)) $←
{0, 1}n+`. It then gives (S(b), R(b)) to the adversary, together with the next inputs
Ik+1, . . . , Iqr (if k was the number of refresh-queries asked up to this point);

5. The adversary A outputs a bit b∗.

The output of the game is the output of the finalize oracle at the end, which is 1 if the
adversary correctly guesses the challenge bit, and 0 otherwise. Note that the challenge
concerns the total output of the next algorithm. We define the advantage of the adversary
A and sampler D in the above game as |2 Pr[b∗ = b]− 1|.

Definition 27 (Recovering Security). A pseudo-random number generator with input
(setup, refresh, next) is said (t, qr, γ∗, ε)-recovering if for any adversary A and sampler D,
both running in time t, the advantage of A in Game RECOV(qr, γ∗) is at most ε.
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The preserving security notion considers a secure internal state. After several calls to
D-refresh with known (and even chosen) inputs, the internal state should remain secure.
An initial state S is generated with entropy n. Then it is refreshed with arbitrary many
calls to D-refresh. This is the preserving process, which should make the bit b involved in
the next-ror procedure indistinguishable: since the internal state is considered as secure,
the output randomness R should look indistinguishable from random.

Formally, we consider the security game PRES for a pseudo-random number generator
with input (setup, refresh, next), whose procedures are described in Fig. 29.

proc. initialize(D)
seed $← setup;
S

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
S = refresh(S, I)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Figure 29: Procedures in Security Game PRES

The security game PRES is described as follow, with an adversary A and a sampler D:

1. The challenger generates an initial state S $← {0, 1}n, a seed seed← setup, and a bit
b

$← {0, 1} uniformly at random. It gives back the seed to the adversary;

2. The adversary A gets seed and can ask as many queries as it wants to the oracles
D-refresh but with chosen inputs I to the D-refresh-queries. The D-refresh procedure
simply applies the refresh algorithm to the current state and the input.

3. Eventually, the challenger sets (S(0), R(0)) ← next(S) and generates (S(1), R(1))
$← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary.

4. The adversary A outputs a bit b∗.

The output of the game is the output of the finalize oracle at the end, which is 1 if the
adversary correctly guesses the challenge bit, and 0 otherwise. Note that the challenge
concerns the total output of the next algorithm. We define the advantage of the adversary
A in the above game as |2 Pr[b∗ = b]− 1|.

Definition 28 (Preserving Security). A pseudo-random number generator with input
(setup, refresh, next) is said (t, ε)-preserving if for any adversary A and sampler D, both
running in time t, the advantage of A in the game PRES is at most ε.

Dodis et al. [DPR+13] proved that the recovering and preserving security notions
together imply the full notion of robustness. This result is of paramount importance as it
allows to prove the full robustness of a given construction with the notions of recovering
and preserving, that are in practice easier to assess. This result has been used intensively
to construct a robust generator, and also in the different model extensions.

Theorem 1. If a pseudo-random number generator with input (setup, refresh, next) has both
(t, qr, γ∗, εr)-recovering security and (t, εp)-preserving security, then it is ((t′, qr, qn, qs), γ∗, qn(εr+
εp))-robust where t′ ≈ t.
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D Potential Vulnerability of NIST CTR_DRBG
We identify a potential vulnerability of the generator described in [BK15], named CTR_DRBG,
and published as a standard by the NIST. As before, if we allow the distribution sampler to
depend on seed, the adversary can mount an attack against the robustness of the generator.
Here the critical point is that the parameter seed is not defined in the specification [BK15],
hence an assumption shall be made on its definition. A careful analysis of the specification
shows that it defines a public parameter K = 0x00010203040506070809101112131415,
which is used exactly for randomness extraction (through a ‘derivation function’ that we
describe below). If we allow the distribution sampler D to sample an input that depends
on K, the adversary A can mount an attack against the robustness of the generator.

Let us first describe the operations of CTR_DRBG. The complete description of
CTR_DRBG is given in [BK15]; here we give a shorter description that focuses on important
facts. Also note that the generator uses a block cipher (bc) during its operations. In our
description, we assume that the block cipher is AES_128. We verified that our attack works
independently of this choice. We intentionally simplified the description of CTR_DRBG:

• The specification separates the input used to refresh the generator into two com-
ponents: the ‘source entropy input’ and the ‘additional input’, the former being
used to refresh the internal state during output generation. Note that this is close
to the security model of Desai et al. [DHY02], described in Sect. 4.1. As noted in
the following sections, we prefer to consider the complete list of inputs as a single
entity, therefore we will drop the ‘additional input’ parameter in our descriptions
and only consider that there is one class of input, the ‘source entropy input’. This is
equivalent to set the ‘additional input’ to ∅ in the descriptions.

• The specification considers two cases, depending on the use of a ‘derivation function’
named Block_Cipher_df. The difference between these two cases is the following: for
a given input, either the input is directly used ‘as is’ or the input is first transformed
with an internal function (the so-called ‘derivation function’) and then afterwards
used by the generator. Whenever an algorithm uses the function Block_Cipher_df,
the algorithm is named ‘with derivation’. In our descriptions, we only keep the
algorithms ‘with derivation’ as our attacks are related to the use of this function.

• A ‘Setup’ function and an ‘Instantiate’ function are defined, that are used to initialize
the internal state of the generator. In our description, we do not take into account
these algorithms, as we focus on the algorithm used to refresh the internal state of
the generator (named the ‘Reseed function’ in the specification) and the algorithm
used to generate output (named the ‘Generate function’ in the specification). We
omit these functions because our attack relies on a state compromise and for any
initialization value, the adversary has access to it.

The internal state of CTR_DRBG is composed of three parts, S = (V,K, ctr) where:
|V | = 128, |K| = 128 and ctr is a counter that indicates the number of requests for
pseudo-random bits since instantiation or reseeding. The values of V and K are the critical
values of the internal state (i.e., V and K are the ‘secret values’ of the internal state).

CTR_DRBG Reseed Algorithm
The Reseed algorithm is described in Fig. 30. It takes as input the current values for V ,
K, and ctr, and the input I. The output from the Reseed function is the new working
state, the new values for V , K, and ctr. Two Reseed algorithms are defined, one using a
derivation function Block_Cipher_df, one not using this function. As noted before, we
focus on the one using the derivation function.
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CTR_DRBG Reseed
Require: S = (V,K, ctr), I
Ensure: S′ = (V ′,K ′, ctr′)

1: (K ′, V ′) = CTR_DRBG_update(Block_Cipher_df(I, 256),K, V )
2: ctr′ = 1
3: return (V ′,K ′, ctr′)

Figure 30: NIST CTR_DRBG Reseed

CTR_DRBG Generate Algorithm
The Generate algorithm is described in Fig. 31. It takes as input the current values
for V , K, ctr and n, the number of pseudo-random bits to be returned. It outputs R,
the pseudo-random bits returned, and the new values for V , C, and ctr. Two Generate
algorithms are defined, one using a derivation function Block_Cipher_df, one not using
this function. As noted before, we focus on the one using the derivation function.

CTR_DRBG Generate
Require: S = (V,K, ctr), n
Ensure: S′ = (V ′,K ′, ctr′), R

1: U = ∅
2: while len(U) < n
3: V ′ = V ′ + 1 mod 2128

4: U = [U ||AES_ECB_Encrypt(K′,V′)]
5: endwhile
6: R = [U ]n
7: (K ′, V ′) = CTR_DRBG_Update(Ia,K ′, V ′)
8: ctr′ = ctr + 1
9: return (V ′,K ′, ctr′), R

Figure 31: NIST CTR_DRBG Generate

CTR_DRBG_Update Algorithm
The two previous algorithms both rely on an internal algorithm, named CTR_DRBG
_Update, described in Fig. 32. It takes as input I, the data to be used, the current value
of K and V , and outputs the new value for K and V .

CTR_DRBG Update
Require: V , K, I
Ensure: V ′, K ′

1: U = ∅
2: while len(U) < (k + 128)
3: V ′ = V + 1 mod 2128

4: U = [[U ||AES_ECB_Encrypt(K,V′)]k+128 ⊕ I]
5: K ′ = [U ]k
6: V ′ = [U ]128
7: endwhile
8: return (V ′,K ′)

Figure 32: NIST CTR_DRBG_Update

Block_Cipher_df Function
The derivation function Block_Cipher_df is used in the previous algorithms. It is de-
scribed in Fig. 33. This function uses the public parameter K = 0x000102030405
06070809101112131415 as a key to encrypt the input of the generator.
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CTR_DRBG Block_Cipher_df
Require: I, n
Ensure: R

1: L = len(I)/8, N = len(n)/8, S = [L||N ||I||0x80]
2: while len(S) mod 128 6= 0
3: S = S||0x00
4: endwhile
5: U = ∅, i = 0, K = 0x00010203040506070809101112131415
6: while len(U) < 256
7: IV = i||0, U = [U ||BCC(K, IV ||S)], i = i+ 1
8: endwhile
9: K = [U ]128, X = [U ]128, V = ∅
10: while len(V ) < (k + 128)
11: X = AES_ECB_Encrypt(K,X)
12: V = [V ||X]
13: endwhile
14: return R = [V ]128

Figure 33: NIST Block_Cipher_df

BCC Function
The BCC function is used in the previous algorithms. It is described in Fig. 34. This
function operates a bloc cipher AES_ECB_Encrypt, which corresponds to the block cipher
AES in ECB mode, and chains the successive outputs.

CTR_DRBG BCC
Require: K, I, |I| mod 128 = 0
Ensure: R, |R| = 128

1: U = 0
2: n = |I|/128
3: parse I as [Bn, · · · , B1]
4: for i = 1 to n
5: I = Bi ⊕ U
6: U = AES_ECB_Encrypt(K, I)
7: endfor
14: return R = U

Figure 34: NIST CTR_DRBG BCC

Attack against the robustness of CTR_DRBG
Let us now describe the attack against the security of CTR_DRBG in the security game
ROB (Sect. 4.4). Define the 32-byte distribution D. On input a state i, D updates its state
to i + 1 and outputs a 32-byte input Ii: (i + 1; [Ii0, · · · , Ii31]) ← D(i); where I0, · · · , I15
are random and I16, · · · , I31 = AES_ECB_Decrypt(K, I0, · · · , I15), where K = 0x00 · · · 15
(i.e. D is legitimate with γi = 128, in accordance with Def. 15).

Let us consider an adversary A against the security of the generator that chooses the
distribution D, and that makes the following oracle queries in the security game ROB: one
get-state, one D-refresh with I0, one next-ror. Then (following algorithm notations):

• After get-state, S, K and ctr are known.

• After D-refresh, the Reseed algorithm is first applied: the new state is the output of
CTR_DRBG_update(Block_Cipher_df(I0, 256),K, V ) and ctr = 1. Let us describe
the algorithm Block_Cipher_df(I0, 256): on input I0 and 256, Block_Cipher_df cal-
culates L = 32, N = 32, S = [32||32||I0||0x80] and then S = [32||32||I0||0x80||0x00|| · · · ||0x00].
Next, it calculates BCC(K, IV ||S), for IV = 0||0 and IV = 1||0, with K =
0x00 · · · 15, then sets U = BCC(K, 1||0||S) ||BCC(K, 0||0||S),K = [U ]128, X = [U ]128.



544 SoK: Security Models for Pseudo-Random Number Generators

Let us describe the algorithm BCC(K, IV ||S): on input S = [32||32||I0||0x80||0x00|| · · · ||0x00],
IV = 0||0 and K = 0x00 · · · 15, it parses S as B4, B3, B2, B1 and calculates I = B1,
U = AES_ECB_Encrypt(K, I), I = B2 ⊕ U , U = AES_ECB_Encrypt(K, I), I =
B3 ⊕U , U = AES_ECB_Encrypt(K, I), I = B4 ⊕U , U = AES_ECB_Encrypt(K, I).
However, the input distribution is such that B3 = AES_ECB_Decrypt(K,B2) and
therefore the output of algorithm BCC is known to A. Hence the output of algorithm
Block_Cipher_df is also known to A and also the output of the Reseed algorithm,
although the initial input was of high entropy.

• After next-ror, the output of the generator is computed from a known state and is
therefore predictable.

In this last next-ror-oracle query, A obtains a 16-byte string that is predictable, whereas
this event should occur with probability 2−128. Therefore A can distinguish an output
of CTR_DRBG from random in the game ROB(γ∗), for all γ∗ and this pseudo-random
number generator with input is not robust.
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